XU Jianmei, YANG Fang, LIN Qing, et al. Establishment of Detection Model of Water-injected Meat Based on Low Field Nuclear Magnetic Resonance Transverse Relaxation Spectroscopy[J]. Science and Technology of Food Industry, 2021, 42(11): 226−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070304.
Citation: XU Jianmei, YANG Fang, LIN Qing, et al. Establishment of Detection Model of Water-injected Meat Based on Low Field Nuclear Magnetic Resonance Transverse Relaxation Spectroscopy[J]. Science and Technology of Food Industry, 2021, 42(11): 226−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070304.

Establishment of Detection Model of Water-injected Meat Based on Low Field Nuclear Magnetic Resonance Transverse Relaxation Spectroscopy

More Information
  • Received Date: July 26, 2020
  • Available Online: April 07, 2021
  • The longissimus dorsi in pigs was prepared into the meat samples with water injection ratio of 0%, 2%, 6%, 10% and 14% by direct injection. The NMR signals generated by the meat samples were measured by LF-NMR technique. The transverse relaxation spectrum parameters obtained by inversion were taken as independent variables, combined with discriminant analysis and partial least square regression (PLSR) analysis, the models for detecting water-injected meat were developed, and multiple possibilities for PLSR modeling were attempted. It was showed that the developed discriminant model was validated with calibration set and leave-one-out cross, the total accuracy of the classification of water-injected meat was 89.4% and 88.2%, respectively. By combining the lever value with the student residual, the abnormal data was distinguished and deleted, and the prediction performance of the PLSR model established by using the variable projection importance analysis method to select out six transverse relaxation spectrum parameters as independent variables was optimal, the determination coefficient (Rc2) and standard error (SEV) from calibration set were 0.9603 and 1.0033%, the determination coefficient(Rcv2) and standard error (SECV) from cross validation were 0.9508 and 1.1169%, the determination coefficient(Rp2) and standard error (SEP) from prediction set were 0.9518 and 1.1280%, respectively. The best estimate of the confidence interval capable of predicting the percentage of water injection in unknown samples was about 2.256% at 95% confidence probability. The results showed that the DA model and PLSR model based on LF-NMR transverse relaxation spectrum could be used for qualitative and quantitative detection of water-injected meat.
  • [1]
    李欣南, 关一夫. 掺假肉检验技术发展现状[J]. 食品研究与开发,2016,37(5):189−193. doi: 10.3969/j.issn.1005-6521.2016.05.044
    [2]
    程灵豪, 焦永亮. 白肌肉、注水肉、注胶肉的鉴别检验方法[J]. 中国动物检疫,2015,32(4):28−31. doi: 10.3969/j.issn.1005-944X.2015.04.009
    [3]
    邓咏梅. 关于我国猪肉水分限量的研究[J]. 肉类工业,2016(11):24−27. doi: 10.3969/j.issn.1008-5467.2016.11.008
    [4]
    杨志敏, 丁武, 张瑶. 应用近红外技术快速鉴别原料肉注水的研究[J]. 食品研究与开发,2012,33(5):118−120, 128. doi: 10.3969/j.issn.1005-6521.2012.05.034
    [5]
    孟一, 张玉华, 许丽丹, 等. 近红外光谱技术对猪肉注水、注胶的快速检测[J]. 食品科学,2014,35(8):299−303. doi: 10.7506/spkx1002-6630-201408060
    [6]
    唐鸣, 田潇瑜, 王旭, 等. 基于近红外特征波段的注水肉识别模型研究[J]. 农业机械学报,2018,49(S1):440−446. doi: 10.6041/j.issn.1000-1298.2018.S0.060
    [7]
    於海明, 徐佳琪, 刘浩鲁, 等. 基于高光谱和频谱特征的注水肉识别方法[J]. 农业机械学报,2019,50(11):367−372, 366. doi: 10.6041/j.issn.1000-1298.2019.11.041
    [8]
    Kamruzzaman M, Makino Y, Oshita S, et al. Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef[J]. Food and Bioprocess Technology,2015,8(5):1054−1062. doi: 10.1007/s11947-015-1470-7
    [9]
    阮榕生. 核磁共振技术在食品和生物体系中的应用[M]. 北京: 中国轻工出版社, 2009: 77−83.
    [10]
    Kirtil E, Mecit H, Oztop. 1H Nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing[J]. Food Engineering Reviews,2016,8(1):1−22. doi: 10.1007/s12393-015-9118-y
    [11]
    Wang H, Wang R, Song Y, et al. A fast and non-destructive LF-NMR and MRI method to discriminate adulterated shrimp[J]. Journal of Food Measurement and Characterization,2018,12(2):1340−1349. doi: 10.1007/s11694-018-9748-x
    [12]
    崔智勇, 丁杰, 徐艳, 等. 基于LF-NMR技术下3种猪肉水分含量预测模型的建立与比较[J]. 食品工业科技,2020,41(5):215−220, 226.
    [13]
    渠琛玲, 汪紫薇, 王雪珂, 等. 基于低场核磁共振的热风干燥过程花生仁含水率预测模型[J]. 农业工程学报,2019,35(12):290−296. doi: 10.11975/j.issn.1002-6819.2019.12.035
    [14]
    Bertram H C, Rasmussen M, Busk H, et al. Changes in porcine muscle water characteristics during growth-an in vitro low-field NMR relaxation study[J]. Journal of Magnetic Resonance,2002,157(2):267−276. doi: 10.1006/jmre.2002.2600
    [15]
    王胜威, 母应春, 赵旭, 等. 基于LF-NMR弛豫特性对注水、注胶羊肉辨别研究[J]. 食品工业,2015(6):184−188.
    [16]
    王欣, 王志永, 陈利华, 等. 注水肉糜的低场核磁弛豫特性及判别分析[J]. 现代食品科技,2016(5):79−84.
    [17]
    汪冬华. 多元统计分析与SPSS应用(第2版)[M]. 上海: 华东理工大学出版社, 2018: 173−483.
    [18]
    Monroy M, Prasher S, Ngadi M O, et al. Pork meat quality classification using Visible/Near-Infrared spectroscopic data[J]. Biosystems Engineering,2010,107 (3):271−276. doi: 10.1016/j.biosystemseng.2010.09.006
    [19]
    Wold S, Sjöström M, Eriksson L. PLS-regression: A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems,2001,58(2):109−130. doi: 10.1016/S0169-7439(01)00155-1
    [20]
    Liu J, Cao Y, Wang Q, et al. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis[J]. Food Chemistry,2016,190:938−943. doi: 10.1016/j.foodchem.2015.06.056
    [21]
    ElMasry G, Sun D W, Allen P. Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging[J]. Journal of Food Engineering,2013,117 (2):235−246. doi: 10.1016/j.jfoodeng.2013.02.016
    [22]
    Hazlewood C F, Chang D C, Nichols B L, et al. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle[J]. Biophysical Journal,1974,14(8):583−606. doi: 10.1016/S0006-3495(74)85937-0
    [23]
    Shaarani S M, Nott K P, Hall L D. Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat[J]. Meat Science,2006,72(3):398−403. doi: 10.1016/j.meatsci.2005.07.017
    [24]
    Fjelkner-Modig S, Tornberg E. Water distribution in porcine M. longissimus dorsi in relation to sensory properties[J]. Meat Science,1986,17(3):213−231. doi: 10.1016/0309-1740(86)90005-7
    [25]
    谭明乾, 林竹一, 李晨阳, 等. 基于低场核磁共振技术的小鼠体成分无损分析方法开发[J]. 分析科学学报,2018,34(4):24−31.
    [26]
    Kelly J F D, Downey G, Fouratier V. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry,2004,52(1):33−9. doi: 10.1021/jf034985q
    [27]
    闵顺耕, 李宁, 张明祥. 近红外光谱分析中异常值的判别与定量模型优化[J]. 光谱学与光谱分析,2004(10):1205−1209. doi: 10.3321/j.issn:1000-0593.2004.10.014
    [28]
    Nicola B M, Beullens K, Bobelyn E, et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review[J]. Postharvest Biology & Technology,2007,46(2):99−118.
    [29]
    Samuel D, Park B, Sohn M, et al. Visible-near-infrared spectroscopy to predict water-holding capacity in normal and pale broiler breast meat[J]. Poultry Science,2011,90 (4):914−921. doi: 10.3382/ps.2010-01116
    [30]
    张恒喜. 小样本多元数据分析方法及应用[M]. 西安: 西北工业大学出版社, 2002.
  • Related Articles

    [1]LU Xin, ZHANG Lixia, SUN Qiang, YOU Jing, HUANG Jinian. Effects of Ingredients Composition on Meat Flavor Prepared with High Temperature Sesame Cake Protein Hydrolysate[J]. Science and Technology of Food Industry, 2024, 45(14): 50-61. DOI: 10.13386/j.issn1002-0306.2023080220
    [2]XU Jingxin, CHANG Jingyao, KONG Baohua, XIA Xiufang, LIU Qian. Effects of Water Addition on the Quality Characteristics of Starch-Meat Sausage[J]. Science and Technology of Food Industry, 2022, 43(9): 23-30. DOI: 10.13386/j.issn1002-0306.2021050205
    [3]PAN Yuyan, DUAN Zhenhua, ZHONG Jingni. Analysis of Internal Moisture Changes of Persimmon Slices during Intermittent Microwave Drying Using Low-Field NMR[J]. Science and Technology of Food Industry, 2021, 42(14): 33-39. DOI: 10.13386/j.issn1002-0306.2020110006
    [4]HE Hong-ju, ZHU Ya-dong, WANG Wei, JIANG Sheng-qi, MA Han-jun, CHEN Fu-sheng, LIU Xi, ZHU Ming-ming, ZHAO Sheng-ming, WANG Zheng-rong. Rapid Nondestructive Detection of Glue-injected Meat by NIR Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2020, 41(10): 219-223. DOI: 10.13386/j.issn1002-0306.2020.10.036
    [5]CUI Zhi-yong, DING Jie, XU Yan, YAO Jie, LI Chun-bao. Establishment and Comparison of Three Kinds of Pork Water Content Prediction Models Based on LF-NMR[J]. Science and Technology of Food Industry, 2020, 41(5): 215-220,226. DOI: 10.13386/j.issn1002-0306.2020.05.035
    [6]SHEN Le-cheng, LIU Shu-hang, DENG Hai-ling, HE Mei-xia, WU Yan-hui, PENG Jian-fei, HUANG Yong-qi. Rapid determination of moisture content in candy by near infrared spectroscopy combined with partial least squares[J]. Science and Technology of Food Industry, 2018, 39(7): 255-258,322. DOI: 10.13386/j.issn1002-0306.2018.07.045
    [7]ZHANG Zhong-hui, GAI Sheng-mei, ZOU Yu-feng, WEI Fa-shan, YANG Zhi-hao, HAN Yu-tong, LIU Deng-yong. Effects of different water-injected ratios on eating quality of pork[J]. Science and Technology of Food Industry, 2018, 39(3): 1-5,11. DOI: 10.13386/j.issn1002-0306.2018.03.001
    [8]ZHANG Yu- hua, MENG Yi, JIANG Pei-hong, ZHANG Ying-long, ZHANG Yong-mei. Detection of adulteration of animal meats from different sources by near infrared technology[J]. Science and Technology of Food Industry, 2015, (03): 316-319. DOI: 10.13386/j.issn1002-0306.2015.03.058
    [9]FAN Ma- li, LI Zhen-yu, LI Ai-ping, QIN Xue-mei. Application of partial least squares in vinegar discriminant analysis[J]. Science and Technology of Food Industry, 2014, (21): 324-328. DOI: 10.13386/j.issn1002-0306.2014.21.061
    [10]Effect of water on quality of fresh meat[J]. Science and Technology of Food Industry, 2013, (16): 363-366. DOI: 10.13386/j.issn1002-0306.2013.16.054
  • Cited by

    Periodical cited type(4)

    1. 谭思远,阮兴阳,王园莉,惠和平,陈月星,范娜. 气相色谱-质谱/选择离子监测模式检测食用菌多糖中单糖组成方法的建立与质谱解析. 食品安全质量检测学报. 2025(02): 196-205 .
    2. 王帅,孔博洋,李婷,贾小艳,肖红,位张坤,张继,王俊龙. 微波处理对刺槐豆胶多糖结构特征的影响. 中国食品添加剂. 2024(01): 87-98 .
    3. 张弘弛,刘瑞,巴德方,李慧,杨阳,周凤. 恒山黄芪~1H-NMR指纹图谱的研究. 食品工业科技. 2022(01): 47-55 . 本站查看
    4. 任一杰,赵小亮,王宝忠,向紫骏,杨超福,王海利,马君义,张伟杰. 油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性. 食品工业科技. 2022(23): 245-251 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (229) PDF downloads (17) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return