Effect of the Flavor and Quality of Wolfberry Tea Processed with Buds and Leaves under Different Degree of Spreading
-
摘要: 为探究不同摊放程度对枸杞芽叶茶风味品质的影响,本研究以D、G两个单株为试验材料,对不同摊放程度按绿茶工艺加工的枸杞芽叶茶进行感官品质、类黄酮、水浸出物、氨基酸、糖类物质、有机酸及挥发性物质分析。结果表明,D、G单株摊放至含水率55%加工的枸杞芽叶茶感官品质综合评分(D55%、G55%)高于含水率50%和60%摊放叶加工的茶样(D50%、D60%、G50%、G60%),其中D55%具有花果香,甜香,滋味甜醇的特点,G55%具有花果香,略带甜香,滋味醇和回甘显的特点。与含水率50%和60%加工的茶样相比,含水率55%的摊放程度有利于枸杞芽叶茶中水浸出物、氨基酸、糖类物质和脂肪酸的积累,降低类黄酮、水溶性二元酸和羟基多元羧酸物质含量,促进二氢猕猴桃内酯等具有愉悦性气味的香气物质积累。综上,D、G单株均适合用含水率55%的摊放程度加工枸杞芽叶茶,为枸杞芽叶茶品质提升提供参考。Abstract: This study investigated the effect of different degrees of spreading on the flavor and quality of wolfberry tea processed with buds and leaves. D and G wolfberry plants were used as the experimental materials. The sensory evaluation, flavonoids, water extracts, amino acid components, sugar substances, organic acids, and volatile substances of wolfberry tea processed with varying degrees of spreading were analyzed. The results indicated that wolfberry tea processed with D and G plants spread to 55% water content (D55%、G55%) achieved higher sensory quality scores compared to those processed with 50% and 60% water content (D50%, D60%, G50%, G60%). Overall, wolfberry tea processed with D plant spread to 55% water content exhibited floral, fruity, and sweet aromas, with a sweet and mellow taste. Similarly, tea processed with G plant spread to 55% water content showed floral and fruity aromas, with a slightly sweet aroma and a mellow, sweet taste. Compared to the tea samples processed from buds and leaves spread at 50% and 60% moisture content, the spread degree of 55% moisture content was found to be favorable for the accumulation of water extracts, amino acids, carbohydrates, and fatty acids. Meanwhile, the levels of flavonoids, water-soluble dicarboxylic acid, and hydroxyl polycarboxylic acids in the tea were decreased, while the accumulation of pleasant aroma compounds such as dihydroactinolactone was enhanced. In conclusion, both D and G plants are suitable for processing tea with a 55% water content spreading degree, providing valuable insights for the quality improvement of wolfberry tea.
-
Keywords:
- wolfberry tea /
- degree of spreading /
- quality analysis /
- flavor substance /
- aroma compounds
-
宁夏具有丰富的枸杞芽叶资源,且政府重视枸杞芽叶茶产品开发与市场推广[1−2]。枸杞芽叶茶富含多糖、黄酮、多酚和氨基酸等物质[3−5],具有降血糖[6]、调血脂[7]、抗氧化[4,8]和助眠[9]等多种功效。随着消费者对健康的重视和茶饮多元化的发展,枸杞芽叶茶市场需求量不断增大,具有广阔的发展前景[1]。提升枸杞芽叶茶风味品质对枸杞芽叶茶推广具有重要意义,而加工工艺对枸杞芽叶茶的品质具有重要影响。张敏等[10]研究不同杀青工艺对枸杞叶茶品质的影响,研究发现以杀青叶量500 g、杀青时间2.5 min处理形成的枸杞叶茶感官品质最好且蒸气杀青有利于保留枸杞叶茶类黄酮、多酚和游离氨基酸等活性成分。刘静等[11]研究不同萎凋时间对枸杞叶茶的影响,结果表明萎凋工序可改进枸杞叶茶汤的滋味和香气,提高枸杞叶茶品质,且萎凋7 h为最适萎凋时间。冶爱军等[12]研究了匀浆悬浮发酵法制作枸杞叶红茶的制作工艺,结果表明在发酵温度35 ℃的条件下,发酵90 min,悬浮液质量浓度设为27 mg/mL时,发酵叶黄红色到红色,茶叶品质较好。郑立红等[13]研究热风干燥和微波干燥对枸杞叶茶品质影响,结果发现微波干燥处理的枸杞叶茶色泽较绿,口感较好,营养成分较高,有利于获得高品质的枸杞叶茶。摊放是绿茶加工过程中的重要工序,鲜叶在摊放过程中会发生缓慢的生化变化,包括部分蛋白质分解为氨基酸、部分多糖、果胶水解成可溶性糖和可溶性果胶、儿茶素轻微氧化以及青气的部分散发等[14−15]。鲜叶适度摊放,有助于改善茶叶品质,但目前关于摊放程度对枸杞芽叶茶品质影响的研究相对较少。
本研究选取了表观具有代表性且差异较大的D、G两个枸杞单株作为试验材料(D单株节间较短,梗较粗,叶簇生状;G单株节间较长,梗较细),对不同摊放程度加工的枸杞芽叶茶进行感官品质、类黄酮、水浸出物、氨基酸、糖类物质、有机酸及挥发性物质的综合分析,旨在明确枸杞芽叶茶加工的最适摊放程度,为提升枸杞芽叶茶品质提供参考。
1. 材料与方法
1.1 材料与仪器
本试验所使用的D、G枸杞单株芽叶原料于2022年7月采摘自宁夏农林科学院枸杞科学研究所,采摘标准为芽叶长度(4±0.5)cm,其中,D单株的节间较短,梗较粗,叶簇生状,而G单株的节间较长,梗较细;植物类黄酮试剂盒 苏州科铭生物技术有限公司;植物总酚试剂盒 苏州科铭生物技术有限公司;癸酸乙酯 色谱纯(纯度≥99.8%),上海阿拉丁生化科技股份有限公司;乙醇 分析纯(AR),西陇科学股份有限公司;香草酸 (纯度≥97%),上海默克有限公司。
Pegasus HT飞行时间质谱 美国LECO公司;PDMS/DVB 萃取针 美国Supelco公司;7890B 气相色谱仪 美国安捷伦科技公司;MPS多功能自动进样架 德国Gerstel公司;722S可见分光光度仪 上海棱光技术有限公司;GZY-P1O-W超纯水机 湖南科尔顿水务有限公司;GL-20G-Ⅱ高速冷冻离心机 上海安亭科学仪器厂。
1.2 实验方法
1.2.1 样品制备
D、G枸杞单株芽叶原料参照图1所示的绿茶加工工艺制成枸杞芽叶茶。(摊放7~12 h,220 ℃杀青3 min,揉捻造型4 min,100 ℃干燥90 min)不同摊放程度工艺处理对应编号及样品编号如表1所示。
表 1 不同摊放程度对应编号及样品编号Table 1. Corresponding numbers of treatments with different degree of spreading and sample numbers供试单株 摊放程度 样品编号 D单株 摊放叶含水率50% D50% 摊放叶含水率55% D55% 摊放叶含水率60% D60% G单株 摊放叶含水率50% G50% 摊放叶含水率55% G55% 摊放叶含水率60% G60% 1.2.2 感官审评方法
参照茶叶感官审评方法GB/T 23776-2018[16]绿茶审评标准进行审评,感官评价小组由5位具有高级评茶员及以上资质的人员组成(3男2女,年龄范围38~59岁),最终得分为5位专家评分的平均值。
1.2.3 类黄酮、水浸出物含量检测方法
类黄酮含量使用植物类黄酮测试盒测定,并按照试剂盒说明书进行操作;水浸出物含量测定参照GB/T 8305-2013《茶 水浸出物测定》[17]。
1.2.4 样品氨基酸、糖类物质、有机酸和挥发性物质分析
参考林冬纯等[18]、王晓丹等[19]的方法测定氨基酸、糖类物质和有机酸类物质;参考李炫烨等[20]、魏子淳等[21]的方法采用顶空固相微萃取-气相色谱-飞行时间质谱联用技术(HS-SPME-GC-TOF-MS)测定挥发性物质成分;所有实验均重复3次。
1.2.4.1 样品前处理
样品氨基酸、糖类物质和有机酸前处理:称取30 mg茶叶粉末至2.0 mL离心管后加入485 μL甲醇:水(v:v,3:1)混合溶剂,再加入15 μL浓度为5 mg/mL香草酸,超声30 min,于12000×g,25 ℃,离心10 min,取150 μL上清装入2 mL样品瓶,真空干燥后加入80 μL浓度为20 mg/mL的甲氧胺吡啶溶液,80 ℃下保持20 min,在BSTFA试剂中加入1%TMCS试剂配匀并取80 μL,70 ℃下保持1 h。每个样品均重复3次。
样品挥发性物质前处理:将供试样品充分研磨后,称取2 g茶粉至20 mL顶空瓶中,并加入内标物质(108.12 μg/kg癸酸乙酯(C12H24O2)溶液1 μL)。同时等量混合每个样品制备QC,以检测仪器的稳定性。每个样品均重复3次。
1.2.4.2 检测条件
氨基酸、糖类物质和有机酸测定气相色谱检测条件:毛细管色谱柱:RESTEK Rxi®-5 Sil MS(30 m×0.25 mm,0.25 μm)。气相参数:进样口温度:280 ℃,进样方式为不分流,柱流速1.5 mL/min,传输线温度275 ℃,炉箱升温程序如下:起始温度80 ℃保持0.2 min后,先以15 ℃/min速率升温至160 ℃后保持0 min,再以3 ℃/min速率升温至200 ℃后保持0 min,最后以10 ℃/min速率升温至300 ℃保持8 min。质谱条件:溶剂延迟170 s,质谱采集范围35~600,采集频率10谱图/s,检测器电压1550 V,离子源温度250 ℃,电子轰击能量−70 eV。
HS-SPME条件:萃取针为PDMS/DVB;孵化温度80 ℃,孵化时间30 min;萃取时间30 min;解吸附时间设定至5 min。GC条件:色谱柱:Rxi-5silMS(30 m×0.25 mm,0.25 μm);进样口温度和传输线温度分别设定至250 ℃、275 ℃;不分流进样模式下,载气(氦气)流速为1.5 mL/min;以程序升温50 ℃保持5 min;再以3 ℃/min升至210 ℃,保持3 min;最后以15 ℃升至230 ℃,保持5 min。MS条件:EI电离能量为70 eV;采集速度10谱图/s;质量范围30~500 u;离子源温度和质谱检测器电压分别设定为250 ℃、1570 V;质谱数据采集时间200 s。
1.2.4.3 TAV及OAV的计算
TAV=CT (1) OAV=CiTi (2) 式中:C为游离氨基酸的含量;T为游离氨基酸在水中的阈值;Ci为挥发性成分的浓度;Ti为挥发性成分在水中的香气阈值。
1.3 数据处理
图表制作利用Microsoft Office、OriginPro 2021和TBtools,采用IBM SPSS Statistics 27统计软件的Duncan检验进行显著性分析(P<0.05),主成分分析利用 SIMCA-P 14.1 软件。
2. 结果与分析
2.1 不同摊放程度加工枸杞芽叶茶感官品质分析
根据本研究目的对不同摊放程度加工的枸杞芽叶茶进行感官品质分析,审评结果如表2所示,与D50%和D60%相比,D55%具有花果香,甜香,且滋味甜醇,叶底绿亮的特点。与G50%和G60%相比,G55%具有花果香且略带甜香,滋味醇和回甘显,汤色黄亮的特点。结合感官品质综合得分可知,D55%和G55%枸杞芽叶茶品质均优于D50%、D60%、G50%、G60%。可见,含水率55%摊放处理加工的枸杞芽叶茶品质相对较高。
表 2 不同摊放程度加工枸杞芽叶茶感官审评结果Table 2. Sensory evaluation results of wolfberry tea processed from bud and leaf with different degree of spreading样品名称 外形(25%) 汤色(10%) 香气(25%) 滋味(30%) 叶底(10%) 综合得分 评语 评分 评语 评分 评语 评分 评语 评分 评语 评分 D50% 卷曲绿
梗稍暗85±1.02 绿暗 84±0.49 甜香,略带花香 88±1.17 醇厚有苦尾 84±0.80 深绿 85±0.75 85.35 D55% 略卷曲
绿亮
梗绿褶87±0.75 浅绿黄亮 88±0.63 花果香,甜香 92±1.33 甜醇 91±1.02 绿亮 88±0.75 89.65 D60% 卷曲梗暗褐而深绿 84±1.02 浅黄 85±1.17 清香、略带甜香 86±0.63 较甜醇 87±1.02 深绿 85±0.49 85.60 G50% 略卷黄绿
稍有梗85±1.02 绿黄 85±0.98 花香 87±1.17 醇和微苦 82±1.33 暗绿 84±0.89 84.50 G55% 略卷绿亮 88±1.02 黄亮 87±0.98 花果香,略带甜香 90±0.80 醇和回甘显 89±0.63 暗绿 84±0.49 88.30 G60% 略卷深绿
稍有梗84±1.17 黄暗 84±1.02 甜香,略带清香 88±0.89 醇和有回甘 86±2.04 暗绿 84±1.50 85.60 2.2 不同摊放程度加工枸杞芽叶茶主要生化成分分析
水浸出物包含可溶性糖、氨基酸、茶多酚等多种物质,可从一定程度上反映茶叶品质,其含量高低可以综合反映茶汤厚薄和滋味浓强程度[24]。不同摊放程度加工对枸杞芽叶茶水浸出物含量影响如图2A和C所示,随着摊放程度的加重,水浸出物含量先增加后减少,D55%、G55%的水浸出物含量显著高于D50%、D60%、G50%、G60%(P<0.05)。枸杞叶中黄酮类化合物的含量高于枸杞果中的含量,是枸杞叶中最重要的生理活性成分之一[25]。其中类黄酮属于多酚类物质,是茶汤呈苦涩味的重要物质之一[26]。如图2B和图2D所示,D50%、G50%的类黄酮含量显著高于D55%、D60%、G55%、G60%(P<0.05),与D50%滋味醇厚有苦尾、G50%滋味醇和微苦的感官审评结果一致。综上,含水率55%的摊放程度有利于枸杞芽叶茶类黄酮物质的转化,降低茶汤的苦涩感,同时有利于水浸出物的积累。
图 2 不同摊放程度对枸杞芽叶茶主要生化成分的影响注:A:D单株水浸出物含量;B:D单株类黄酮含量;C:G单株水浸出物含量;D:G单株类黄酮含量;英文小写字母不同代表不同样品之间的差异显著(P<0.05),图6同。Figure 2. Effects of different degree of spreading on the main biochemical components of wolfberry tea processed from bud and leaf2.3 不同摊放程度加工枸杞芽叶茶氨基酸含量分析
氨基酸是茶汤主要呈味物质之一,各类氨基酸含量对茶汤滋味有着重要的影响[27]。不同摊放程度加工的枸杞芽叶茶氨基酸组分分析如图3所示,共有18种氨基酸组分。按味觉特征将18种氨基酸分为鲜爽类、甜味类和苦味类氨基酸[28],其中鲜爽类氨基酸包括谷氨酸(Glu)和天冬氨酸(Asp);甜味氨基酸包括脯氨酸(Pro)、丙氨酸(Ala)、甘氨酸(Gly)、丝氨酸(Ser)、苏氨酸(Thr)、赖氨酸(Lys)、谷氨酰胺(Gln)和天冬酰胺(Asn);苦味氨基酸包括缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Lle)、甲硫氨酸(Met)、苯丙氨酸(Phe)、组氨酸(His)、色氨酸(Trp)和酪氨酸(Tyr)。如图3所示,D55%中鲜爽类氨基酸、苦味类氨基酸显著高于D50%、D60%(P<0.05),甜味类氨基酸显著高于D50%(P<0.05),与D60%差异不显著(P>0.05)。G55%中甜味类氨基酸显著高于G50%、G60%(P<0.05),鲜爽类氨基酸显著高于G50%(P<0.05),与G60%差异不显著(P>0.05),苦味类氨基酸显著高于G60%(P<0.05),与G50%差异不显著(P>0.05)。D、G两个单株采用不同摊放程度处理的枸杞芽叶茶均呈现出随着摊放程度的加重,枸杞芽叶茶氨基酸总含量先增加后减少的趋势,D55%、G55%的氨基酸总含量显著高于D50%、D60%、G50%、G60%(P<0.05)。可见,采用含水率55%的摊放程度更有利于枸杞芽叶茶中氨基酸的积累。
各类氨基酸对枸杞芽叶茶茶汤滋味的影响不仅体现在含量与比例上,还可以通过滋味活性值(TAV)来反映[29]。滋味活性值是指滋味物质含量与该滋味物质呈味阈值的比值,TAV值≥1时,表明该滋味物质对样品的呈味有显著影响,且TAV值越大,贡献越大;TAV值<1,表明该滋味物质对样品的呈味贡献不显著[30]。结合图3与表3所示,D50%中呈苦味的物质Val的TAV值较高,且Val含量显著高于D55%和D60%(P<0.05),苦味氨基酸对茶汤的滋味与醇厚程度呈正相关[31],该氨基酸组分对D50%样品茶汤滋味贡献较大,与D50%醇厚带苦尾的感官审评结果一致;D55%中呈苦味的Val、呈甜味的Pro、Ala及Lys的TAV值较高,其中Lys含量显著高于D50%和D60%(P<0.05),这些氨基酸组分共同作用对D55%茶汤滋味做出贡献,与D55%甜醇的感官审评结果一致;D60%样品中呈苦味的Val、呈甜味的Pro和Ala的TAV值较高,其中Pro含量显著高于D50%和D55%(P<0.05),与D60%较甜醇的感官审评结果一致。G50%中呈苦味的Val、呈甜味的Pro的TAV值较高,与G50%醇和微苦的感官审评结果一致,G55%中呈苦味的Val、呈甜味Pro和Ala的TAV值较高,其中Pro含量显著高于G50%和G60%(P<0.05),与G55%醇和回甘显的感官审评结果一致;G60%中呈苦味的Val、呈甜味Pro和Ala的TAV值较高,其中Val、Pro和Ala的TAV值均小于G55%,与G60%较醇和有回甘的感官审评结果一致。结合感官审评滋味评分知,D、G单株摊放至含水率55%加工的枸杞芽叶茶中对茶汤滋味贡献较高的氨基酸Val、Pro、Ala含量高于摊放叶含水率50%和60%加工茶叶。D和G两个单株均适合采用含水率55%的摊放程度加工枸杞芽叶茶。
表 3 不同摊放程度枸杞芽叶茶氨基酸TAV值Table 3. Amino acid TAV value of wolfberry tea processed from bud and leaf with different degree of spreading滋味
类型游离
氨基酸阈值
(mg/g)TAV值 D50% D55% D60% G50% G55% G60% 鲜味 Glu 0.30 3.14 3.68 3.77 3.66 4.21 4.15 Asp 1.00 4.31 4.63 4.24 2.08 2.36 2.36 甜味 Pro 3.00 12.09 12.25 13.39 11.36 14.36 11.43 Ala 0.60 5.15 9.62 11.04 7.18 9.36 9.31 Ser 1.50 3.72 4.38 3.81 2.98 3.24 3.14 Lys 0.50 7.73 9.23 8.54 2.16 2.44 2.43 苦味 Val 0.40 39.62 37.94 36.01 25.98 25.43 23.81 Lle 0.90 5.92 6.78 7.00 6.59 6.86 6.84 Met 0.30 2.70 3.36 2.91 − − − Phe 0.90 6.19 6.73 6.32 5.57 5.27 5.51 His 0.20 3.44 6.13 3.11 2.21 2.57 2.81 Tyr 0.91 5.35 6.58 6.10 3.45 3.10 3.26 2.4 不同摊放程度加工枸杞芽叶茶糖类物质含量分析
糖类物质能给茶汤带来甜醇的味道[32]。不同摊放程度枸杞芽叶茶中共检测到7种糖类物质,包括4种单糖(木糖、阿拉伯糖、果糖和葡萄糖)、3种双糖(吡喃葡萄糖、乳糖和麦芽糖)。如图4所示,D55%、D60%中阿拉伯糖、果糖、吡喃葡萄糖、葡萄糖、麦芽糖及总糖含量显著高于D50%(P<0.05)。可见,与D50%相比,D55%、D60%处理更有利于枸杞芽叶茶中糖类物质的积累,同时与D55%、D60%中茶汤滋味都具有甜醇的感官审评结果一致。G55%中木糖、阿拉伯糖、果糖、葡萄糖、吡喃葡萄糖和乳糖显著高于G50%(P<0.05),木糖、阿拉伯糖和吡喃葡萄糖显著高于G60%(P<0.05),且随着摊放程度的加重,枸杞芽叶茶糖类总量先增后减,G55%中糖类总量显著高于G50%、G60%(P<0.05),这与G55%茶汤滋味回甘显的感官审评结果一致。综上,随着摊放程度的加重,D单株摊放叶含水率55%和60%的工艺处理更有利于枸杞芽叶茶糖类物质的积累。G单株摊放叶含水率55%的工艺则更有助于芽叶茶糖类物质的积累,提高茶汤滋味的浓甜度。
2.5 不同摊放程度加工枸杞芽叶茶有机酸含量分析
不同摊放程度的枸杞芽叶茶样品中检测出6种有机酸,将检测出的有机酸进行分类,一类是脂肪酸,包括反丁烯二酸、亚麻酸、α-亚麻酸和硬脂酸,脂肪酸对茶叶香气形成具有重要作用[33−34];另外一类是二元酸和羟基多元羧酸,包括苹果酸和柠檬酸,这类化合物属于水溶性物质,对茶汤滋味有着重要的影响[35]。如图5所示,D50%中苹果酸和柠檬酸这类水溶性化合物显著高于D55%、D60%(P<0.05),这是可能D50%茶汤滋味感官品质评分低于D55%、D60%的原因之一,D55%中亚麻酸、α-亚麻酸和硬脂酸含量显著高于D50%和D60%(P<0.05),可见含水率55%的工艺有利于枸杞芽叶茶脂肪酸的保留。G50%中苹果酸显著高于G55%和G60%(P<0.05),G60%中柠檬酸显著高于G55%(P<0.05),G55%中亚麻酸、α-亚麻酸显著高于G50%、G60%(P<0.05)。随着摊放程度的加重,D50%、G50%中有机酸总量显著高于D55%、D60%、G55%、G60%(P<0.05)。综上所述,枸杞芽叶茶中有机酸总量随着摊放程度的加重而减少,含水率50%的摊放程度加工的枸杞芽叶茶二元酸和羟基多元羧酸保留较多,脂肪酸含量较低,含水率55%的摊放程度加工的枸杞芽叶茶脂肪酸含量较多。可见,含水率55%的摊放程度有助于枸杞芽叶茶中脂肪酸的积累,利于枸杞芽叶茶芳香物质的形成。
2.6 不同摊放程度加工枸杞芽叶茶挥发性物质分析
2.6.1 不同摊放程度加工枸杞芽叶茶总挥发性物质分析
对不同摊放程度枸杞芽叶茶进行GC-MS分析,共鉴定出60种挥发性物质,如图6所示,醇类、酮类和酯类化合物含量较高,是枸杞芽叶茶挥发性物质的主体成分。D55%中酯类物质相对含量显著高于D50%、D60%(P<0.05);D50%、D55%中酮类、吡咯类、碳氢化合物类与酚类物质相对含量显著高于D60%(P<0.05);醇类物质相对含量随着摊放程度的加重而减少,D50%中醇类物质相对含量显著高于D55%、D60%(P<0.05);D55%中醛类物质相对含量显著高于D50%(P<0.05)。随着摊放程度的加重,G单株中酮类和醛类物质相对含量先增加后减少,G55%中酮类和醛类物质的相对含量显著高于G50%、G60%(P<0.05);G55%中酯类物质相对含量显著高于G50%(P<0.05);碳氢化合物相对含量随着摊放程度的加重而减少,G50%、G55%中碳氢化合物相对含量显著高于G60%(P<0.05);吡咯类和酚类物质相对含量随摊放程度的加重而减少;G单株中不同摊放程度加工的枸杞芽叶茶杂氧化合物和醇类物质相对含量差异不显著(P>0.05)。可见,不同摊放程度对枸杞芽叶茶挥发性物质相对含量影响较大。
2.6.2 不同摊放程度加工枸杞芽叶茶挥发性成分差异分析
对不同摊放程度的枸杞芽叶茶进行正交偏最小二乘法判别分析(OPLS-DA)分析,其得分图如图7A、图7C所示,各个茶样品在95%置信区间位于不同区域且有明显区分,表明茶样间存在显著差异。对OPLS-DA模型进行200次置换检验,得到置换检验模型(图7B、图7D),Q2的回归线与Y轴的截距均小于0,表明该判别模型不存在过度拟合现象,拟合结果可接受[36]。
为明确OPLS-DA模型下区分不同摊放程度枸杞芽叶茶的关键差异挥发性物质,分别对D、G单株不同摊放程度加工的枸杞芽叶茶筛选出15种和16种VIP大于1(P<0.05)的化合物。这些挥发性成分是区分G、D两个单株采用不同摊放程度加工茶的关键挥发性物质,如图8A所示,D50%中正己醇、1-辛烯-3-醇、苯乙醇、橙花醇和2-庚酮等9种物质含量较高,D55%含量较高的物质有11种,包括香叶基丙酮、乙酸叶醇酯、乙酸己酯和二氢猕猴桃内酯等;其中正己醇、1-辛烯-3-醇、二氢猕猴桃内酯、2,3,5-三甲基吡嗪和2-正戊基呋喃5种物质为D50%和D55%所共有的关键挥发性物质,这与D50%和D55%香气风格接近都具有甜香、花香的感官审评结果一致。如图8B所示,G50%含有苯甲醇、α-松油醇和4-乙烯基-2-甲氧基苯酚3种含量较高的物质,G60%含量较高的物质有4种,包括橙花醇、香叶基丙酮、乙酸叶醇酯和乙酸己酯,G55%含量较高的物质有11种,包括苯甲醇、橙花醇、水杨酸甲酯和3-甲基十三烷等,其中苯甲醇为G55%和G50%所共有的关键挥发性物质,橙花醇为G55%和G60%所共有的关键挥发性物质。G50%和G60%没有共用的关键挥发性物质,与G50%和G60%香气风格不同的感官审评结果一致。
可见,D单株用含水率50%和55%摊放程度加工的枸杞芽叶茶香气风格没有明显差异,G单株用含水率50%和60%摊放程度加工的枸杞芽叶茶香气风格差异较大,这与感官审评结果一致。
2.6.3 不同摊放程度加工枸杞芽叶茶特征香气成分分析
OAV是挥发性化合物质量浓度与其气味阈值的比值,用于评估挥发性化合物对茶叶样品香气的贡献[37]。一般认为,OAV≥1的挥发性化合物对整体香气的贡献较大,OAV>10的挥发性化合物则被确定为重要香气成分[38]。参照文献中香气物质阈值[39−48]大小计算OAV值,结合VIP值对D、G两个单株不同摊放程度加工成的枸杞芽叶茶分别筛选出5种和6种VIP>1且OAV>1的香气物质。基于热图可视化层次聚类分析如图9A所示,随着摊放程度的加重,具有花香、清甜香的香叶基丙酮、果香梨香的乙酸己酯和甜香、奶香的二氢猕猴桃内酯含量呈现先增加后减少的趋势,且这3种物质对D55%香气的贡献高于D50%、D60%,是D55%呈现花香、果香、甜香的特征香气物质,与D55%具有花果香、甜香的感官审评结果一致。可见,D单株摊放至含水率55%加工的枸杞芽叶茶有利于香叶基丙酮、乙酸己酯和二氢猕猴桃内酯等具有花果香气味的香气物质的积累。如图9B所示,具有冬青叶味的水杨酸甲酯、杏仁味的苯甲醛和甜香、奶香的二氢猕猴桃内酯物质含量随着摊放程度的加重先增加后减少,这3种物质对G55%香气贡的献高于G50%、G60%,是G55%呈现花果香、甜香的特征香气物质,与G55%具有花果香,略带甜香的感官审评结果一致。可见,G单株摊放至含水率55%加工的枸杞芽叶茶有利于水杨酸甲酯、苯甲醛和二氢猕猴桃内酯等具有甜香果香气味物质的积累。
综上所述,D、G单株用含水率55%的摊放程度加工枸杞芽叶茶更有利于提高愉悦性挥发性物质的含量,结合感官审评香气评分可知,D、G单株摊放至含水率55%加工的枸杞芽叶茶香气品质优于含水率50%和60%摊放叶加工的茶样。可见,D、G单株适合用含水率55%的摊放程度加工枸杞芽叶茶。
3. 结论
本研究以D、G两个代表性单株为试验材料,研究不同摊放程度对枸杞芽叶茶风味品质的影响。发现D、G单株摊放至含水率55%加工的枸杞芽叶茶感官品质综合评分高于含水率50%和60%摊放程度加工的茶叶,其中D55%具有花果香,甜香,滋味甜醇的特点,G55%具有花果香,略带甜香,滋味醇和回甘显的特点。D50%、G50%的类黄酮、有机酸总量显著高于D55%、D60%、G55%和G60%,而水浸出物、氨基酸含量则随着摊放程度的加重,呈先增后减的趋势。D55%、D60%的糖类物质含量显著高于D50%,G55%糖类物质含量显著高于G50%、G60%。二氢猕猴桃内酯等具有愉悦性气味的香气物质对D55%、G55%贡献高于D50%、D60%、G50%、G60%。可见,采用适宜的摊放程度(55%)有利于枸杞芽叶茶中水浸出物、氨基酸、糖类物质和脂肪酸的积累,降低类黄酮、水溶性二元酸和羟基多元羧酸物质含量,促进二氢猕猴桃内酯等具有愉悦性香气物质的积累。综上,D、G单株均适合用含水率55%的摊放程度加工枸杞芽叶茶,研究结果为枸杞芽叶茶加工工艺提供参考。
-
图 2 不同摊放程度对枸杞芽叶茶主要生化成分的影响
注:A:D单株水浸出物含量;B:D单株类黄酮含量;C:G单株水浸出物含量;D:G单株类黄酮含量;英文小写字母不同代表不同样品之间的差异显著(P<0.05),图6同。
Figure 2. Effects of different degree of spreading on the main biochemical components of wolfberry tea processed from bud and leaf
表 1 不同摊放程度对应编号及样品编号
Table 1 Corresponding numbers of treatments with different degree of spreading and sample numbers
供试单株 摊放程度 样品编号 D单株 摊放叶含水率50% D50% 摊放叶含水率55% D55% 摊放叶含水率60% D60% G单株 摊放叶含水率50% G50% 摊放叶含水率55% G55% 摊放叶含水率60% G60% 表 2 不同摊放程度加工枸杞芽叶茶感官审评结果
Table 2 Sensory evaluation results of wolfberry tea processed from bud and leaf with different degree of spreading
样品名称 外形(25%) 汤色(10%) 香气(25%) 滋味(30%) 叶底(10%) 综合得分 评语 评分 评语 评分 评语 评分 评语 评分 评语 评分 D50% 卷曲绿
梗稍暗85±1.02 绿暗 84±0.49 甜香,略带花香 88±1.17 醇厚有苦尾 84±0.80 深绿 85±0.75 85.35 D55% 略卷曲
绿亮
梗绿褶87±0.75 浅绿黄亮 88±0.63 花果香,甜香 92±1.33 甜醇 91±1.02 绿亮 88±0.75 89.65 D60% 卷曲梗暗褐而深绿 84±1.02 浅黄 85±1.17 清香、略带甜香 86±0.63 较甜醇 87±1.02 深绿 85±0.49 85.60 G50% 略卷黄绿
稍有梗85±1.02 绿黄 85±0.98 花香 87±1.17 醇和微苦 82±1.33 暗绿 84±0.89 84.50 G55% 略卷绿亮 88±1.02 黄亮 87±0.98 花果香,略带甜香 90±0.80 醇和回甘显 89±0.63 暗绿 84±0.49 88.30 G60% 略卷深绿
稍有梗84±1.17 黄暗 84±1.02 甜香,略带清香 88±0.89 醇和有回甘 86±2.04 暗绿 84±1.50 85.60 表 3 不同摊放程度枸杞芽叶茶氨基酸TAV值
Table 3 Amino acid TAV value of wolfberry tea processed from bud and leaf with different degree of spreading
滋味
类型游离
氨基酸阈值
(mg/g)TAV值 D50% D55% D60% G50% G55% G60% 鲜味 Glu 0.30 3.14 3.68 3.77 3.66 4.21 4.15 Asp 1.00 4.31 4.63 4.24 2.08 2.36 2.36 甜味 Pro 3.00 12.09 12.25 13.39 11.36 14.36 11.43 Ala 0.60 5.15 9.62 11.04 7.18 9.36 9.31 Ser 1.50 3.72 4.38 3.81 2.98 3.24 3.14 Lys 0.50 7.73 9.23 8.54 2.16 2.44 2.43 苦味 Val 0.40 39.62 37.94 36.01 25.98 25.43 23.81 Lle 0.90 5.92 6.78 7.00 6.59 6.86 6.84 Met 0.30 2.70 3.36 2.91 − − − Phe 0.90 6.19 6.73 6.32 5.57 5.27 5.51 His 0.20 3.44 6.13 3.11 2.21 2.57 2.81 Tyr 0.91 5.35 6.58 6.10 3.45 3.10 3.26 -
[1] 祝元春, 钱涛, 周小波, 等. 叶用枸杞应用现状及产业发展策略[J]. 现代园艺,2022,45(24):37−38, 42. [ZHU Y C, QIAN T, ZHOU X B, et al. Wolfberry application status quo and industrial development strategy[J]. Contemporary Horticulture,2022,45(24):37−38, 42.] ZHU Y C, QIAN T, ZHOU X B, et al. Wolfberry application status quo and industrial development strategy[J]. Contemporary Horticulture, 2022, 45(24): 37−38, 42.
[2] 胡婷, 王红. 宁夏回族自治区叶用枸杞产业发展现状及对策[J]. 乡村科技,2022,13(21):37−39. [HU T, WANG H. Ningxia Hui Autonomous Region leafy wolfberry industry development status quo and countermeasures[J]. Rural Science and Technology,2022,13(21):37−39.] HU T, WANG H. Ningxia Hui Autonomous Region leafy wolfberry industry development status quo and countermeasures[J]. Rural Science and Technology, 2022, 13(21): 37−39.
[3] NIU Yinhong, CHEN Jinghua, FAN Yanli, et al. Effect of flavonoids from Lycium barbarum leaves on the oxidation of myofibrillar proteins in minced mutton during chilled storage[J]. Journal of Food Science,2021,86(5):1766−1777. doi: 10.1111/1750-3841.15728
[4] QUAN Na, WANG Yidan, LI Guorong, et al. Ultrasound-Microwave combined extraction of novel polysaccharide fractions from lycium barbarum leaves and their in vitro hypoglycemic and antioxidant activities[J]. Molecules,2023,28(9):3880. doi: 10.3390/molecules28093880
[5] CUI Fang, SHI Chunli, ZHOU Xiaojing, et al. Lycium barbarum polysaccharide extracted from lycium barbarum leaves ameliorates asthma in mice by reducing inflammation and modulating gut microbiota[J]. Journal of Medicinal Food,2020,23(7):699−710. doi: 10.1089/jmf.2019.4544
[6] ZHAO Xueqin, GUO Sheng, LU Youyuan, et al. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition[J]. Biomed Pharmacother,2020,121:109559. doi: 10.1016/j.biopha.2019.109559
[7] YANG Tingting, ZHAO Wangting, XU Weiqi, et al. Modulation of gut microbiota and hypoglycemic/hypolipidemic activity of flavonoids from the fruits of Lycium barbarum on high-fat diet/streptozotocin-induced type 2 diabetic mice[J]. Food & Function,2022,13(21):11169−11184.
[8] NIU Yinhong, LIAO Jiale, ZHOU Haitao, et al. Flavonoids from lycium barbarum leaves exhibit anti-aging effects through the redox-modulation[J]. Molecules,2022,27(15):4952. doi: 10.3390/molecules27154952
[9] 杨佳玲, 吴月, 杨梅. 区域茶叶的发展现状及对策研究——以宁夏枸杞芽茶为例[J]. 现代商业,2019(20):88−89. [YANG J L, WU Y, YANG M. Research on the development status and countermeasures of regional tea — A case study of Lycium berry bud tea in Ningxia[J]. Modern Business,2019(20):88−89.] YANG J L, WU Y, YANG M. Research on the development status and countermeasures of regional tea — A case study of Lycium berry bud tea in Ningxia[J]. Modern Business, 2019(20): 88−89.
[10] 张敏, 何俊萍, 何义, 等. 不同杀青工艺对枸杞叶茶品质的影响[J]. 食品科技,2009,34(11):63−65. [ZHANG M, HE J P, HE Y, et al. Effects of fixing technology on qualities of medlar leaves tea[J]. Food Science and Technology,2009,34(11):63−65.] ZHANG M, HE J P, HE Y, et al. Effects of fixing technology on qualities of medlar leaves tea[J]. Food Science and Technology, 2009, 34(11): 63−65.
[11] 刘静, 何俊萍, 何义, 等. 不同萎凋时间对枸杞叶茶的影响[J]. 食品科技,2008(5):68−71. [LIU J, HE J P, HE Y, et al. Different withering time on the impact of medlar leaf tea[J]. Food Science and Technology,2008(5):68−71.] LIU J, HE J P, HE Y, et al. Different withering time on the impact of medlar leaf tea[J]. Food Science and Technology, 2008(5): 68−71.
[12] 冶爱军, 刘敦华. 枸杞叶红茶的制作工艺研究[J]. 食品工业,2013,34(4):121−122. [YE A J, LIU D H. Study on Processing technology of black wolfberry leaves tea[J]. The Food Industry,2013,34(4):121−122.] YE A J, LIU D H. Study on Processing technology of black wolfberry leaves tea[J]. The Food Industry, 2013, 34(4): 121−122.
[13] 郑立红, 郭建业, 杜彬, 等. 不同干燥方法对枸杞叶茶品质影响的研究[J]. 中国食品学报,2012,12(10):149−154. [ZHENG L H, GUO J Y, DU B, et al. Study on the effect of different drying techniques on the quality of matrimony vine leaf tea[J]. Journal of Chinese Institute of Food Science and Technology,2012,12(10):149−154.] ZHENG L H, GUO J Y, DU B, et al. Study on the effect of different drying techniques on the quality of matrimony vine leaf tea[J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(10): 149−154.
[14] 罗金龙, 陈盛相, 郑文佳, 等. ‘巴山早’紫色芽叶绿茶加工过程中内含成分的变化及品质分析[J]. 四川农业大学学报,2024,42(2):346−355. [LUO J L, CHEN C X, ZHENG W J, et al. Changes in composition and quality analysis of 'bashanzao' purple bud leaf green tea during processing[J]. Journal of Sichuan Agricultural University,2024,42(2):346−355.] LUO J L, CHEN C X, ZHENG W J, et al. Changes in composition and quality analysis of 'bashanzao' purple bud leaf green tea during processing[J]. Journal of Sichuan Agricultural University, 2024, 42(2): 346−355.
[15] QIAO Dahe, MI Xiaozeng, AN Yanlin, et al. Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea[J]. Food Research International,2021,149:110680. doi: 10.1016/j.foodres.2021.110680
[16] 全国茶叶标准化技术委员会. GB/T 23776-2018 茶叶感官审评方法[S]. 北京:中国标准出版社, 2018. [National Tea Standardization Technical Committee. GB/T 23776-2018 Methods for sensory evaluation of tea[S]. Beijing:China Standard Press, 2018.] National Tea Standardization Technical Committee. GB/T 23776-2018 Methods for sensory evaluation of tea[S]. Beijing: China Standard Press, 2018.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8305-2013, 茶 水浸出物测定[S]. 北京:中国标准出版社, 2014. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of China. GB/T 8305-2013, Determination of tea extract [S]. Beijing:Standards Press of China, 2014.] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of China. GB/T 8305-2013, Determination of tea extract [S]. Beijing: Standards Press of China, 2014.
[18] 林冬纯, 魏子淳, 谭艳娉, 等. 不同干燥温度对萎凋叶压制白茶饼品质的影响[J]. 食品科学,2022,43(15):109−116. [LIN D C, WEI Z C, TAN Y P, et al. Effect of drying temperature on the quality of pressed white tea cake from withered leaves[J]. Food Science,2022,43(15):109−116.] LIN D C, WEI Z C, TAN Y P, et al. Effect of drying temperature on the quality of pressed white tea cake from withered leaves[J]. Food Science, 2022, 43(15): 109−116.
[19] 王晓丹, 向玉萍, 印丽, 等. 老白干白酒中糖和糖醇类物质研究[J]. 中国酿造,2021,40(1):70−74. [WANG X D, XIANG Y P, YING L, et al. Sugars and sugar alcohols of the Laobaigan Baijiu[J]. China Brewing,2021,40(1):70−74.] WANG X D, XIANG Y P, YING L, et al. Sugars and sugar alcohols of the Laobaigan Baijiu[J]. China Brewing, 2021, 40(1): 70−74.
[20] 李炫烨, 陈思, 刘毓婕, 等. 基于顶空固相微萃取-气相色谱-飞行时间质谱联用技术分析固样方法对茶叶挥发性成分的影响[J]. 食品与发酵工业,2022,48(16):257−263. [LI X H, CHEN S, LIU S J, et al. Effect of drying methods on volatile compounds of tea leaves based on headspace solid-phase microextraction coupled with gas chromatography time-of-flightmass spectrometry[J]. Food and Fermentation Industries,2022,48(16):257−263.] LI X H, CHEN S, LIU S J, et al. Effect of drying methods on volatile compounds of tea leaves based on headspace solid-phase microextraction coupled with gas chromatography time-of-flightmass spectrometry[J]. Food and Fermentation Industries, 2022, 48(16): 257−263.
[21] 魏子淳, 庄加耘, 孙志琳, 等. 不同摊叶厚度晾青对武夷岩茶品质的影响[J]. 食品工业科技,2023,44(7):97−106. [WEI Z C, ZHUANG J Y, SUN Z L, et al. Effects on the quality of wuyi rock tea with different airing thicknesses[J]. Science and Technology of Food Industry,2023,44(7):97−106.] WEI Z C, ZHUANG J Y, SUN Z L, et al. Effects on the quality of wuyi rock tea with different airing thicknesses[J]. Science and Technology of Food Industry, 2023, 44(7): 97−106.
[22] ZHU Shichen, ZHU Lin, KE Zhigang, et al. A comparative study on the taste quality of Mytilus coruscus under different shucking treatments[J]. Food Chemistry,2023,412:135480. doi: 10.1016/j.foodchem.2023.135480
[23] 黄慧清, 郑玉成, 胡清财, 等. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析[J]. 食品科学,2024,45(1):101−108. [HUANG H Q, ZHENG Y C, HU Q C, et al. Analysis of key aroma components of three representative Oolong Tea varieties by stir bar sorptive extraction combined with Gas Chromatography-Olfactory-Mass Spectrometry[J]. Food Science,2024,45(1):101−108.] doi: 10.7506/spkx1002-6630-20230519-185 HUANG H Q, ZHENG Y C, HU Q C, et al. Analysis of key aroma components of three representative Oolong Tea varieties by stir bar sorptive extraction combined with Gas Chromatography-Olfactory-Mass Spectrometry[J]. Food Science, 2024, 45(1): 101−108. doi: 10.7506/spkx1002-6630-20230519-185
[24] 喻洁瑶. 冲泡条件和特征性挥发物对祁门红茶品质的影响[D]. 重庆:西南大学, 2021. [YU J Y. Effects of brewing conditions and characteristic volatiles on the quality of Keemun black tea[D]. Chongqing:Southwest University, 2021.] YU J Y. Effects of brewing conditions and characteristic volatiles on the quality of Keemun black tea[D]. Chongqing: Southwest University, 2021.
[25] 邹耀洪. 枸杞叶的黄酮类化学成分[J]. 分析测试学报,2002(1):76−78. [ZOU Y H. Flavones in leaves of Lycium chinese[J]. Journal of Instrumental Analysis,2002(1):76−78.] ZOU Y H. Flavones in leaves of Lycium chinese[J]. Journal of Instrumental Analysis, 2002(1): 76−78.
[26] 李文婷, 范晓伟, 易伦朝, 等. 普洱生茶加工过程中非挥发性成分的变化[J]. 中国食品学报,2024,24(5):405−414. [LI W T, FAN X W, YI L C, et al. Investigation on the changes in non-volatile metabolites of raw Pu-erh Tea during manufacturing[J]. Journal of Chinese Institute of Food Science and Technology,2024,24(5):405−414.] LI W T, FAN X W, YI L C, et al. Investigation on the changes in non-volatile metabolites of raw Pu-erh Tea during manufacturing[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(5): 405−414.
[27] WANG Yijun, KAN Zhipeng, Thompson HenryJ, et al. The impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43[J]. Journal of Agricultural and Food Chemistry,2018,67:5423−5436.
[28] 武彦文, 欧阳杰. 氨基酸和肽在食品中的呈味作用[J]. 中国调味品,2001,26(1):21−24. [WU Y W, OU Y J. Tasting effect of amino acids and peptides in food[J]. Chinese Condiment,2001,26(1):21−24.] WU Y W, OU Y J. Tasting effect of amino acids and peptides in food[J]. Chinese Condiment, 2001, 26(1): 21−24.
[29] 周碧云. 基于近红外光谱法对红酸汤中氨基酸类滋味物质快速测定的研究[D]. 贵州:贵州师范大学, 2022. [ZHOU B Y. Study on rapid determination of amino acid taste substances in red sour soup based on Near Infrared Spectrometry[D]. Guizhou:Guizhou Normal University, 2022.] ZHOU B Y. Study on rapid determination of amino acid taste substances in red sour soup based on Near Infrared Spectrometry[D]. Guizhou: Guizhou Normal University, 2022.
[30] 冉乾松, 刘忠英, 尹杰, 等. 贵州绿茶滋味分属性二次多项回归模型构建[J]. 南方农业学报,2022,53(4):1131−1142. [RAN Q S, LIU Z Y, YIN J, et al. Construction of quadratic multinomial regression model for Guizhou green tea taste attributes[J]. Journal of Southern Agriculture,2022,53(4):1131−1142.] RAN Q S, LIU Z Y, YIN J, et al. Construction of quadratic multinomial regression model for Guizhou green tea taste attributes[J]. Journal of Southern Agriculture, 2022, 53(4): 1131−1142.
[31] LIN Hongbin, YU Xiaoyu, FANG Jiaxing, et al. Flavor compounds in Pixian broad-bean paste:Non-volatile organic acids and amino acids[J]. Molecules (Basel, Switzerland),2018,23(6):1299. doi: 10.3390/molecules23061299
[32] 严俊, 王秀丽. 中国名茶可溶性总糖的含量研究[J]. 茶业通报,1993(3):36−39. [YAN J, WANG X L. Study on the content of total soluble sugars in Chinese famous teas[J]. Journal of Tea Business,1993(3):36−39.] YAN J, WANG X L. Study on the content of total soluble sugars in Chinese famous teas[J]. Journal of Tea Business, 1993(3): 36−39.
[33] WANNES Wissemaidi, MHAMDI Baya, MARZOUK Brahim. Variations in essential oil and fatty acid composition during Myrtus communis var. italica fruit maturation[J]. Food Chemistry,2009,112(3):621−626. doi: 10.1016/j.foodchem.2008.06.018
[34] ZHENG Xinqiang, LI Qingsheng, XIANG Liping, et al. Recent advances in volatiles of teas[J]. Molecules,2016,21(3):338. doi: 10.3390/molecules21030338
[35] 谢娇枚, 罗敏燕, 刘易凡, 等. 陈年祁门红茶品质分析[J]. 湖南农业科学,2012(21):100−102. [XIE J M, LUO M Y, LIU Y F, et al. Quality analysis for aged keemun Black Tea[J]. Hunan Agricultural Sciences,2012(21):100−102.] doi: 10.3969/j.issn.1006-060X.2012.21.028 XIE J M, LUO M Y, LIU Y F, et al. Quality analysis for aged keemun Black Tea[J]. Hunan Agricultural Sciences, 2012(21): 100−102. doi: 10.3969/j.issn.1006-060X.2012.21.028
[36] HE Chaojun, LI Ziyong, LIU Hongxia, et al. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Food Research International,2020,131:108948. doi: 10.1016/j.foodres.2019.108948
[37] HU Wenwen, WANG Gege, LIN Shunxian, et al. Digital evaluation of aroma intensity and odor characteristics of tea with different types-based on OAV-Splitting method[J]. Foods,2022,11(15):2204. doi: 10.3390/foods11152204
[38] FANG Xin, LIU Yanan, XIAO Jingyi, et al. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea[J]. Food Chem,2023,410:135396. doi: 10.1016/j.foodchem.2023.135396
[39] 黄藩, 张厅, 刘晓, 等. 四川黑茶的特征香气成分分析[J]. 食品工业科技,2023,44(12):328−336. [HUANG F, ZHANG T, LIU X, et al. Analysis of characteristic aroma components of sichuan dark tea[J]. Science and Technology of Food Industry,2023,44(12):328−336.] HUANG F, ZHANG T, LIU X, et al. Analysis of characteristic aroma components of sichuan dark tea[J]. Science and Technology of Food Industry, 2023, 44(12): 328−336.
[40] 严学芬, 许应芬, 李海燕, 等. 基于顶空固相微萃取法-气相色谱-质谱法和相对气味活度值分析13种凤凰单丛茶香气成分[J]. 食品安全质量检测学报,2022,13(17):5459−5467. [YAN X F, XU Y F, LI H Y, et al. Analysis of aroma components of 13 kinds of Fenghuang Dancong tea based on headspace solid phase microextraction-gas chromatography-mass spectrometry and relative odor activity value[J]. Journal of Food Safety & Quality,2022,13(17):5459−5467.] doi: 10.3969/j.issn.2095-0381.2022.17.spaqzljcjs202217003 YAN X F, XU Y F, LI H Y, et al. Analysis of aroma components of 13 kinds of Fenghuang Dancong tea based on headspace solid phase microextraction-gas chromatography-mass spectrometry and relative odor activity value[J]. Journal of Food Safety & Quality, 2022, 13(17): 5459−5467. doi: 10.3969/j.issn.2095-0381.2022.17.spaqzljcjs202217003
[41] 蒋容港. 不同香型黄茶特征香气成分研究[D]. 长沙:湖南农业大学, 2021. [JIANG R G. Study on characteristic aroma components of different flavor types of yellow tea[D]. Changsha:Hunan Agricultural University, 2021.] JIANG R G. Study on characteristic aroma components of different flavor types of yellow tea[D]. Changsha: Hunan Agricultural University, 2021.
[42] 王金华, 叶晓仪, 母艳, 等. 贵州3种代表性猕猴桃种间特征香气成分比较分析[J]. 食品安全质量检测学报,2022,13(19):6190−6197. [WANG J H, YE X Y, MU Y, et al. Comparative analysis of caceritic aroma components of 3 kinds of representative Acinidia chinensis planch species in Guizhou[J]. Journal of Food Safety & Quality,2022,13(19):6190−6197.] WANG J H, YE X Y, MU Y, et al. Comparative analysis of caceritic aroma components of 3 kinds of representative Acinidia chinensis planch species in Guizhou[J]. Journal of Food Safety & Quality, 2022, 13(19): 6190−6197.
[43] 李杰, 王雨, 刘欢, 等. 7个桃品种品质测定及挥发性香气成分分析[J]. 江西农业学报,2021,33(8):46−52. [LI J, WANG Y, LIU H, et al. Quality determination and volatile aroma components analysis of seven peach varieties[J]. Acta Agriculturae Jiangxi,2021,33(8):46−52.] LI J, WANG Y, LIU H, et al. Quality determination and volatile aroma components analysis of seven peach varieties[J]. Acta Agriculturae Jiangxi, 2021, 33(8): 46−52.
[44] 汪蓓, 舒娜, 陆安霞, 等. 不同杀青温度对绿茶香型形成的影响[J]. 食品与发酵工业,2020,46(4):197−203. [WANG B, SHU N, LU A X, et al. Aroma formation of green tea effected by different pan-fire temperature[J]. Food and Fermentation Industries,2020,46(4):197−203.] WANG B, SHU N, LU A X, et al. Aroma formation of green tea effected by different pan-fire temperature[J]. Food and Fermentation Industries, 2020, 46(4): 197−203.
[45] 陈倩莲, 刘仕章, 占仕权, 等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J]. 食品工业科技,2023,44(14):296−303. [CHEN Q L, LIU S Z, ZHAN Z Q, et al. Ldentification of four kind key aroma components of Wuyi Rock Tea based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry,2023,44(14):296−303.] CHEN Q L, LIU S Z, ZHAN Z Q, et al. Ldentification of four kind key aroma components of Wuyi Rock Tea based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry, 2023, 44(14): 296−303.
[46] 崔继来, 周洁, 周倩倩, 等. 信阳毛尖茶品质成分分析[J]. 信阳师范学院学报(自然科学版),2022,35(02):259−268. [CUI J L, ZHAO J, ZHAO Q Q, et al. The quality compounds analysis of xinyang Maojian Tea[J]. Journal of Xinyang Normal University(Natural Science Edition),2022,35(02):259−268.] CUI J L, ZHAO J, ZHAO Q Q, et al. The quality compounds analysis of xinyang Maojian Tea[J]. Journal of Xinyang Normal University(Natural Science Edition), 2022, 35(02): 259−268.
[47] 荣波, 蒋青香, 林诗笛, 等. 基于GC-MS-O结合OAV比较铁观音和白芽奇兰茶叶的香气品质[J]. 现代食品科技,2022,38(12):351−363. [RONG B, JIANG Q X, LIN S D, et al. Comparison of the aroma qualities of tieguanyin and baiyaqilan teas based on GC-MS-O and OAV[J]. Modern Food Science and Technology,2022,38(12):351−363.] RONG B, JIANG Q X, LIN S D, et al. Comparison of the aroma qualities of tieguanyin and baiyaqilan teas based on GC-MS-O and OAV[J]. Modern Food Science and Technology, 2022, 38(12): 351−363.
[48] 刘芯如, 李利君, 倪辉, 等. 白芽奇兰茶叶特征风味成分的分析鉴定[J]. 现代食品科技,2020,36(4):268−276. [LIU R R, LI L J, NI H, et al. Analysis and identification of characteristic flavor components in Baiyaqilan Tea[J]. Modern Food Science and Technology,2020,36(4):268−276.] LIU R R, LI L J, NI H, et al. Analysis and identification of characteristic flavor components in Baiyaqilan Tea[J]. Modern Food Science and Technology, 2020, 36(4): 268−276.