YANG Du, GONG Xiaoxing, WANG Yajie, et al. Optimization of Ezymatic Hydrolysis Conditions for Preparation Isothiocyanate from Broccoli Seeds by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(10): 146−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070070.
Citation: YANG Du, GONG Xiaoxing, WANG Yajie, et al. Optimization of Ezymatic Hydrolysis Conditions for Preparation Isothiocyanate from Broccoli Seeds by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(10): 146−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070070.

Optimization of Ezymatic Hydrolysis Conditions for Preparation Isothiocyanate from Broccoli Seeds by Response Surface Methodology

More Information
  • Received Date: July 07, 2020
  • Available Online: March 21, 2021
  • This study used single-factor and response surface methodology to optimize the preparation technology of isothiocyanates from broccoli seeds, the factors on the yield of the isothiocyanates, such as mass ratio of enzyme to substrate, time, temperature, pH and extracted material-liquid ratio were investigated. Based on the single factor experiments, the reaction surface test was carried out by selecting the enzyme hydrolysis time, temperature and pH, and the resulting isothiocyanates were identified by the thiourea method and gas chromatography-mass spectrometry (GC-MS). The results showed that the optimum conditions were: Reaction time at 3.95 h, reaction temperature at 44.6 ℃, pH at 6.52. The yield of isothiocyanates was confirmed under the optimal conditions 8.36 mg/g (experimental) versus 8.51 mg/g (theoretical), the relative error was 1.8%. The five main compounds were identified by gas chromatography-mass spectrometry in enzymatic hydrolysis products, such as 4-(methylthio)butyronitrile, 1-butyl isothiocyanate, sulforaphane nitrile, oxazolidinethione and sulforaphane. The relative content of sulforaphane was the highest among the five compounds. In conclusion, the extraction parameters were feasible for the preparation of ITCs in broccoli seeds.
  • [1]
    曾磊, 王国平. 中国癌症流行病学与防治研究现状[J]. 世界最新医学信息文摘,2016,16(87):36−37.
    [2]
    Liang H, Yuan Q P, Dong H R, et al. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography[J]. Journal of Food Composition & Analysis,2006,19(5):473−476.
    [3]
    Gosslau A, Chen K Y. Nutraceuticals, apoptosis, and disease prevention[J]. Nutrition,2004,20(1):95−102. doi: 10.1016/j.nut.2003.09.017
    [4]
    胡翠珍, 李胜, 马绍英, 等. 响应面优化西兰花中萝卜硫素复合提取工艺[J]. 食品工业科技,2016,37(4):273−279.
    [5]
    杨瑛洁, 李淑燕, 胡国伟, 等. 硫代葡萄糖苷的降解途径及其产物的研究进展[J]. 西北植物学报,2011(7):206−212.
    [6]
    Liang H, Li C, Yuan Q, et al. Separation and purification of sulforaphane from broccoli seeds by solid phase extraction and preparative high-performance liquid chromatography[J]. Journal of Agricultural & Food Chemistry,2007,55(20):8047−8053.
    [7]
    Lee S Y, Chu S M, Lee S M, et al. Determination of indole-3-carbinol and indole-3-acetonitrile in brassica vegetables using high-performance liquid chromatography with fluorescence detection[J]. Journal of the Korean Society for Applied Biological Chemistry,2010,53(2):249−252. doi: 10.3839/jksabc.2010.039
    [8]
    Zhang Y, Talalay P, Cho C G, et al. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure[J]. Proc Natl Acad Sci U S A,2017,89(6):2399−2403.
    [9]
    苏光耀, 沈莲清, 王向阳, 等. 西兰花籽中硫代葡萄糖苷酶解条件的研究[J]. 中国粮油学报,2008,23(2):186−190.
    [10]
    杨艳婧. 西兰苔籽中异硫氰酸盐的提取与抗肿瘤活性研究[D]. 广州: 华南理工大学, 2010.
    [11]
    Vieira M F, Angelica M S V, Zanin G M, et al. β-Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups[J]. Journal of Molecular Catalysis B Enzymatic,2011,69(1−2):47−53. doi: 10.1016/j.molcatb.2010.12.009
    [12]
    阮颖, 周朴华, 刘春林. 植物硫代葡萄糖苷-黑芥子酶底物酶系统[J]. 湖南农业大学学报(自然科学版),2007,33(1):18−23.
    [13]
    吴建朋. 芝麻菜种子中硫代葡萄糖苷(Glucoerucin)的分离纯化工艺研究[D]. 北京: 北京化工大学, 2013.
    [14]
    Latte K P, Appel K E, Lampen A. Health benefits and possible risks of broccoli – An overview[J]. Food & Chemical Toxicology,2011,49(12):3304−3309.
    [15]
    Gu Z X, Guo Q H, Gu Y J. Factors influencing glucoraphanin and sulforaphane formation in brassica plants: A review[J]. Journal of Integrative Agriculture,2012,11(11):54−66.
    [16]
    Yuan H N, Yao S J, You Y R, et al. Antioxidant activity of isothiocyanate extracts from broccoli[J]. Chinese Journal of Chemical Engineering,2010,18(2):312−321. doi: 10.1016/S1004-9541(08)60358-4
    [17]
    Wu Y F, Mao J W, You Y R, et al. Study on degradation kinetics of Sulforaphane in broccoli extract[J]. Food Chemistry,2014,155:235−239. doi: 10.1016/j.foodchem.2014.01.042
    [18]
    Guo Q H, Guo L P, Wang Z Y, et al. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts[J]. Food Chemistry,2013,141(3):1580−1586. doi: 10.1016/j.foodchem.2013.04.026
    [19]
    赵振东, 李嘉诚, 冯玉红, 等. 超高效液相色谱-串联质谱法鉴别十字花科植物中硫代葡萄糖苷[J]. 化学分析计量,2013,22(2):12−15.
    [20]
    Loi C C, Boo H C, Mohamed A S, et al. Application of headspace solid-phase microextraction and gas chromatography for the analysis of furfural in crude palm oil[J]. Journal of the American Oil Chemists, Society,2010,87(6):607−613. doi: 10.1007/s11746-009-1534-9
    [21]
    Li X, Mosbah M K. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots[J]. Plant Physiol Biochem,2005,43:503−511. doi: 10.1016/j.plaphy.2005.03.015
    [22]
    Borkowski J J. Discussion of response surface design evaluation and comparison by christine anderson-cook, connie borror, and douglas montgomery[J]. Journal of Statistical Planning and Inference,2009,139(2):650−652. doi: 10.1016/j.jspi.2008.04.011
    [23]
    陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策,2020,36(8):36−40.
    [24]
    Gu Y, Guo Q, Zhang L, et al. Physiological and biochemical metabolism of germinating broccoli seeds and sprouts[J]. Journal of Agricultural & Food Chemistry,2012,60(1):209−213.
    [25]
    中华人民共和国农业部种植业管理司. NY/T1596-2008 油菜饼粕中异硫氰酸酯的测定硫脲比色法[S]. 北京: 中国农业出版社, 2008.
  • Related Articles

    [1]YU Yanqi, YANG Mingyuan, LÜ Chunmao, BAI Shaoci, ZHANG Qunfang, ZOU Chenyang, JIANG Han. Comprehensive Evaluation of Chestnut Quality Based on Principal Component and Cluster Analysis[J]. Science and Technology of Food Industry, 2025, 46(2): 280-291. DOI: 10.13386/j.issn1002-0306.2024020255
    [2]LI Ke, LIN Zixi, LIU Jia, LIAO Maowen, YUAN Huaiyu, LIANG Yumei, PAN Cuiping, GUO Nanbin, ZHU Yongqing, ZHANG Guowei, LI Huajia. Comprehensive Evaluation of Plums Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2024, 45(8): 293-300. DOI: 10.13386/j.issn1002-0306.2023060002
    [3]XU Wenjing, CHEN Changlin, DENG Sha, LIU Yijun, LÜ Yuanping. Comprehensive Evaluation of Blueberry Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2022, 43(13): 311-319. DOI: 10.13386/j.issn1002-0306.2021110198
    [4]WANG Ronglin, XIE Linmei, LV Feng. Improving the Quality of Frozen Purple Sweet Potato Ball with Chinese Yam by Factor Analysis and Box-Behnken Response Surface[J]. Science and Technology of Food Industry, 2021, 42(2): 146-153,160. DOI: 10.13386/j.issn1002-0306.2020030258
    [5]ZHANG Tang-wei, HE Ji-feng, YU Yao-bin, CI Dun. Mutton quality and its factor analysis of Gangba sheep[J]. Science and Technology of Food Industry, 2018, 39(8): 279-284. DOI: 10.13386/j.issn1002-0306.2018.08.051
    [6]SUN Qi-ran, LIU Pei, LI Hui-wei, LIU Lin, NI Sai-jia, XUE Feng, SHANG Er-xin, DUAN Jin-ao. Analysis and evaluation of main nutritional ingredients in residual of lotus root from different areas[J]. Science and Technology of Food Industry, 2018, 39(6): 291-297. DOI: 10.13386/j.issn1002-0306.2018.06.054
    [7]DING Jie, ZHAO Xue-mei, ZHU Jin-yan, LIU Ji, LIAO Cheng-cheng, QIN Wen, HE Jiang-hong. Principal component,factor analysis and cluster analysis of the effect of freshwater fish species on the quick-frozen highland barley fish noodle quality[J]. Science and Technology of Food Industry, 2018, 39(1): 34-40,51. DOI: 10.13386/j.issn1002-0306.2018.01.007
    [8]ZOU Shu-ping, ZHAO Ting, TAI Xiao-liang, MENG Yi-na, MA Yan, XU Ming-qiang, ZHANG Qian. Quality and cluster analysis of potato varieties mainly grown in Xinjiang[J]. Science and Technology of Food Industry, 2017, (11): 295-298. DOI: 10.13386/j.issn1002-0306.2017.11.048
    [9]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [10]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
  • Cited by

    Periodical cited type(21)

    1. 杜涓,舒雄辉,张晨曦,侯温甫,艾有伟,王宏勋,韩娅红. 基于TG酶介导的莲藕风味鱼糕配方优化研究及其品质评价. 中国食品添加剂. 2024(02): 176-185 .
    2. 吴宇昊,戴芳,丛欣,祝振洲,李书艺,梅新,陈学玲. 不同采收期不同品种莲藕的营养品质变化规律及评价. 食品安全质量检测学报. 2024(03): 9-17 .
    3. 陈亚欣,曾荣,陈龙,唐楠锐,张妮,张国忠. 莲藕表皮力学特性试验研究. 甘肃农业大学学报. 2024(01): 304-312 .
    4. 贾凤娟,程慧,王延圣,弓志青,崔文甲,王文亮. 藕片热泵干燥工艺优化及全藕粉品质评价. 中国果菜. 2024(03): 56-63 .
    5. 吴宇昊,祝振洲,丛欣,李书艺,梅新,陈学玲. 不同莲藕品种的营养品质分析与评价. 中国瓜菜. 2024(04): 127-132 .
    6. 郭鲁平,黄璐,程茜,张晓燕,袁星星,陈新,薛晨晨. 江苏省春播鲜食大豆主栽品种营养和功能品质研究. 大豆科学. 2023(01): 91-98 .
    7. 马泮龙,李利明,倪龙凤,何勇. 莲藕品种比较试验. 浙江农业科学. 2023(03): 635-638 .
    8. 孙海娟,李洁,刘义满,汪李平,严守雷. 不同品种莲藕加工制汁适宜性评价. 食品科学技术学报. 2023(02): 164-174 .
    9. 张国忠,吕紫薇,刘浩蓬,刘婉茹,龙长江,黄成龙. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型. 农业工程学报. 2023(08): 188-196 .
    10. 姜健,王晓玮,刘柏林,谢继安,韦莹,王秀莉,单晓梅. 安徽省四种市售水生蔬菜中铅、镉、总铬和总砷污染状况. 环境卫生学杂志. 2023(06): 469-473 .
    11. 赖政,盛颖,肖力婷,杨慧林,阳文静,简敏菲. 鄱阳湖越冬白鹤肠道微生物群落结构及功能预测分析. 微生物学报. 2023(11): 4302-4314 .
    12. 程传民,李云,叶岚,魏晓星,丁小乔,辛钊汋,邝婷婷,冯波,程大顺,高琴,张静,张林. 饲料中铅的检测原子吸收法关键控制要素. 饲料博览. 2023(06): 63-66 .
    13. 张鹏,颜碧,贾晓昱,李江阔. 鲜切莲藕防褐变剂配方优化及保鲜效果研究. 食品与发酵工业. 2022(01): 169-175 .
    14. 顾晓敏,童川,韩延超,陈杭君,郜海燕. 不同品种莲藕游离氨基酸多样性分析. 食品科学. 2022(04): 183-189 .
    15. 辜芸,周鸿,李娟. 江西省市售水生蔬菜中微量元素含量调查及健康风险评估. 江西科学. 2022(02): 264-267+286 .
    16. 陈敏氡,王彬,李永平,叶新如,林锦辉,曾美娟,刘建汀,朱海生,温庆放. 六个品种花椰菜花球的营养成分分析与评价. 热带亚热带植物学报. 2022(03): 349-356 .
    17. 王燕,付琪,李颖,罗芳,林振宇. 近红外光谱分析技术快速检测藕粉品质. 食品安全质量检测学报. 2022(15): 5026-5034 .
    18. 许粟,姚绍炉,刘宇泽,费强,马风伟,陈海江,李勇,许洁舲,肖娟,王欣颖,陈光静. 响应面优化淀粉型刺梨凝胶软糖配方工艺. 食品工业科技. 2022(17): 240-247 . 本站查看
    19. 张晨,史艳楠,杨宁宁,秦莉莉,唐佳伟,董臣. 不同口感鲜切莲藕褐变的生理生化及分子机制研究. 食品与发酵工业. 2022(22): 165-171 .
    20. 邵旭鹏,李寐华,沈琦,范盈盈,方晓彤,王成,刘峰娟. 新疆吐鲁番地区不同品种甜瓜营养成分分析及品质综合评价. 食品工业科技. 2021(13): 358-365 . 本站查看
    21. 顾涛,朱晓华,赵信文,江拓,邱啸飞,郑小战,帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系. 岩矿测试. 2021(06): 833-845 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (155) PDF downloads (10) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return