Research Progress on the Application and Migration Characteristics of Plant Essential Oils in Antibacterial Active Packaging:A Review
-
摘要: 植物精油是从芳香植物中提取出具有挥发性的脂溶性化合物,大多具有高效抗菌作用,部分兼具抗氧化功效。将植物精油与活性包装材料相结合,制备成抗菌包装,可实现精油向包装食品的可控递送,并增强包装系统的性能,达到保持食品感官品质并延长食品货架期的目的。本文综述了含植物精油抗菌薄膜、抗菌小袋以及抗菌衬垫的构建,并总结了其在畜禽肉类、水产品及面制品等食品保鲜中的应用效果。抗菌包装中的精油通过扩散作用向包装食品迁移,迁移速率和迁移量等受精油的类型与成分、包装材料、包装环境相对湿度及温度等因素影响。含植物精油抗菌包装能够实现对包装食品的主动保质,在食品贮藏流通中具有广泛应用前景。Abstract: Plant essential oils are volatile, lipophilic compounds extracted from aromatic plants, most of which possess potent antibacterial properties, and some also have antioxidant effects. Combining plant essential oils with active packaging materials to prepare antimicrobial packaging can realize the controlled delivery of essential oils to packaged food and enhance the performance of the packaging system, so as to achieve the purpose of maintaining the sensory quality of food and prolonging the shelf life of food. This paper reviews the construction of antibacterial film, antibacterial sachets and antibacterial absorbent pads containing plant essential oil, and summarizes their application effects in the preservation of livestock meat, aquatic products and flour products. Essential oils in antibacterial packaging migrate to packaged food through diffusion, and the migration rate and amount are affected by the type and composition of essential oils, packaging materials, packaging environment relative humidity and temperature and other factors. Antibacterial packaging containing plant essential oils can realize active quality preservation of packaged food, and has a wide application prospect in food storage and circulation.
-
食品在流通贮藏过程中容易受到微生物、内源酶及氧化作用而发生腐损,造成营养流失和感官劣变,这不仅会使其丧失可食性,还会带来经济损失甚至食品安全问题。传统的惰性食品包装方法采用玻璃、陶瓷和塑料等材料将食品与外界相对隔绝,主要为食品提供被动屏障,保护食品免受光、气体、湿度、温度等环境因素的影响。随着人们对食品品质和安全性的要求不断提高,食品包装从被动防护发展到主动保质[1]。活性包装是指在包装材料或包装间隙中掺入或附着特定活性物质,通过主动吸收包装中水分、氧气及乙烯等劣变因子,或释放抗菌物质、抗氧化剂等(图1),以调节包装内的环境,增强包装系统性能,从而达到改善食品感官品质并延长食品货架期的目的[2−3]。
作为一种活性包装形式,抗菌包装将抗菌剂掺入食品包装材料中,通过抗菌物质的可控释放,达到抑制食品腐败微生物生长并延长货架期的目的。其中的抗菌剂需满足安全无毒副作用、良好的包材相容性和不引起食品感官劣变等要求。根据来源不同,抗菌剂可分为合成抗菌剂和天然抗菌剂两大类。鉴于当前消费者对化学合成防腐剂安全性的疑虑,特别是某些合成防腐剂存在危害作用,化学合成防腐剂已经被限制使用[5],如最近我国明确规定预制菜中不得添加化学防腐剂。
植物精油(Essential oils)又称挥发油,是通过蒸馏、萃取或压榨等方法从植物组织中提取的小分子芳香物质,作为一种天然植物提取物已被人类使用近几千年,其符合美国食品药品监督管理局公认的安全类产品(Generally Regarded as Safe,GRAS)认证要求中的标准:“长期使用没有安全性问题”。植物精油通常被用作食用香料,但大多具有抗菌活性,部分兼具抗氧化活性。将植物精油与活性包装材料相结合,为食品抗菌包装的开发提供了新方案,同时解决了精油使用中存在水溶性差、稳定性不足、易挥发等问题。本文综述了植物精油在食品抗菌包装中的应用形式、应用效果及迁移特性,旨在为食品绿色贮藏保鲜提供新思路。
1. 植物精油在抗菌包装中的应用
植物精油主要可分为萜烯类化合物、芳香族化合物、脂肪族化合物以及含氮硫类化合物。植物精油的抑菌活性与其化学组成及单体成分的化学结构密切相关。一般认为精油中醛类和酚类化合物抗菌活性较高[6],因此目前抗菌包装中应用较多的主要包括肉桂、百里香和丁香等植物提取精油,或其主要抗菌单体成分肉桂醛、百里香酚或丁香酚等。大量研究证实植物精油能有效抑制食源性致病菌和致腐菌[7−8],将精油与包装载体材料结合,可制备成抗菌薄膜、抗菌小袋或抗菌衬垫等活性包装形式[9](图2),通过控制精油的释放,发挥持久抗菌或抗氧化活性,从而达到更好的食品保质效果,部分代表性研究如表1所示。
表 1 精油抗菌包装及其应用效果Table 1. Antibacterial packaging containing plant essential oils and its application effects包装类型 植物精油 载体 应用效果 抗菌薄膜 龙蒿精油 乳清蛋白 美洲红点鲑冷藏货架期从6 d延长到9 d[10]。 薄荷精油 罗勒籽胶 含2%薄荷精油的罗勒籽胶薄膜使牛肉样品冷藏货架期从3 d延长到9 d[11]。 荆芥精油 壳聚糖 含2%荆芥精油的壳聚糖纳米乳液薄膜使猪肉样品冷藏货架期从8 d延长到16 d[12]。 丁香和肉桂精油 绿豆淀粉-可溶性大豆多糖 有效抑制霉菌和酵母菌生长,不同浓度涂层馒头样品储存10 d后
霉菌数量减少了1 lg CFU/g以上[13]。夏香薄荷精油 壳聚糖/低密度聚乙烯 向壳聚糖/低密度聚乙烯复合膜掺入3%夏香薄荷精油,鸡胸肉的冷藏货架期从
6 d延长到13 d[14]。百里香精油 壳聚糖 精油与壳聚糖混合成膜后产生协同作用,对枯草芽孢杆菌和大肠杆菌的
抑制作用增强,MIC为0.1 mg/mL[15]。芸香精油 壳聚糖 有效抑制了番木瓜采后炭疽菌生长,1.0%和1.5%的芸香精油薄膜
可使炭疽菌病斑扩展降低100%[16]。甜橙精油 改性淀粉、海藻酸钠、壳聚糖 小龙虾贮藏期从4 d延长到7 d[17]。 释放型抗菌小袋 肉桂醛 海藻酸钠 花生与小袋一同封装,28 ºC贮藏4个月,对真菌的抑制作用优于游离肉桂醛[18]。 香叶醇精油 聚丁二酸丁二醇 香叶醇浓度为10wt%的小袋使白面包片的货架期至少延长了3周[19]。 壬醛、香芹酚 β-环糊精 微胶囊添加量为50 mg时,对灰霉菌的抑制率可达83.43%[20]。 丁香酚、柠檬醛 多孔淀粉 面包的货架期从5 d延长至15 d[21]。 抗菌衬垫 牛至精油 多孔聚乙烯、纤维素和
聚乙烯复合吸水垫含1.5%牛至精油的包装使冷冻鸡腿的货架期从3 d延长到5 d[22]。 佛手柑、山苍子精油 β-环糊精、吸水垫 加入2 g精油微胶囊的包装使冷藏货架期从4 d延长到7 d[23]。 印度藏茴香精油 纤维素 与对照组相比,精油衬垫降低了冷藏鸡肉的总活菌数、总挥发性盐基氮[24]。 丁香精油 壳聚糖、羟甲基纤维素、蒙脱土 抗菌包装结合气调环境(55% O2+30% CO2+15% N2)将金鲳鱼低温
贮藏货架期从4 d延长到8 d[25]。1.1 抗菌薄膜
1.1.1 表面涂层型薄膜
表面涂层型薄膜是将植物精油附着于薄膜表面制成的涂层膜。薄膜材料以合成聚合物为主,如聚乙烯[26]和聚丙烯[27]等。但这些低表面能非极性聚合物的附着力和涂层性能较差,需对其表面进行改性以提高附着力,常用方法包括强酸、等离子体、电晕及紫外处理等。如低密度聚乙烯薄膜经铬酸处理后再喷涂丁香精油,能有效地抑制鸡肉中鼠伤寒沙门氏菌(Salmonella typhimurium)和单增李斯特菌(Listeria monocytogenes)的生长[28]。但这种表面涂层型薄膜中精油的控释性能不足,难以长时间保持有效抑菌浓度,故相关研究与应用较少。
1.1.2 混合基质型薄膜
混合基质型薄膜是将精油均匀分散在聚合物基质中制成的膜。薄膜中的精油可向包装食品持续释放,抑制食品表面的腐败微生物。成膜材料多采用蛋白、多糖和淀粉等生物聚合物,如壳聚糖[29]、海藻酸钠[30]、乳清蛋白[31]及马铃薯淀粉[32]等。成膜材料具有来源丰富、成膜性好,且绿色可生物降解等优势,是目前抗菌包装领域的研究热点。鉴于植物精油易挥发且对热不稳定,不适用于常规的热熔挤出成膜工艺,目前混合基质型薄膜大多采用流延法制备,具体分为两种形式:
a.将精油和成膜材料混合并加入一定量的乳化剂和塑化剂制备成乳液,随后于特定模具中成膜(图3a),再用于食品包装。如用负载8%荔枝木质精油的壳聚糖薄膜包裹冷鲜鸡肉,可将其货架期由2~3 d延长至6 d左右[34]。这种成膜的性能受乳化剂、材料组分及精油添加量的影响。如相较于乳化剂吐温20和辛烯基琥珀酸淀粉钠,用海藻糖制备出的海藻酸钠乳液更稳定,且成膜后不易变色[35]。
b.将植物精油与可食性成膜材料混合形成稳定体系,以膜液形式直接涂膜在食品表面(图3b)。例如,壳聚糖作为一种既具成膜能力又具抗菌活性的天然多糖,可直接与植物精油组合进行涂膜产生协同抗菌功效[36]。如将1.0%~1.5%芸香(Ruta graveolens L.)精油与壳聚糖乳液混合,涂膜于番木瓜表面,可完全阻止胶孢炭疽菌(Colletotrichum gloeosporioides)病害的发生[16]。与此类似,将含1.5%薄荷精油的罗勒籽胶膜液涂于牛肉表面,其冷藏货架期可由3 d延长至9 d[11]。但涂膜直接接触食品表面,可能会对食品感官产生影响,尚需考虑消费者对可食性涂膜的接受程度。此外,将精油涂膜与气调等其他栅栏因子结合,有望产生协同抑菌效果[37]。如对CO2具有高耐受性的发光杆菌(Photobacterium spp.)是气调包装肉制品和水产品的常见优势腐败菌[38],但牛至精油对其有显著抑制效果。将0.15%牛至精油添加至可食用壳聚糖膜中,用其涂膜烤鸭片后,置于气调包装(30% CO2+70% N2)中,可使烤鸭片货架期至少延长7 d[39],显著提升了保鲜效果。
此外,基于生物聚合物的抗菌薄膜通常水汽阻隔性能不足,部分机械性能较差(如淀粉基薄膜),或精油控释效果不佳,常见解决策略有两方面:
a.向成膜聚合物中掺入其他材料制备成共混薄膜。如单用海藻酸钠制备的薄膜亲水性高、阻隔性能不佳,在水分活度大的食品或在湿度大的环境中适用性较差。为此,Fabra等[40]向海藻酸钠溶液中加入油酸和大豆油混合物,制备的海藻酸钠薄膜的水蒸气透过系数降低了约42.5%。此外,将纳米材料与生物聚合物共混也能够改善薄膜性能。为提高淀粉基薄膜的力学特性和阻隔性能,Cui等[41]将百里香酚先负载至介孔纳米SiO2,再加入马铃薯淀粉,流延制备出淀粉/SiO2复合膜,相对于单一淀粉膜,这种复合膜增强了薄膜抗拉强度,降低了水蒸气透过性。与之类似,将丁香精油负载至玉米醇溶蛋白纳米颗粒,再加入马铃薯淀粉中流延成膜,同样可改善淀粉薄膜的阻隔和释放性能[32]。
b.与合成聚合物薄膜组合形成多层薄膜。通常将负载精油的生物基薄膜作为抗菌层,以聚乙烯、聚丙烯等合成聚合物薄膜层为基材层,复合制备成多层膜。如先用非热等离子体处理聚乙烯薄膜,以增强其涂层的附着力,再将壳聚糖与夏香薄荷精油混合,在聚乙烯薄膜流延成膜,此聚乙烯/壳聚糖双层薄膜克服了单用壳聚糖膜透氧率、透湿率过高的问题,提高了薄膜的拉伸强度和断裂伸长率[14]。
1.2 释放型抗菌小袋
释放型抗菌小袋是将植物精油吸附或包埋于载体材料中,再用无纺布、滤纸或低密度聚乙烯等材料包封后置于食品包装中,持续释放的精油在包装食品周围形成一定浓度的气相保护层,对食品致腐菌发挥气相熏杀效应。这种抗菌小袋尤其适用于含有孔隙的食品,如奶酪[42]和面包[21]等。
根据载体材料与精油的结合形式不同,释放型抗菌小袋可分为吸附型和微囊化包埋型两大类。吸附型抗菌小袋需要吸附载体,其中多孔淀粉、高密度聚乙烯、硅藻土、二氧化硅、沸石和滤纸等较为常用。如将吸附有1%(w/w)迷迭香和百里香混合精油的微孔发泡淀粉装入滤纸袋中制成抗菌小袋,与马苏里拉奶酪一起热封包装,这种抗菌小袋有效降低了奶酪中李斯特菌和菌落总数[43]。但是精油的刺激性气味降低了奶酪感官接受性。与之类似,将吸附有5%~15%牛至精油的聚丙烯树脂装入无纺布小袋中,有效抑制了面包上霉菌和酵母菌的生长[44]。微囊化包埋精油指利用天然或合成高分子材料将精油包封或使其分散于载体材料中形成微小粒子,其粒径大小通常在1~1000 μm。微囊化可保护精油免受环境影响,提高化学稳定性,并且赋予缓释能力。Zhang等[18]用海藻酸钠对肉桂醛进行封装,此抗菌微球能长期抑制花生储藏过程中黄曲霉的生长。
1.3 抗菌衬垫
传统的冷鲜肉包装以内置吸水衬垫的浅盘包装为主,吸水衬垫虽能吸收浅盘底部冷鲜肉渗出的汁液,但易滋生微生物,影响肉制品质量安全。将植物精油添加到高吸水材料中形成兼具抑菌和吸水作用的抗菌衬垫,不仅可吸收肉制品渗出的汁液,改善冷鲜肉包装环境,还可在肉制品周围形成一种防腐抗菌“氛围”,从而达到抑制微生物生长繁殖、延长冷鲜肉货架期的目的[45]。目前常见的吸水材料主要有无尘纸、纤维素、聚乙烯醇、绒毛浆等,如向纤维素吸水垫中掺入1.5%牛至精油,用于包装冷藏鸡腿,其冷藏架期可由3 d延长至5 d[22]。此外,为使衬垫中精油达到缓释效果,可对精油进行微囊化包埋,如将β-环糊精包埋的佛手柑与山苍子精油置于生鲜吸水垫中,用于草鱼保鲜,其冷藏货架期可延长2~3 d[23]。针对传统无尘纸溶胀率低、吸水能力不足的问题,将丁香精油加入聚乙烯醇(PVA)/柠檬酸混合液中,采用静电纺丝技术结合热诱导交联的方式,制备得到高吸湿性抗菌衬垫,可有效抑制腐败微生物的生长,同时延缓鲜肉的氧化变色,提高了感官品质[46]。
2. 植物精油在活性包装中的迁移
2.1 迁移过程
抗菌包装中精油的迁移特性是决定其应用效果的关键。迁移指精油从包装材料转移到包装食品的过程。若包装材料与食品直接接触(图4a),如抗菌薄膜,迁移主要涉及三个阶段[47]:a.首先包装食品或环境水分渗透进入抗菌薄膜基质,成膜聚合物发生水合作用,有时薄膜骨架或发生溶胀,精油分子在薄膜聚合物内部开始扩散并解吸;b.精油组分穿过薄膜/食品两相界面,形成两相间的质量传递;c.精油在食品基质中的扩散传质。当包装材料与食品不直接接触时,如释放型抗菌小袋,需要在迁移过程中引入食物周围的顶空,即精油分子从包装材料迁移到食品周围的顶空,以及随后从顶空到包装食品的传质(图4b),而抗菌衬垫则同时涉及接触型和非接触型迁移。目前研究较多的是抗菌薄膜中的精油在不同食品或食品模拟物体系中的迁移特征。
抗菌包装中精油的迁移可通过测定包装食品中精油的浓度实现,但由于食品结构和基质成分非常复杂,直接测定食品中精油量较为困难,故通常选择具有某类食品典型共性的测试介质进行,即食品模拟物。我国GB 31604.1-2015规定了各种具体食品的食品模拟物,通常为特定浓度的乙醇溶液、乙酸溶液或植物油[48]。
2.2 迁移机制
扩散传质是植物精油在抗菌包装体系中迁移的普遍机制。植物精油中化学组分的相对分子量一般小于1000,具有较高的分子运动活性,其迁移主要依赖微观分子热运动从高浓度区域向低浓度区域的扩散。对稳态扩散过程,即扩散过程中,精油浓度及其浓度梯度不随时间变化,可按照Fick第一定律通过下式对其定量描述:
J=−DdCeodx (1) 式中,J表示扩散通量(atoms/m2·s);D为扩散系数(m2/s),为描述精油扩散速率的关键物理参数;Ceo表示扩散物质精油的浓度;t表示时间,x表示扩散路径的单位长度。
不过,实际扩散过程是非稳态的,即包装材料中精油浓度不仅与位置有关,且随时间变化,如精油的初始负载浓度增加,扩散速率较高[49];随着贮藏时间的延长,精油浓度梯度减小,扩散速率呈指数下降[50],故通常用下列菲克第二定律定量公式描述:
∂Ceo∂t=D∂2Ceo∂x2 (2) 目前基于Fick扩散模型,不同学者通过设定具体的初始条件和临界条件,建立了不同抗菌包装中精油在食品模拟物中迁移模型方程,从而预测精油在包装体系中的扩散速率以及在不同时间和位置的浓度分布。如聚乳酸抗菌薄膜中[51]、介孔纳米二氧化硅/淀粉薄膜[41]中百里香酚在食品模拟物中的迁移规律等。
2.3 影响因素
2.3.1 负载精油
精油的类型与成分对其在包装中的迁移有一定影响,如α-蒎烯、肉桂醛、丁香酚和胺树醇四种精油组分在极性溶剂中的溶解度依次升高,其由乳清蛋白薄膜向食品模拟物(95%乙醇)迁移量依次增大[49]。与此类似,丁香精油由壳聚糖-阿拉伯胶复合薄膜向食品模拟物(60%甘油)的迁移速率比肉桂精油快,其原因可能是壳聚糖与肉桂精油组分的结合力更强[52]。
2.3.2 包装材料
改变包装材料也可以控制抗菌剂的释放,如向壳聚糖-百里香精油复合膜中添加黄原胶,膜的水溶性和水蒸气透过率提高,促进了精油的释放速率[53];而加入了阿拉伯胶的壳聚糖-百里香精油复合膜,由于阿拉伯胶与壳聚糖间的静电作用使膜结构更加紧密,减缓了其在食品模拟物(95%乙醇)中的释放速率[54],因此可通过选择不同的成膜基质以达到控制释放速率的目的。成膜材料中内嵌的乳化剂种类也会对迁移速率产生影响。如花椒精油经不同乳化剂包裹后嵌入淀粉基膜中,其中以酪蛋白酸钠为内嵌乳化剂的薄膜缓释效果优于吐温80,精油释放速率相对较慢[55]。此外,对抗菌小袋的研究发现,改变包装材料并增加其厚度也可减缓挥发性抗菌剂的释放[56]。
2.3.3 环境因素
对于蛋白和多糖等生物聚合物的包装材料,由于材料本身的亲水性较强,包装环境相对湿度对精油释放速率影响较大。如将负载百里香精油的微孔淀粉装入滤纸小袋,干燥状态下精油化合物被吸附于微孔淀粉中不发生扩散;但当微孔淀粉遇水吸湿后,由于水分子的排斥作用,精油分子开始释放。与此类似,以壳聚糖季铵盐与阿拉伯胶为壁材包埋肉桂精油,环境相对湿度由24%增至50%,精油累计释放率由49.8%提高至65.5%,其原因可能是环境中的水分导致微胶囊壁材部分溶解,促进了肉桂精油的释放[57]。鉴于相对湿度是生物基抗菌薄膜中精油释放的关键因素,这提示实际应用时需考虑抗菌包装对不同含水率食品的适用性。如负载佛手柑精油的壳聚糖膜对果蔬、肉类或鱼类等高水分食品保鲜效果较好,但对含脂量较高的食品效果不佳,其原因在于高脂食品不利于薄膜的水合作用,抑制了负载精油的释放[58]。除了相对湿度外,温度升高使分子运动加剧,进而导致精油扩散速率加快,促进了其向包装食品的迁移。如当温度从15 ℃增加到35 ℃时,香芹酚从高支链玉米淀粉基薄膜向高脂食品模拟物异辛烷的扩散系数从6.3×10−13 m2/s增至12.9×10−13 m2/s[59]。扩散系数增大表明扩散速率加快,相应地向包装食品的迁移量增加,如当温度由5 ℃升至40 ℃,肉桂精油(负载量5%)从乳清蛋白薄膜向食品模拟物(95%乙醇)的迁移量增加约2倍[49]。
3. 结论与展望
随着消费者对食品安全及品质的要求不断提高,化学防腐剂的接受性越来越低。植物精油绝大多数来自天然植物香辛料,将其添加于包装材料中,通过向食品基质的可控迁移,实现了对包装食品的主动保质,有效改善了食品的贮藏品质和质量安全,但实际应用中尚存在一些问题,未来亟需在如下几个方面开展研究:a.植物精油在食品包装中的释放规律及抑菌效果受其组分、载体材料类型、食品基质、接触时间和温度等多种因素影响。目前大多数抗菌包装难以实现精油分子的可控释放。未来需基于精油的释放动力学特征,针对性地选择抗菌包装材料、优化制备工艺,实现抗菌剂的精准控释和缓释,提高包装体系中精油的利用效率和抑菌效果;b.精油分子大多具有特殊气味。虽然抗菌包装的缓释作用一定程度改善了其感官接受性,但某些精油即便浓度很低也会影响食品的风味。未来有必要建立不同精油的气味指纹图谱,并根据目标微生物的生理特征,筛选既具有良好感官接受性,同时具有高效抑菌活性的精油;c.植物精油的掺入可能引起包装材料机械力学、阻隔性等性能变化,是否会和包装材料发生化学反应,并影响包装材料中的有害成分向食品基质的迁移需要阐明。如塑料添加剂、残留未聚合的单体等。因此,精油掺入后对包装材料本身的化学稳定性需进一步研究。
-
表 1 精油抗菌包装及其应用效果
Table 1 Antibacterial packaging containing plant essential oils and its application effects
包装类型 植物精油 载体 应用效果 抗菌薄膜 龙蒿精油 乳清蛋白 美洲红点鲑冷藏货架期从6 d延长到9 d[10]。 薄荷精油 罗勒籽胶 含2%薄荷精油的罗勒籽胶薄膜使牛肉样品冷藏货架期从3 d延长到9 d[11]。 荆芥精油 壳聚糖 含2%荆芥精油的壳聚糖纳米乳液薄膜使猪肉样品冷藏货架期从8 d延长到16 d[12]。 丁香和肉桂精油 绿豆淀粉-可溶性大豆多糖 有效抑制霉菌和酵母菌生长,不同浓度涂层馒头样品储存10 d后
霉菌数量减少了1 lg CFU/g以上[13]。夏香薄荷精油 壳聚糖/低密度聚乙烯 向壳聚糖/低密度聚乙烯复合膜掺入3%夏香薄荷精油,鸡胸肉的冷藏货架期从
6 d延长到13 d[14]。百里香精油 壳聚糖 精油与壳聚糖混合成膜后产生协同作用,对枯草芽孢杆菌和大肠杆菌的
抑制作用增强,MIC为0.1 mg/mL[15]。芸香精油 壳聚糖 有效抑制了番木瓜采后炭疽菌生长,1.0%和1.5%的芸香精油薄膜
可使炭疽菌病斑扩展降低100%[16]。甜橙精油 改性淀粉、海藻酸钠、壳聚糖 小龙虾贮藏期从4 d延长到7 d[17]。 释放型抗菌小袋 肉桂醛 海藻酸钠 花生与小袋一同封装,28 ºC贮藏4个月,对真菌的抑制作用优于游离肉桂醛[18]。 香叶醇精油 聚丁二酸丁二醇 香叶醇浓度为10wt%的小袋使白面包片的货架期至少延长了3周[19]。 壬醛、香芹酚 β-环糊精 微胶囊添加量为50 mg时,对灰霉菌的抑制率可达83.43%[20]。 丁香酚、柠檬醛 多孔淀粉 面包的货架期从5 d延长至15 d[21]。 抗菌衬垫 牛至精油 多孔聚乙烯、纤维素和
聚乙烯复合吸水垫含1.5%牛至精油的包装使冷冻鸡腿的货架期从3 d延长到5 d[22]。 佛手柑、山苍子精油 β-环糊精、吸水垫 加入2 g精油微胶囊的包装使冷藏货架期从4 d延长到7 d[23]。 印度藏茴香精油 纤维素 与对照组相比,精油衬垫降低了冷藏鸡肉的总活菌数、总挥发性盐基氮[24]。 丁香精油 壳聚糖、羟甲基纤维素、蒙脱土 抗菌包装结合气调环境(55% O2+30% CO2+15% N2)将金鲳鱼低温
贮藏货架期从4 d延长到8 d[25]。 -
[1] 卢立新. 食品包装传质传热与保质[M]. 北京:科学出版社, 2021:10−23. [LU L X. Mass and heat transfer and quality assurance of food packaging[M]. Beijing:Science Press, 2021:10−23.] LU L X. Mass and heat transfer and quality assurance of food packaging[M]. Beijing: Science Press, 2021: 10−23.
[2] SHARMA S, BARKAUSKAITE S, JAISWAL A K, et al. Essential oils as additives in active food packaging[J]. Food Chemistry,2020(prepublish):128403.
[3] FABIOLA E, CITLALI C, JUAN J V, et al. Control of mango decay using antifungal sachets containing of thyme oil/modified starch/agave fructans microcapsules[J]. Future Foods, 2021, 3:100008.
[4] VILELA C, KUREK M, HAYOUKA Z, et al. A concise guide to active agents for active food packaging[J]. Trends in Food Science Technology,2018,80:212−222. doi: 10.1016/j.jpgs.2018.08.006
[5] QUINTO J E, CARO I, VILLALOBOS-DELGADO H L, et al. Food safety through natural antimicrobials[J]. Antibiotics,2019,8(4):208. doi: 10.3390/antibiotics8040208
[6] KALEMBA D, KUNICKA A. Antibacterial and antifungal properties of essential oils[J]. Current Medicinal Chemistry,2003,10(10):813−829. doi: 10.2174/0929867033457719
[7] 虞铭霞, 韦莹莹, 黄铮铮, 等. 水蜜桃主要病原真菌分离鉴定及肉桂精油对其抑制作用[J/OL]. 食品工业科技:1−12[2024-02-01]. doi:10.13386/j. issn1002-0306.2023080163. [YU M X, WEI Y Y, HUANG Z Z, et al. Isolation and identification of the main fungal pathogens of peach fruit and the antifungal effect of cinnamon essential oil on these pathogens[J/OL]. Science and Technology of Food Industry:1−12[2024-02-01]. doi:10.13386/j.issn1002-0306.2023080163.] YU M X, WEI Y Y, HUANG Z Z, et al. Isolation and identification of the main fungal pathogens of peach fruit and the antifungal effect of cinnamon essential oil on these pathogens[J/OL]. Science and Technology of Food Industry: 1−12[2024-02-01]. doi: 10.13386/j.issn1002-0306.2023080163.
[8] 刘嘉欣, 陶越攀, 周兴旺, 等. 薄荷精油对黄曲霉生长的抑制作用研究[J]. 食品安全质量检测学报,2023,14(24):152−158. [LIU J X, TAO Y P, ZHOU X W, et al. Study on the inhibitory effect of Mentha piperita essential oil on the growth of Aspergillus flavus[J]. Journal of Food Safety and Quality,2023,14(24):152−158.] LIU J X, TAO Y P, ZHOU X W, et al. Study on the inhibitory effect of Mentha piperita essential oil on the growth of Aspergillus flavus[J]. Journal of Food Safety and Quality, 2023, 14(24): 152−158.
[9] RIBEIRO-SANTOS R, ANDRADE M, MELO N R D, et al. Use of essential oils in active food packaging:Recent advances and future trends[J]. Trends in Food Science & Technology, 2017, 61: 132−140.
[10] MARIAIOANA S, MELINDA F, LAJOS E S, et al. Effects of whey protein isolate-based film incorporated with tarragon essential oil on the quality and shelf-life of refrigerated brook trout[J]. Foods,2021,10(2):401−401. doi: 10.3390/foods10020401
[11] HADI T, HASSAN B, BEHROOZ B A, et al. Investigation of the chemical properties of Mentha pulegium essential oil and its application in Ocimum basilicum seed mucilage edible coating for extending the quality and shelf life of veal stored in refrigerator (4 ℃)[J]. Food Science Nutrition,2021,9(10):5600−5615. doi: 10.1002/fsn3.2522
[12] ZHANG H Y, LI X L, KANG H B, et al. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and Schizonepeta tenuifolia essential oil in fresh pork[J]. Journal of Food Processing and Preservation, 2021, 45(11): e15909.
[13] LI K, ZHANG M, BHANDARI B, et al. Improving storage quality of refrigerated steamed buns by mung bean starch composite coating enriched with nano-emulsified essential oils[J]. Journal of Food Process Engineering, 2020, 43(9): e13475.
[14] MORADI E, MOOSAVI H M, HOSSEINI M S, et al. Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil[J]. International Journal of Biological Macromolecules,2020,156(1):321−328.
[15] ELSHAMY S, KHADIZATUL K, UEMURA K, et al. Chitosan-based film incorporated with essential oil nanoemulsion foreseeing enhanced antimicrobial effect[J]. Journal of Food Science and Technology,2021,58(9):1−14.
[16] YEIMMY P R, GRANDE T C, ANGIE S M, et al. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L. essential oil coatings:Studies in vitro and in situ on Carica papaya fruit[J]. International Journal of Food Microbiology,2020,326(2):108649.
[17] 马慧, 廖涛, 陶梦玲, 等. 60Co-γ射线联合甜橙精油微胶囊对小龙虾的保鲜作用[J]. 食品安全质量检测学报,2023,14(1):179−186. [MA H, LIAO T, TAO M L, et al. Preservation effects of 60Co-γ irradiation combined with sweet orange essential oil microcapsules on Procambarus clarkii[J]. Journal of Food Safety and Quality,2023,14(1):179−186.] doi: 10.3969/j.issn.2095-0381.2023.1.spaqzljcjs202301023 MA H, LIAO T, TAO M L, et al. Preservation effects of 60Co-γ irradiation combined with sweet orange essential oil microcapsules on Procambarus clarkii[J]. Journal of Food Safety and Quality, 2023, 14(1): 179−186. doi: 10.3969/j.issn.2095-0381.2023.1.spaqzljcjs202301023
[18] ZHANG C X, PAN L, MA J N, et al. Microencapsulation enhances the antifungal activity of cinnamaldehyde during the period of peanut storage[J]. LWT,2023,180:114657. doi: 10.1016/j.lwt.2023.114657
[19] NAWADON P, PHISUT N, KAMONCHAI C, et al. Controlled release antimicrobial sachet prepared from poly (butylene succinate)/geraniol and ethylene vinyl alcohol coated paper for bread shelf-life extension application[J]. International Journal of Biological Macromolecules,2021,189:251−261. doi: 10.1016/j.ijbiomac.2021.08.119
[20] 戴瑶, 陈玥琰, 张翔, 等. 壬醛与香芹酚复合抑菌微胶囊的制备及其对蓝莓的保鲜作用[J/OL]. 食品与发酵工业:1−11[2024-02-01]. DOI: 10.13995/j.cnki.11-1802/ts.035532. [DAI Y, CHEN Y Y, ZHANG X, et al. Preparation of composite antibacterial microcapsules with nonanal and carvacrol and its application in blueberry preservation[J/OL]. Food and Fermentation Industries:1−11[2024-02-01]. doi:10.13995/j.cnki.11-1802/ts.035532.] DAI Y, CHEN Y Y, ZHANG X, et al. Preparation of composite antibacterial microcapsules with nonanal and carvacrol and its application in blueberry preservation[J/OL]. Food and Fermentation Industries: 1−11[2024-02-01]. doi: 10.13995/j.cnki.11-1802/ts.035532.
[21] JU J, XIE Y F, GUO Y H, et al. A novel method to prolong bread shelf life:Sachets containing essential oils components[J]. LWT, 2020, 131: 109744.
[22] ORAL N, VATANSEVER L, SEZER Ç, et al. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius[J]. Poultry science,2009,88(7):1459−1465. doi: 10.3382/ps.2008-00375
[23] 唐海兵, 杨春香, 任柏成, 等. β-环糊精-精油微囊活性保鲜垫对草鱼的保鲜效果[J]. 上海海洋大学学报,2021,30(4):770−776. [TANG H B, YANG C X, REN B C, et al. Effects of active fresh-keeping pad of β-cyclodextrin oil microcapsule on the preservation of grass carp[J]. Journal of Shanghai Ocean University,2021,30(4):770−776.] doi: 10.12024/jsou.20200503030 TANG H B, YANG C X, REN B C, et al. Effects of active fresh-keeping pad of β-cyclodextrin oil microcapsule on the preservation of grass carp[J]. Journal of Shanghai Ocean University, 2021, 30(4): 770−776. doi: 10.12024/jsou.20200503030
[24] LIU G F, SONG H Y, ZHANG Q, et al. Cellulose-based absorbent pad loaded with Carum copticum essential oil for shelf life extension of refrigerated chicken meat[J]. Packaging Technology and Science,2022,35(5):425−433. doi: 10.1002/pts.2640
[25] 刘蒙佳, 周强, 蔡利, 等. 丁香精油抑菌保鲜衬垫协同气调包装对金鲳鱼品质影响[J]. 上海交通大学学报(农业科学版),2019,37(6):164−170,181. [[LIU M J, ZHOU Q, CAI L, et al. Effect of clove essential oil antibacterial and fresh-keeping padcooperative with modified at mosphere packaging on quality of Trachinotus ovatus[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2019,37(6):164−170,181.] doi: 10.3969/J.ISSN.1671-9964.2019.06.025 [LIU M J, ZHOU Q, CAI L, et al. Effect of clove essential oil antibacterial and fresh-keeping padcooperative with modified at mosphere packaging on quality of Trachinotus ovatus[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2019, 37(6): 164−170,181. doi: 10.3969/J.ISSN.1671-9964.2019.06.025
[26] YUDHISTIRA B, SULAIMANA A S, PUNTHI F, et al. Cold plasma-based fabrication and characterization of active films containing different types of Myristica fragrans essential oil emulsion[J]. Polymers,2022,14(8):1618. doi: 10.3390/polym14081618
[27] LLANA-RUIZ-CABELLO M, PICHARDO S, BERMUDEZ J M, et al. Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products[J]. Food Additives & Contaminants:Part A, 2018, 35(4):783−792.
[28] MULLA M, AHMED J, AL-ATTAR H, et al. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging[J]. Food Control,2017,73:663−671. doi: 10.1016/j.foodcont.2016.09.018
[29] NUR H Z A, SOO K L, ZUNAIRAH W I W, et al. Prolonging the shelf life of fresh-cut guava (Psidium guajaya L.) by coating with chitosan and cinnamon essential oil[J]. Heliyon, 2023, 9(12):e22419.
[30] JOLANTA K, NATALIA S, KINGA B, et al. Physicochemical and antibacterial properties of alginate films containing tansy (Tanacetum vulgare L.) essential oil[J]. Polymers,2023,15(2):260. doi: 10.3390/polym15020260
[31] NEMATI V, BALTORK F H, NAKHJAVANI G S M, et al. Application of a whey protein edible film incorporated with cumin essential oil in cheese preservation[J]. Coatings, 2023, 13(8): 1470.
[32] ZHILA A, AKRAM K, HASSAN R. Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles[J]. International Journal of Biological Macromolecules,2021,173:193−202. doi: 10.1016/j.ijbiomac.2021.01.118
[33] JACKSON-DAVIS A, WHITE S, KASSAMA L S, et al. A Review of regulatory standards and advances in essential oils as antimicrobials in foods[J]. Journal of Food Protection,2023,86(2):100025. doi: 10.1016/j.jfp.2022.100025
[34] 郑玉玺, 董蕾, 韩明, 等. 壳聚糖-荔枝木质精油可食膜的性能及在冷鲜鸡肉保鲜中的应用[J]. 食品工业科技,2021,42(6):214−219. [ZHENG Y X, DONG L, HAN M, et al. Preparation of edible film based on chitosan-litchi wood essential oil and its application on chilled chicken storage[J]. Science and Technology of Food,2021,42(6):214−219.] ZHENG Y X, DONG L, HAN M, et al. Preparation of edible film based on chitosan-litchi wood essential oil and its application on chilled chicken storage[J]. Science and Technology of Food, 2021, 42(6): 214−219.
[35] ALARCÓN-MOYANO J K, BUSTOS R O, HERRERA M L, et al. Alginate edible films containing microencapsulated lemongrass oil or citral:Effect of encapsulating agent and storage time on physical and antimicrobial properties[J]. Journal of Food Science and Technology,2017,54(9):2878−2889. doi: 10.1007/s13197-017-2726-1
[36] MARYAM P, MEHDI A, HAMIDREZA A, et al. Chitosan nanocomposite incorporated Satureja kermanica essential oil and extract:Synthesis, characterization and antifungal assay[J]. International Journal of Biological Macromolecules,2022,221:1356−1364. doi: 10.1016/j.ijbiomac.2022.09.044
[37] 马小菊, 王延尧, 俞佳, 等. 生物保鲜剂处理结合气调包装对冷鲜滩羊肉贮藏品质的影响[J]. 食品安全质量检测学报,2023,14(11):263−271. [MA X J, WANG Y Y, YU J, et al. Effects of biological preservative treatment combined with modified atmosphere packaging on storage quality of chilled Tan mutton[J]. Journal of Food Safety and Quality Detection,2023,14(11):263−271.] MA X J, WANG Y Y, YU J, et al. Effects of biological preservative treatment combined with modified atmosphere packaging on storage quality of chilled Tan mutton[J]. Journal of Food Safety and Quality Detection, 2023, 14(11): 263−271.
[38] 陈雪, 赵嘉越, 董鹏程, 等. 生物保鲜剂结合气调包装对烤鸭货架期及微生物多样性的影响[J]. 中国食品学报,2021,21(10):177−187. [CHEN X, ZHAO J Y, DONG P C, et al. Effects of biological preservative combined with air-conditioned packaging on shelf life and microbial diversity of roast duck[J]. Chinese Journal of Food,2021,21(10):177−187.] CHEN X, ZHAO J Y, DONG P C, et al. Effects of biological preservative combined with air-conditioned packaging on shelf life and microbial diversity of roast duck[J]. Chinese Journal of Food, 2021, 21(10): 177−187.
[39] CHEN X, CHEN W W, LU X, et al. Effect of chitosan coating incorporated with oregano or cinnamon essential oil on the bacterial diversity and shelf life of roast duck in modified atmosphere packaging[J]. Food Research International,2021,147:110491. doi: 10.1016/j.foodres.2021.110491
[40] FABRA M J, FALCÓ I, RANDAZZO W, et al. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts[J]. Food Hydrocolloids,2018,81:96−103. doi: 10.1016/j.foodhyd.2018.02.026
[41] CUI Y J, ZHANG R F, WANG L, et al. Quantitative study on release kinetics of thymol in food packaging films[J]. Journal of Food Engineering, 2023, 340.
[42] MELO A M D, BARBI R C T, SOUZA W F C D, et al. Microencapsulated lemongrass (Cymbopogon flexuosus) essential oil:a new source of natural additive applied to Coalho cheese[J]. Journal of Food Processing and Preservation, 2020, 44(10): e14783.
[43] HAN J H, PATEL D, KIM J E, et al. Retardation of Listeria monocytogenes growth in mozzarella cheese using antimicrobial sachets containing rosemary oil and thyme oil[J]. Journal of Food Science,2014,79(11):E2272−E2278.
[44] PASSARINHO A T P, DIAS N F, CAMILLOTO G P, et al. Sliced bread preservation through oregano essential oil-containing sachet[J]. Journal of Food Process Engineering,2014,37(1):53−62. doi: 10.1111/jfpe.12059
[45] 刘金铭, 范旭, 孔保华, 等. 添加肉桂醛的海藻酸钠/蟹壳粉双交联水凝胶吸水衬垫对冷却肉的保鲜效果[J]. 食品科学技术学报, 2022, 40(4):148-158. [LIU J M, FAN X, KONG B H, et al. Effect of sodium alginate/crab shell powder double crosslinked hydrogel absorbent pad added with cinnamaldehyde on the preservation of chilled meat[J]. Journal of Food Science and Technology, 2022, 40(4):148-158.] LIU J M, FAN X, KONG B H, et al. Effect of sodium alginate/crab shell powder double crosslinked hydrogel absorbent pad added with cinnamaldehyde on the preservation of chilled meat[J]. Journal of Food Science and Technology, 2022, 40(4): 148-158.
[46] 于栋, 常婧瑶, 陈佳新, 等. 静电纺丝结合热诱导交联制备的抗菌吸水衬垫对冷鲜肉的保鲜效果[J]. 食品科学,2021,42(23):252−259. [[YU D, CHANG J Y, CHEN J X, et al. Effect of antibacterial water-absorbing pad prepared by electrospinning combined with heat-induced crosslinking on the preservation of chilled meat[J]. Food Science,2021,42(23):252−259.] doi: 10.7506/spkx1002-6630-20200916-216 [YU D, CHANG J Y, CHEN J X, et al. Effect of antibacterial water-absorbing pad prepared by electrospinning combined with heat-induced crosslinking on the preservation of chilled meat[J]. Food Science, 2021, 42(23): 252−259. doi: 10.7506/spkx1002-6630-20200916-216
[47] NERIN C, SILVA F, MANSO S, et al. The downside of antimicrobial packaging:migration of packaging elements into food[J]. Antimicrobial Food Packaging, 2016:81-93.
[48] 国家卫生和计划生育委员会. GB 31604.1-2015 食品接触材料及制品迁移试验通则[S]. 北京:中国标准出版社, 2015. [National Health and Family Planning Commission. GB 31604.1-2015 General rules for migration test of food contact materials and articles[S]. Beijing:Standards Press of China, 2015.] National Health and Family Planning Commission. GB 31604.1-2015 General rules for migration test of food contact materials and articles[S]. Beijing: Standards Press of China, 2015.
[49] RIBEIRO‐SANTOS R, MELO N R D, ANDRADE M, et al. Potential of migration of active compounds from protein‐based films with essential oils to a food and a food simulant[J]. Packaging Technology and Science,2017,30(12):791−798. doi: 10.1002/pts.2334
[50] HEON-JOO J, KI-MOON P, C S M, et al. Development of an anti-insect sachet using a polyvinyl alcohol-cinnamon oil polymer strip against Plodia interpunctella[J]. Journal of Food Science,2013,78(11):E1713−E1720.
[51] 钱浩杰, 穆宏磊, 郜海燕, 等. 聚乳酸抗菌包装中麝香草酚在食品模拟物中迁移规律[J]. 食品科学,2018,39(3):274−281. [QIAN H J, MU H L, GAO H Y, et al. Migration behavior of thymol from polylactic acid packaging material to food stimulant[J]. Food Science,2018,39(3):274−281.] doi: 10.7506/spkx1002-6630-201803041 QIAN H J, MU H L, GAO H Y, et al. Migration behavior of thymol from polylactic acid packaging material to food stimulant[J]. Food Science, 2018, 39(3): 274−281. doi: 10.7506/spkx1002-6630-201803041
[52] XU T, GAO C C, XIAO F, et al. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films[J]. Carbohydrate Polymers,2019,217:116−125. doi: 10.1016/j.carbpol.2019.03.084
[53] 连欢, 石晶盈, 彭勇. 黄原胶对壳聚糖精油复合膜的性能及精油释放的影响[J]. 食品工业科技,2020,41(10):178−183. [LIAN H, SHI J Y, PENG Y. Effects of xanthan gum on properties and essential oil release of chitosan essential oil composite films[J]. Science and Technology of Food Industry,2020,41(10):178−183.] LIAN H, SHI J Y, PENG Y. Effects of xanthan gum on properties and essential oil release of chitosan essential oil composite films[J]. Science and Technology of Food Industry, 2020, 41(10): 178−183.
[54] LIAN H, SHI J Y, ZHANG X Y, et al. Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film[J]. Food Packaging and Shelf Life,2020,23:100467. doi: 10.1016/j.fpsl.2020.100467
[55] YANG Q W, ZHENG F L, CHAI Q Q, et al. Effect of emulsifiers on the properties of corn starch films incorporated with Zanthoxylum bungeanum essential oil[J]. International Journal of Biological Macromolecules,2023,256(P1):128382.
[56] SEO H, BANG J, KIM H, et al. Development of an antimicrobial sachet containing encapsulated allyl isothiocyanate to inactivate Escherichia coli O157:H7 on spinach leaves[J]. International Journal of Food Microbiology,2012,159(2):136−143. doi: 10.1016/j.ijfoodmicro.2012.08.009
[57] LIU H M, ZHAO Z W, XU W Y, et al. Preparation, characterization, release and antibacterial properties of cinnamon essential oil microcapsules[J]. Coatings, 2023, 13(6): 973.
[58] SÁNCHEZ-GONZÁLEZ L, CHÁFER M, GONZÁLEZ-MARTÍNEZ C, et al. Study of the release of limonene present in chitosan films enriched with bergamot oil in food simulants[J]. Journal of Food Engineering,2011,105(1):138−143. doi: 10.1016/j.jfoodeng.2011.02.016
[59] KUORWEL K K, CRAN J M, SONNEVELD K, et al. Migration of antimicrobial agents from starch-based films into a food simulant[J]. LWT-Food Science and Technology,2013,50(2):432−438. doi: 10.1016/j.lwt.2012.08.023