Loading [MathJax]/jax/output/SVG/fonts/TeX/Size3/Regular/Main.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超声辅助酸化甲醇法提取甜樱桃果实花青素及抗氧化活性分析

潘雯, 周家华, 潘立妮, 徐冉冉, 王云香, 李洪雯, 王宝刚, 赵山山

潘雯,周家华,潘立妮,等. 超声辅助酸化甲醇法提取甜樱桃果实花青素及抗氧化活性分析[J]. 食品工业科技,2024,45(24):214−221. doi: 10.13386/j.issn1002-0306.2024010268.
引用本文: 潘雯,周家华,潘立妮,等. 超声辅助酸化甲醇法提取甜樱桃果实花青素及抗氧化活性分析[J]. 食品工业科技,2024,45(24):214−221. doi: 10.13386/j.issn1002-0306.2024010268.
PAN Wen, ZHOU Jiahua, PAN Lini, et al. Ultrasonic-assisted Acidification Methanol Extraction of Anthocyanins from Sweet Cherry Fruit and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(24): 214−221. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010268.
Citation: PAN Wen, ZHOU Jiahua, PAN Lini, et al. Ultrasonic-assisted Acidification Methanol Extraction of Anthocyanins from Sweet Cherry Fruit and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(24): 214−221. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010268.

超声辅助酸化甲醇法提取甜樱桃果实花青素及抗氧化活性分析

基金项目: 现代农业产业技术体系(CARS-30)。
详细信息
    作者简介:

    潘雯(2000−),女,硕士研究生,研究方向:农产品加工与贮藏,E-mail:1278393464@qq.com

    通讯作者:

    赵山山(1982−),女,博士,讲师,研究方向:食品加工与安全,E-mail:xiaohuannu@126.com

  • 中图分类号: TS202.1

Ultrasonic-assisted Acidification Methanol Extraction of Anthocyanins from Sweet Cherry Fruit and Its Antioxidant Activity

  • 摘要: 为探究甜樱桃果实花青素的提取方法及其抗氧化活性,本研究利用超声辅助酸化甲醇法提取花青素,探讨甲醇浓度、料液比、超声温度、超声时间对樱桃花青素提取量的影响,并研究其稳定性和抗氧化性。结果表明:最佳提取条件为甲醇浓度90%、料液比1:20、超声温度35 ℃、超声时间10 min,花青素提取量为(61.48±0.81)mg/100 g。樱桃花青素在避光、20 ℃以及pH1.0时较为稳定,且樱桃花青素热降解符合一级反应动力学模型。抗氧化实验结果显示,樱桃花青素对DPPH、OH和ABTS+自由基有明显的清除作用,其质量浓度为120 μg/mL时,清除率分别为69.64%、47.94%、55.01%。综上,樱桃花青素具有较好的抗氧化活性。
    Abstract: To explore the extraction method and antioxidant activity of anthocyanins from sweet cherry fruits, the ultrasonic-assisted acidified methanol method was used to extract anthocyanins of sweet cherry fruit in this study. The effects of methanol concentration, solid-liquid ratio, ultrasonic temperature and ultrasonic time on sweet cherry anthocyanin yield were investigated. The antioxidant activity and stability of anthocyanins were evaluated. Results showed that optimal extraction of sweet cherry anthocyanins was achieved with the following conditions: methanol concentration of 90%, solid-liquid ratio of 1:20, ultrasonic temperature of 35 ℃, ultrasonic time of 10 min, and the anthocyanin content obtained under these conditions was (61.48±0.81) mg/100 g. Conditions of darkness, 20 °C, and pH1.0 enhanced the stability of sweet cherry anthocyanins. The thermal degradation of cherry anthocyanins followed the first-order reaction kinetic model. The antioxidant experimental results indicated that, the cherry anthocyanins had significant scavenging effects on DPPH, ABTS+, and OH radicals. When the maximum mass concentration was 120 μg/mL, the scavenging rates respectively were 69.64%, 47.94%, 55.01%. In summary, cherry anthocyanins would possess good antioxidant activity.
  • 甜樱桃(Prunus avium L.),蔷薇科李亚科李属植物,又名车厘子、含桃等,是中国传统的药食两用浆果,素有“春果第一枝”之美誉[1]。现代营养学研究表明,甜樱桃不仅含有维生素、蛋白质和矿物质等营养物质[2],还含有类黄酮等活性物质,其类黄酮物质中花青素的含量较高[3],具有抗氧化[4]、降血糖血脂[5]等许多对人体有益的功效。甜樱桃花青素中含量较高的是矢车菊素-3-O-芸香糖苷,其次是芍药素-3-O-芸香糖苷,以及锦葵素、天竺葵素等[6]。天然花青素不仅受本身结构的影响,外界环境(光、温度、pH)也会引起其加速降解[7],在提取花青素时,应尽量保持其稳定性。

    目前常用于花青素的提取方法中溶剂浸提法最为普遍[8],它操作方便、装置简单,但提取率不高[9],因此常选择利用振荡、混合、超声等操作来增加提取率。Lin等[10]利用超声波-微波辅助天然低共溶溶剂(氯化胆碱-甘油)法萃取花青素,得到的花青素提取率比传统溶剂提取率高3.96%。Backes等[11]比较了各种热提取、超声提取、微波提取技术,采用响应面法优化花色苷提取条件,结果表明,超声提取法可以更有效的提高花色苷提取量。

    本文采用超声辅助酸化甲醇溶剂提取法[12]对樱桃花青素的提取条件进行研究,通过单因素实验探讨了甲醇浓度、料液比、超声温度、超声时间对樱桃花青素含量的影响,采用正交试验优化提取工艺,并对樱桃花青素的稳定性及抗氧化性进行探究,以期为樱桃花青素的开发应用提供依据。

    甜樱桃(品种为Royal Down,皇家黎明) 购于北京锦绣大地市场;无水甲醇、甲酸等提取有机溶剂 均为国产分析纯,上海捷世凯生物科技有限公司。

    KQ-600DB数控超声波清洗器 昆山市超声仪器有限公司;H-2050R高速冷冻离心机 Kokusan公司;JY2002电子天平 上海浦春计量仪器有限公司;HH-6数显恒温水浴锅 金坛市鸿科仪器厂;SpectraMax iD3型酶标仪 美谷分子仪器有限公司。

    将甜樱桃果实去除果柄和果核,切碎,作为提取原料,−80 ℃冷冻备用。

    称取樱桃原料,以一定的料液比加入酸化甲醇提取液(根据前期预实验结果,采用3%的甲酸酸化甲醇,使提取液pH环境稳定在3.0左右),采用超声辅助提取法,在一定温度下提取一定时间,得到樱桃花青素提取液。

    准确称取5 g樱桃样品,按1:5的料液比,加入3%甲酸酸化的80%的甲醇溶液[13],置于超声波装置中提取30 min,4 ℃下8000 r/min离心15 min,得到的滤液在波长400~700 nm内扫描,确定最大吸收波长。

    准确称取0.5 g樱桃提取原料,按料液比1:10分别加入5 mL甲醇浓度为50%、60%、70%、80%、90%的提取液,超声温度40 ℃,超声时间30 min,探究不同甲醇浓度对樱桃花青素含量的影响。

    准确称取0.5 g樱桃提取原料,按料液比1:5、1:10、1:15、1:20、1:25加入甲醇浓度为80%的提取液,超声温度40 ℃,超声时间30 min,探究不同料液比对樱桃花青素含量的影响。

    准确称取0.5 g樱桃提取原料,按料液比1:10加入5 mL甲醇浓度为80%的提取液,在40 ℃下分别提取10、30、50、70、90 min,探究不同超声时间对樱桃花青素含量的影响。

    准确称取0.5 g樱桃提取原料,按料液比1:10加入5 mL甲醇浓度为80%的提取液,分别在30、35、40、45、50 ℃下超声提取30 min,探究不同超声温度对樱桃花青素含量的影响。

    根据单因素实验结果,选取甲醇浓度(A)、料液比(B)、超声温度(C)、超声时间(D)四个因素,以花青素含量为指标,设计L9(34)正交试验,确定樱桃花青素的最佳提取工艺。试验因素水平见表1

    表  1  正交试验设计水平
    Table  1.  Orthogonal experimental design level
    水平 因素
    A甲醇浓度
    (%)
    B料液比
    (g:mL)
    C超声温度
    (℃)
    D超声时间
    (min)
    1 70 1:10 35 10
    2 80 1:15 40 30
    3 90 1:20 45 50
    下载: 导出CSV 
    | 显示表格

    参考肖军霞等[13]的方法并稍作改动。取试管两支,准确吸取樱桃花青素提取液1 mL,分别加入4 mL pH1.0的盐酸-氯化钾缓冲液和pH4.5的乙酸钠缓冲液,混合摇匀,以缓冲液作空白,在最大吸收波长处测其吸光度值,根据公式计算樱桃花青素含量。

     花青素含量 (mg/100g)=ΔA×V×VF×567.2×10017807×m
    (1)

    式中:ΔA:A528 nm pH1.0-A528 nm pH4.5;V:提取液体积,mL;VF:稀释倍数;m:样品质量,g;567.2:(包括矢车菊素-3-O-芸香糖苷、芍药素-3-O-芸香糖苷)平均分子量;17807:摩尔消光系数。

    按照最优提取工艺得到樱桃花青素提取液。吸取2 mL提取液于试管中,置于避光、室内光及日光灯管下,共5 h,每隔1 h测定溶液中的吸光度值,探究光照对樱桃花青素稳定性的影响。

    吸取2 mL提取液于试管中,置于设置温度为20、30、40、50、60 ℃的恒温水浴锅中共5 h,每隔1 h测定溶液中的吸光度值,探究温度对樱桃花青素的影响,结果以保存率计算。

    热降解动力学参数的测定:以吸光度值代替浓度[14],花青素热降解符合一级反应动力学模型,以ln(A/A0)为y轴,t为x轴作图得斜率,根据公式计算其速率常数和半衰期(t1/2)。

    ln(AA0)=kt
    (2)
    t1/2=ln(2k)
    (3)

    式中,A0为样液初始花青素吸光值;A为样液处理后花青素吸光值;k为热降解常数;t为时间,h;t1/2为半衰期。

    吸取5 mL提取液于5支试管,调节各试管内溶液pH为1、3、5、7、9,4 h后测定试管溶液中的吸光度值,探究pH对樱桃花青素稳定性的影响。

    花青素保存率根据式(4)计算得:

    (%)=AA0×100
    (4)

    式中,A0为样液初始花青素吸光值,A为样液处理后花青素吸光值。

    将0.1 g樱桃样品溶于100 mL提取液中进行提取得到樱桃提取液,此溶液浓度为1 mg/mL,分别吸取24、48、72、96、120 μL,加入976、952、928、904、880 μL提取液进行稀释后用于测定。

    本试验参考Maeda等[15]的方法,略作修改。向2 mL不同浓度(24、48、72、96、120 μg/mL)的樱桃提取液中加入2 mL 0.2 mmol/L的DPPH溶液,振荡后避光静置30 min,以DPPH-乙醇作空白,在517 nm处测定其吸光度值,采用抗坏血酸(VC)作为阳性对照。根据公式计算DPPH自由基清除率。

    DPPH(%)=A0AA0×100
    (5)

    式中A0是DPPH溶液+乙醇的吸光度,A是DPPH溶液+样品的吸光度。IC50是DPPH自由基清除率达到50%时的样品浓度[16]

    用Fenton法测定OH自由基的清除能力[17]。在样品管中加入1 mL提取液(空白管中加入1 mL蒸馏水)、1 mL 6 mmol/L硫酸亚铁溶液和1 mL 6 mmol/L的过氧化氢溶液混匀,静置10 min后加入1 mL 6 mmol/L水杨酸溶液(对照管中加入1 mL蒸馏水),混匀静置30 min后在526 nm处测定其吸光度[18],采用抗坏血酸(VC)作为阳性对照,羟自由基清除率计算公式如下。

    OH(%)=(1A1A2A0)×100
    (6)

    式中,A0为空白组的吸光值;A1为加入提取液后的吸光值;A2为对照组的吸光值。

    参考王晗等[19]的方法略作修改,称取0.1921 g ABTS和0.0322 g K2S2O8,用0.1 mmol/L、pH7.4的磷酸缓冲液定容至50 mL,室温避光放置12~16 h,形成ABTS储备液。用0.1 mmol/L的磷酸盐缓冲液(pH7.4)稀释ABTS储备液,使其在734 nm处的吸光度为0.70±0.02,将2.9 mL的ABTS稀释液分别与24、48、72、96、120 µg/mL的样品溶液各100 µL混合,室温避光反应2 min后测定734 nm处的吸光度。用VC作阳性对照,根据公式计算ABTS+自由基清除率:

    ABTS+自由基清除率(\text{%})= (1A1A2A0)×100
    (7)

    式中,A0为空白组的吸光值;A1为加入提取液后的吸光值;A2为对照组的吸光值。

    试验进行三次重复,结果以x±SD表示,采用Origin 2023软件作图,SPSS Statistics 26软件进行数据处理,其中P<0.05显示具有统计学意义。

    图1可知,樱桃花青素提取液的最大吸收波长在528 nm,因此测定樱桃花青素含量时在此波长下进行。

    图  1  樱桃花青素波长图
    Figure  1.  Cherry anthocyanin wavelength diagram

    图2所示,80%的酸化甲醇提取出的花青素含量最高。随着甲醇体积分数的增加,樱桃花青素含量升高,但酸化甲醇体积分数超过80%后,花青素含量反而降低,可能是不同体积分数的甲醇溶液极性不同[20],当与花青素的极性相接近时,提取花青素的效果最好。因此,确定优化的甲醇体积分数为80%。

    图  2  甲醇体积分数对樱桃花青素含量的影响
    Figure  2.  Effect of methanol volume fraction on anthocyanin content in cherry

    图3所示,料液比为1:15时提取到的花青素含量最高。樱桃花青素的含量随着料液比的增加先上升再下降,在低料液比时,提取液的增多会使花青素与提取液的接触面积增加,花青素会被迅速溶解,提取量升高;随着料液比的持续增加,相同温度下,需要加热的液体量增加,物料加热缓慢,花青素溶出缓慢,樱桃花青素提取量降低[21]。因此,选择优化的料液比为1:15。

    图  3  料液比对樱桃花青素含量的影响
    Figure  3.  Effect of solid-liquid ratio on anthocyanin content in cherry

    图4所示,超声提取30 min后樱桃花青素含量最高。樱桃花青素的含量随着超声时间的延长先上升后下降,提取时间过短,提取液还未完全透过细胞壁进入细胞中将花青素溶解出来,导致提取不完全,花青素含量较低;但提取时间过长,又会增加花青素与空气的接触时间,使花青素发生氧化[22],部分花青素产生降解,降低樱桃花青素提取率。因此,选择优化的超声时间为30 min。

    图  4  超声时间对樱桃花青素含量的影响
    Figure  4.  Effect of ultrasonic time on anthocyanin content in cherry

    图5可知,在40 ℃下提取得到的樱桃花青素含量最高。随着超声温度的增加,樱桃花青素含量显著上升,当提取温度超过40 ℃时,花青素含量开始下降。在40 ℃前温度升高会加快花青素的提取,但当温度超过40 ℃后,高温会破坏花青素的结构[23],使花青素变成棕色或无色的聚合色素,降低提取液中的花青素含量[24],这与前人的研究结果一致。因此,选择优化的超声温度为40 ℃。

    图  5  超声温度对樱桃花青素含量的影响
    Figure  5.  Effect of ultrasonic temperature on anthocyanin content in cherry

    表2可知,影响樱桃花青素提取量的主次因素顺序为:料液比>甲醇浓度>超声时间>超声温度;综合指标最优组合为A3B3C1D1,即最佳提取条件为甲醇浓度90%、料液比1:20、超声温度35 ℃、超声时间10 min。对得到的结果进行验证:利用正交试验得到的最优工艺参数对樱桃花青素进行提取,试验进行三次重复,提取出的花青素含量为(61.48±0.81)mg/100 g,高于张冰等[25]的结果,这种差异可能是樱桃品种和提取工艺各不相同造成的,而按照正交实验最优组合提取得到的花青素含量为(57.58±0.56)mg/100g,相较于正交试验中最优组合所得花青素提取量更高,表明此条件具有可行性。

    表  2  正交试验结果
    Table  2.  Orthogonal experimental results
    实验号 A甲醇
    浓度
    B料液比 C超声
    温度
    D超声
    时间
    花青素含量
    (mg/100 g)
    1 1 1 1 1 48.44±0.75
    2 1 2 2 2 34.90±0.24
    3 1 3 3 3 46.50±0.25
    4 2 1 2 3 47.82±0.64
    5 2 2 3 1 44.21±0.16
    6 2 3 1 2 54.33±0.85
    7 3 1 3 2 50.92±0.42
    8 3 2 1 3 46.80±0.60
    9 3 3 2 1 57.28±0.56
    K1 129.84 147.18 149.57 149.93
    K2 146.36 125.91 140.00 140.15
    K3 155.00 158.11 141.63 141.12
    k1 43.28 49.06 49.86 49.98
    k2 48.79 41.97 46.67 46.72
    k3 51.67 52.70 47.21 47.04
    R 8.39 10.73 3.19 3.26
    下载: 导出CSV 
    | 显示表格

    表3可知,料液比、甲醇浓度、超声温度对樱桃花青素提取量有极显著影响(P<0.01),超声时间对樱桃花青素提取量有显著影响(P<0.05)。

    表  3  方差分析
    Table  3.  Analysis of variance
    方差来源 平方和 自由度 均方 F 显著性(P
    A 214.850 2 107.425 84.072 **
    B 324.922 2 162.461 127.143 **
    C 50.175 2 25.087 19.634 **
    D 12.461 2 6.231 4.876 *
    误差 11.500 9 1.278
    注:“*”为差异显著,P<0.05;“**”为差异极显著,P<0.01。
    下载: 导出CSV 
    | 显示表格

    图6可知,不同光照条件下,樱桃花青素含量随着时间逐渐降低,避光条件下花青素降解最慢,灯管照射下花青素降解最快,5 h后避光条件和灯管照射下花青素保存率分别为96.09%和90.34%,这是由于花青素属于类黄酮化合物,含有不饱和键,在光照射下易分解[26],所以花青素在使用和保存时应该进行避光处理。

    图  6  光照对樱桃花青素稳定性的影响
    Figure  6.  Effect of light on the stability of cherry anthocyanins

    图7可知,随着时间的延长,樱桃花青素的含量随温度的升高而下降,5 h后,温度越高,樱桃中的花青素下降得越多,说明樱桃花青素在高温下易分解,推测高温会加快花青素的氧化速率[27],说明樱桃花青素的利用和保存应尽量在低温下进行。

    图  7  温度对樱桃花青素稳定性的影响
    Figure  7.  Effect of temperature on the stability of cherry anthocyanins

    图8表4可知,各温度下樱桃花青素的降解符合一级反应动力学模型,温度升高,热降解速率常数越大,半衰期越小,当温度为60 ℃时,其降解速率常数为0.03337,半衰期为4.09,与其他不同来源(如草莓[28]、黑玉米[29]、黑枸杞[30]、桑葚[31]等)的花青素的结果相似。

    图  8  樱桃花青素ln(A/A0)与t的关系
    Figure  8.  Relationship between cherry anthocyanin ln (A/A0) and t
    表  4  樱桃花青素在不同温度下的动力学参数
    Table  4.  Kinetic parameters of cherry anthocyanins at different temperatures
    温度(℃) 方程 R2 k t1/2
    20 ln(A/A0)=−0.00986t−0.00109 0.9547 0.00986 5.31
    30 ln(A/A0)=−0.01205t−0.01261 0.8422 0.01205 5.11
    40 ln(A/A0)=−0.02149t−0.00305 0.9817 0.02149 4.53
    50 ln(A/A0)=−0.02410t−0.01279 0.9541 0.02410 4.42
    60 ln(A/A0)=−0.03337t−0.01394 0.9671 0.03337 4.09
    下载: 导出CSV 
    | 显示表格

    图9所示,随着pH的增加,花青素保存率逐渐降低,在pH=1时花青素保存率最高。随着pH的增加,花青素从较为稳定的黄烊盐阳离子形式转化为不稳定的查尔酮、醇型假碱、醌式碱等形式[32],溶液颜色由红色转变为蓝绿色,试管溶液中的颜色随pH变化而大幅度改变,稳定性较差。所以樱桃花青素推荐在酸性环境下保存。

    图  9  pH对樱桃花青素稳定性的影响
    Figure  9.  Effect of pH on the stability of cherry anthocyanins

    DPPH自由基是存在孤对电子的稳定自由基,会从抗氧化剂中获取电子或与氢自由基进行配对[33],争夺人体正常细胞蛋白,诱发各种疾病,当DPPH自由基清除剂存在时,溶液由深紫色变为淡黄色,吸光度变低[34]。由图10可知,樱桃花青素对DPPH自由基的清除能力随着其浓度的增加而增大,当花青素及VC质量浓度为120 μg/mL时,樱桃花青素和VC的DPPH自由基清除率分别为69.64%和83.68%,IC50值分别为66.56 μg/mL和44.08 μg/mL,樱桃花青素和VC对DPPH自由基的清除能力差异显著(P<0.05)。

    图  10  樱桃花青素对DPPH自由基清除能力的影响
    注:不同小写字母表示组间差异显著,P<0.05。
    Figure  10.  Effect of cherry anthocyanins on DPPH free radical scavenging ability

    羟自由基是一种活性氧,具有极强的得电子能力,会导致细胞内生物大分子损伤、坏死或突变等[35]。由图11可知,樱桃花青素对OH自由基的清除能力随着浓度的增加而升高,当樱桃花青素及VC质量浓度为120 μg/mL时,樱桃花青素和VC的羟自由基清除率分别为47.94%和51.20%,IC50值分别为136.60 μg/mL和116.40 μg/mL,浓度为48 μg/mL时,樱桃花青素和VC对羟自由基的清除能力有显著差异(P<0.05)。

    图  11  樱桃花青素对OH自由基清除能力的影响
    注:不同小写字母表示组间差异显著,P<0.05。
    Figure  11.  Effect of cherry anthocyanins on OH free radical scavenging ability

    ABTS与过硫酸钾反应后生成蓝绿色阳离子ABTS+,向其中加入被测物质,该物质会与ABTS+发生反应而使反应体系褪色[36]。由图12可知,樱桃花青素提取液对ABTS+自由基的清除能力随着浓度的增加而升高,与ABTS+自由基清除率为正相关。当樱桃花青素及VC质量浓度为120 μg/mL时,樱桃花青素和VC的ABTS+自由基清除率为55.01%、79.37%,IC50值为107.71、62.16 μg/mL,樱桃花青素和VC对ABTS+自由基的清除能力差异显著(P<0.05)。樱桃花青素对DPPH自由基、OH自由基和ABTS+自由基均有清除能力,但相同浓度下,花青素的抗氧化活性均低于VC,这与石晓岩[37]、郝丽等[38]的研究结果一致。

    图  12  樱桃花青素对ABTS+自由基清除能力的影响
    注:不同小写字母表示组间差异显著,P<0.05。
    Figure  12.  Effect of cherry anthocyanin on ABTS+ free radical scavenging ability

    本研究采用超声辅助酸化甲醇提取法来提取樱桃中的花青素,通过单因素实验探究樱桃花青素提取工艺中各因素对其含量的影响并确定正交试验的因素水平,得到樱桃花青素的最优工艺,结果表明:影响樱桃花青素提取量的主次因素顺序:料液比>甲醇浓度>超声时间>超声温度,甲醇浓度90%、料液比1:20、超声温度35 ℃、超声时间10 min的提取效果最佳,提取出的花青素含量为(61.48±0.81)mg/100 g。稳定性试验结果表明:温度、光照、pH对樱桃花青素有明显的影响,樱桃花青素在避光、低温以及低pH条件下较为稳定;樱桃花青素的热降解符合一级反应动力学模型,温度为60 ℃时,其降解速率常数为0.03337,半衰期为4.09。抗氧化试验表明樱桃花青素提取液对DPPH自由基清除效果最佳,具有一定的抗氧化活性,作为一种天然的抗氧化剂,具有较好的开发前景。但本研究还需进一步探究提高樱桃花青素稳定性的方法,为樱桃花青素在功能性食品中的应用提供理论参考。

  • 图  1   樱桃花青素波长图

    Figure  1.   Cherry anthocyanin wavelength diagram

    图  2   甲醇体积分数对樱桃花青素含量的影响

    Figure  2.   Effect of methanol volume fraction on anthocyanin content in cherry

    图  3   料液比对樱桃花青素含量的影响

    Figure  3.   Effect of solid-liquid ratio on anthocyanin content in cherry

    图  4   超声时间对樱桃花青素含量的影响

    Figure  4.   Effect of ultrasonic time on anthocyanin content in cherry

    图  5   超声温度对樱桃花青素含量的影响

    Figure  5.   Effect of ultrasonic temperature on anthocyanin content in cherry

    图  6   光照对樱桃花青素稳定性的影响

    Figure  6.   Effect of light on the stability of cherry anthocyanins

    图  7   温度对樱桃花青素稳定性的影响

    Figure  7.   Effect of temperature on the stability of cherry anthocyanins

    图  8   樱桃花青素ln(A/A0)与t的关系

    Figure  8.   Relationship between cherry anthocyanin ln (A/A0) and t

    图  9   pH对樱桃花青素稳定性的影响

    Figure  9.   Effect of pH on the stability of cherry anthocyanins

    图  10   樱桃花青素对DPPH自由基清除能力的影响

    注:不同小写字母表示组间差异显著,P<0.05。

    Figure  10.   Effect of cherry anthocyanins on DPPH free radical scavenging ability

    图  11   樱桃花青素对OH自由基清除能力的影响

    注:不同小写字母表示组间差异显著,P<0.05。

    Figure  11.   Effect of cherry anthocyanins on OH free radical scavenging ability

    图  12   樱桃花青素对ABTS+自由基清除能力的影响

    注:不同小写字母表示组间差异显著,P<0.05。

    Figure  12.   Effect of cherry anthocyanin on ABTS+ free radical scavenging ability

    表  1   正交试验设计水平

    Table  1   Orthogonal experimental design level

    水平 因素
    A甲醇浓度
    (%)
    B料液比
    (g:mL)
    C超声温度
    (℃)
    D超声时间
    (min)
    1 70 1:10 35 10
    2 80 1:15 40 30
    3 90 1:20 45 50
    下载: 导出CSV

    表  2   正交试验结果

    Table  2   Orthogonal experimental results

    实验号 A甲醇
    浓度
    B料液比 C超声
    温度
    D超声
    时间
    花青素含量
    (mg/100 g)
    1 1 1 1 1 48.44±0.75
    2 1 2 2 2 34.90±0.24
    3 1 3 3 3 46.50±0.25
    4 2 1 2 3 47.82±0.64
    5 2 2 3 1 44.21±0.16
    6 2 3 1 2 54.33±0.85
    7 3 1 3 2 50.92±0.42
    8 3 2 1 3 46.80±0.60
    9 3 3 2 1 57.28±0.56
    K1 129.84 147.18 149.57 149.93
    K2 146.36 125.91 140.00 140.15
    K3 155.00 158.11 141.63 141.12
    k1 43.28 49.06 49.86 49.98
    k2 48.79 41.97 46.67 46.72
    k3 51.67 52.70 47.21 47.04
    R 8.39 10.73 3.19 3.26
    下载: 导出CSV

    表  3   方差分析

    Table  3   Analysis of variance

    方差来源 平方和 自由度 均方 F 显著性(P
    A 214.850 2 107.425 84.072 **
    B 324.922 2 162.461 127.143 **
    C 50.175 2 25.087 19.634 **
    D 12.461 2 6.231 4.876 *
    误差 11.500 9 1.278
    注:“*”为差异显著,P<0.05;“**”为差异极显著,P<0.01。
    下载: 导出CSV

    表  4   樱桃花青素在不同温度下的动力学参数

    Table  4   Kinetic parameters of cherry anthocyanins at different temperatures

    温度(℃) 方程 R2 k t1/2
    20 ln(A/A0)=−0.00986t−0.00109 0.9547 0.00986 5.31
    30 ln(A/A0)=−0.01205t−0.01261 0.8422 0.01205 5.11
    40 ln(A/A0)=−0.02149t−0.00305 0.9817 0.02149 4.53
    50 ln(A/A0)=−0.02410t−0.01279 0.9541 0.02410 4.42
    60 ln(A/A0)=−0.03337t−0.01394 0.9671 0.03337 4.09
    下载: 导出CSV
  • [1] 宋海昭, 沈新春, 吴涛, 等. 樱桃花色苷对肥胖小鼠的降糖作用[J]. 中国食品学报,2022,22(4):117−124. [SONG H Z, SHEN X C, WU T, et al. Hypoglycemic effect of cherry anthocyanins on obese mice[J]. Chinese Journal of Food Science,2022,22(4):117−124.]

    SONG H Z, SHEN X C, WU T, et al. Hypoglycemic effect of cherry anthocyanins on obese mice[J]. Chinese Journal of Food Science, 2022, 22(4): 117−124.

    [2]

    MCCUNE L M, CHIERI K, NICOLE R N S, et al. Cherries and health:A review[J]. Critical Reviews in Food Science and Nutrition,2011,51(1):1−12.

    [3] 梁秋萍, 严学迎. 基于熵权TOPSIS法的不同品种甜樱桃营养品质综合评价[J]. 食品研究与开发,2021,42(16):59−64. [LIANG Q P, YAN X Y. Comprehensive evaluation of nutritional quality of different varieties of sweet cherry based on entropy-weighted TOPSIS method[J]. Food Research and Development,2021,42(16):59−64.] doi: 10.12161/j.issn.1005-6521.2021.16.009

    LIANG Q P, YAN X Y. Comprehensive evaluation of nutritional quality of different varieties of sweet cherry based on entropy-weighted TOPSIS method[J]. Food Research and Development, 2021, 42(16): 59−64. doi: 10.12161/j.issn.1005-6521.2021.16.009

    [4]

    GONÇALVES C A, NUNES R A, MEIRINHO S, et al. Exploring the antioxidant, antidiabetic, and antimicrobial capacity of phenolics from blueberries and sweet cherries[J]. Applied Sciences,2023,13(10):6348. doi: 10.3390/app13106348

    [5] 李长兴. 花青素对高海拔环境下动物白脂棕色化的调节作用及机制研究[D]. 杨凌:西北农林科技大学, 2021. [LI C X. Study on the regulatory effect and mechanism of anthocyanins on white fat browning in animals at high altitude[D]. Yangling:Northwest A&F University, 2021.]

    LI C X. Study on the regulatory effect and mechanism of anthocyanins on white fat browning in animals at high altitude[D]. Yangling: Northwest A&F University, 2021.

    [6]

    KARAASLAN M N, YAMAN M. Determination of anthocyanins in cherry and cranberry by high-performance liquid chromatography–electrospray ionization–mass spectrometry[J]. European Food Research and Technology,2016,242(1):127−135. doi: 10.1007/s00217-015-2524-9

    [7]

    HUANG Wuyang, ZHAO Xingyu, CHAI Zhi, et al. Improving blueberry anthocyanins' stability using a ferritin nanocarrier[J]. Molecules (Basel, Switzerland),2023,28(15):5844. doi: 10.3390/molecules28155844

    [8] 董翠芳, 闫晓燕, 李煦等. 超声-微波协同辅助提取桑葚花青素及抗氧化性研究[J]. 中国调味品,2020,45(12):172−178. [DONG C F, YAN X Y, LI X, et al. Ultrasonic-microwave synergistic assisted extraction of anthocyanins from mulberry and their antioxidant properties[J]. Chinese Condiments,2020,45(12):172−178.] doi: 10.3969/j.issn.1000-9973.2020.12.037

    DONG C F, YAN X Y, LI X, et al. Ultrasonic-microwave synergistic assisted extraction of anthocyanins from mulberry and their antioxidant properties[J]. Chinese Condiments, 2020, 45(12): 172−178. doi: 10.3969/j.issn.1000-9973.2020.12.037

    [9] 崔丽霞, 张志军, 李晓君, 等. 花青素提取、分离纯化技术研究进展[J]. 食品研究与开发,2017,38(20):195−199. [CUI L X, ZHANG Z J, LI X J, et al. Research progress on anthocyanin extraction, separation and purification technology[J]. Food Research and Development,2017,38(20):195−199.] doi: 10.3969/j.issn.1005-6521.2017.20.041

    CUI L X, ZHANG Z J, LI X J, et al. Research progress on anthocyanin extraction, separation and purification technology[J]. Food Research and Development, 2017, 38(20): 195−199. doi: 10.3969/j.issn.1005-6521.2017.20.041

    [10]

    LIN Sixu, MENG Xianjun, TAN Chang, et al. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method[J]. Ultrasonics Sonochemistry,2022,89:106102. doi: 10.1016/j.ultsonch.2022.106102

    [11]

    BACKES E, PEREIRA C, BARROS L, et al. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques[J]. Food Research International,2018,113:197−209. doi: 10.1016/j.foodres.2018.07.016

    [12] 梁吉昌. 红花草莓花色对温度的响应及花色相关基因表达分析[D]. 沈阳:沈阳农业大学, 2018. [LIANG J C. Response of safflower strawberry flower color to temperature and expression analysis of color-related genes[D]. Shenyang:Shenyang Agricultural University, 2018.]

    LIANG J C. Response of safflower strawberry flower color to temperature and expression analysis of color-related genes[D]. Shenyang: Shenyang Agricultural University, 2018.

    [13] 肖军霞, 黄国清, 迟玉森. 樱桃花青素的提取及抗氧化活性研究[J]. 中国食品学报,2011,11(5):70−75. [XIAO J X, HUANG G Q, CHI Y S. Extraction of cherry anthocyanins and their antioxidant activity[J]. Journal of Chinese Institute of Food Science and Technology,2011,11(5):70−75.] doi: 10.3969/j.issn.1009-7848.2011.05.012

    XIAO J X, HUANG G Q, CHI Y S. Extraction of cherry anthocyanins and their antioxidant activity[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(5): 70−75. doi: 10.3969/j.issn.1009-7848.2011.05.012

    [14] 华燕菲, 贾艳菊, 段嘉婧, 等. 赖氨酸对紫玉米芯花青素热稳定性影响的研究[J]. 农产品加工,2020(9):1−4,7. [HUA Y F, JIA Y J, DUAN J J, et al. Effect of lysine on the thermal stability of anthocyanins in purple corn cob[J]. Processing of Agricultural Products,2020(9):1−4,7.]

    HUA Y F, JIA Y J, DUAN J J, et al. Effect of lysine on the thermal stability of anthocyanins in purple corn cob[J]. Processing of Agricultural Products, 2020(9): 1−4,7.

    [15]

    MAEDA G, TAKARA K, WADA K, et al. Evaluation of antioxidant activity of vegetables from okinawa prefecture and determination of some antioxidative compounds[J]. Food Science and Technology Research,2006,12(1):8−14. doi: 10.3136/fstr.12.8

    [16]

    BAHADIR A S, MERVE Y, FUSUN O, et al. Evaluation of fatty acid contents and biological activities of Jurinea turcica.[J]. Chemistry Biodiversity, 2023, 21(1).

    [17] 尼格尔热依·亚迪卡尔, 朱璇, 冯作山, 等. ‘法兰西’西梅多酚组分鉴定及抗氧化活性评价[J]. 中国农学通报,2023,39(34):143−153. [NIGELREI YADIKAR, ZHU X, FENG Z S, et al. Identification of 'French' prune polyphenol components and evaluation of antioxidant activity[J]. Chinese Agricultural Science Bulletin,2023,39(34):143−153.] doi: 10.11924/j.issn.1000-6850.casb2022-0887

    NIGELREI YADIKAR, ZHU X, FENG Z S, et al. Identification of 'French' prune polyphenol components and evaluation of antioxidant activity[J]. Chinese Agricultural Science Bulletin, 2023, 39(34): 143−153. doi: 10.11924/j.issn.1000-6850.casb2022-0887

    [18] 巴俊文. 红树莓-蓝莓复合果酒工艺研究及其香气成分分析[D]. 锦州:渤海大学, 2019. [BA J W. Research on the process of red raspberry-blueberry composite fruit wine and its analysis of aroma components[D]. Jinzhou:Bohai University, 2019.]

    BA J W. Research on the process of red raspberry-blueberry composite fruit wine and its analysis of aroma components[D]. Jinzhou: Bohai University, 2019.

    [19] 王晗, 朱华平, 李文钊, 等. 越橘提取物中花青素分析及其体外抗氧化活性[J]. 食品工业科技,2019,40(23):60−65. [WANG H, ZHU H P, LI W Z, et al. Analysis of anthocyanins in bilberry extract and its antioxidant activity in vitro[J]. Science and Technology of Food Industry,2019,40(23):60−65.]

    WANG H, ZHU H P, LI W Z, et al. Analysis of anthocyanins in bilberry extract and its antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2019, 40(23): 60−65.

    [20] 薛博, 刘欣, 刘胜男. 超声波辅助提取蓝靛果中花青素的工艺研究[C]//中共沈阳市委, 沈阳市人民政府. 第二十届沈阳科学学术年会论文集—四等奖论文. 2023. [XUE B, LIU X, LIU S N. Research on the process of ultrasonic-assisted extraction of anthocyanins from blue indigo fruit[C]//Shenyang Municipal Committee of the Communist Party of China, Shenyang Municipal People's Government. Proceedings of the 20th Shenyang Science Academic Annual Conference -Fourth Prize Paper. 2023.]

    XUE B, LIU X, LIU S N. Research on the process of ultrasonic-assisted extraction of anthocyanins from blue indigo fruit[C]//Shenyang Municipal Committee of the Communist Party of China, Shenyang Municipal People's Government. Proceedings of the 20th Shenyang Science Academic Annual Conference -Fourth Prize Paper. 2023.

    [21]

    BRITO V S, TASCH A H, MARCELO T, et al. Study of extraction kinetics and characterization of proanthocyanidin‐rich extract from ceylon cinnamon (Cinnamomum zeylanicum)[J]. Journal of Food Processing and Preservation,2021,45(5):15429.

    [22] 李海飞. 黑果腺肋花楸花青素的提取及可食用膜开发[D]. 长春:长春工业大学, 2023. [LI H F. Extraction of anthocyanins from black fruit rib rowan and development of edible film[D]. Changchun: Changchun University of Technology, 2023.]

    LI H F. Extraction of anthocyanins from black fruit rib rowan and development of edible film[D]. Changchun: Changchun University of Technology, 2023.

    [23] 冯金荣, 段亚琪, 彭欢, 等. 超声波辅助提取武功紫红米中原花青素的研究[J]. 萍乡学院学报,2020,37(6):64−66,98. [FENG J R, DUAN Y Q, PENG H, et al. Ultrasonic-assisted extraction of proanthocyanidins from Wugong purple red rice[J]. Journal of Pingxiang University,2020,37(6):64−66,98.] doi: 10.3969/j.issn.1007-9149.2020.06.013

    FENG J R, DUAN Y Q, PENG H, et al. Ultrasonic-assisted extraction of proanthocyanidins from Wugong purple red rice[J]. Journal of Pingxiang University, 2020, 37(6): 64−66,98. doi: 10.3969/j.issn.1007-9149.2020.06.013

    [24] 李西波, 李泽瑞, 米全凤, 等. 红树莓花色苷的纯化及抑菌活性研究[J]. 食品研究与开发,2021,42(21):96−102. [LI X B, LI Z R, MI Q F, et al. Purification and antibacterial activity of anthocyanins in red raspberry[J]. Food Research and Development,2021,42(21):96−102.] doi: 10.12161/j.issn.1005-6521.2021.21.015

    LI X B, LI Z R, MI Q F, et al. Purification and antibacterial activity of anthocyanins in red raspberry[J]. Food Research and Development, 2021, 42(21): 96−102. doi: 10.12161/j.issn.1005-6521.2021.21.015

    [25] 张冰,张会娟,张全盛等.樱桃中花色苷、维生素C及其蛋白提取工艺的优化[J].食品工业, 2019, 40(1): 37-41. [[ZHANG B, ZHANG H J, ZHANG Q S, et al. Optimization of extraction technology of anthocyanin, vitamin C and protein from cherry[J]. Food Industry, 2019, 40(1): 37-41]]

    [ZHANG B, ZHANG H J, ZHANG Q S, et al. Optimization of extraction technology of anthocyanin, vitamin C and protein from cherry[J]. Food Industry, 2019, 40(1): 37-41]

    [26]

    BIANCA E, GEORGIANA D, DARIA T P, et al. Anthocyanins:Factors affecting their stability and degradation[J]. Antioxidants,2021,10(12):1967. doi: 10.3390/antiox10121967

    [27] 夏晓雨, 王凤娟, 符群, 等. 蓝莓果汁饮料原花青素的热稳定性及降解动力学模型[J]. 南京林业大学学报(自然科学版),2019,43(5):89−95. [XIA X Y, WANG F J, FU Q, et al. Thermal stability and degradation kinetics model of proanthocyanidins in blueberry juice beverages[J]. Journal of Nanjing Forestry University (Natural Science Edition),2019,43(5):89−95.]

    XIA X Y, WANG F J, FU Q, et al. Thermal stability and degradation kinetics model of proanthocyanidins in blueberry juice beverages[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 89−95.

    [28]

    ŚCIBISZ IWONA, ZIARNO MAŁGORZATA. Effect of fermented matrix on the color and stability of strawberry and blueberry anthocyanins during the storage of fruit yogurts and soy-based and bean-based fruit yogurt alternatives[J]. Molecules (Basel, Switzerland),2023,28(17):6222. doi: 10.3390/molecules28176222

    [29] 崔丽霞, 张志军, 李会珍. 黑玉米籽粒花色苷降解动力学及稳定性[J]. 中国调味品,2022,47(11):178−183. [CUI L X, ZHANG Z J, LI H Z. Degradation kinetics and stability of anthocyanins in black maize grains[J]. Chinese Condiments,2022,47(11):178−183.]

    CUI L X, ZHANG Z J, LI H Z. Degradation kinetics and stability of anthocyanins in black maize grains[J]. Chinese Condiments, 2022, 47(11): 178−183.

    [30] 陈虎, 叶英, 秦艳婷, 等. 黑果枸杞花青素在水相体系中的稳定性研究[J]. 食品工业科技,2016,37(19):127−131. [CHEN H, YE Y, QIN Y T, et al. Study on the stability of anthocyanins in aqueous system of Lycium barbarum[J]. Science and Technology of Food Industry,2016,37(19):127−131.]

    CHEN H, YE Y, QIN Y T, et al. Study on the stability of anthocyanins in aqueous system of Lycium barbarum[J]. Science and Technology of Food Industry, 2016, 37(19): 127−131.

    [31]

    CHEN Xiangyue, GAO Qunyu, LIAO Sentai, et al. Co-Pigmentation mechanism and thermal reaction kinetics of mulberry anthocyanins with different phenolic acids[J]. Foods,2022,11(23):3806. doi: 10.3390/foods11233806

    [32] 唐罗, 陈晓霞, 陈军, 等. 桑椹花青素加工稳定性及其应用研究进展[J]. 食品与发酵工业,2023,49(24):361−371. [TANG L, CHEN X X, CHEN J, et al. Research progress on the processing stability and application of mulberry anthocyanins[J]. Food & Fermentation Industry,2023,49(24):361−371.]

    TANG L, CHEN X X, CHEN J, et al. Research progress on the processing stability and application of mulberry anthocyanins[J]. Food & Fermentation Industry, 2023, 49(24): 361−371.

    [33] 卢翔, 张翔宇, 李晨. 小米糠多肽抗氧化活性及对秀丽隐杆线虫延寿作用初析[J]. 山西农业科学,2022,50(11):1542−1548. [LU X, ZHANG X Y, LI C. Preliminary analysis of the antioxidant activity of millet bran polypeptide and its effect on the life extension of C. elegans[J]. Shanxi Agricultural Sciences,2022,50(11):1542−1548.]

    LU X, ZHANG X Y, LI C. Preliminary analysis of the antioxidant activity of millet bran polypeptide and its effect on the life extension of C. elegans[J]. Shanxi Agricultural Sciences, 2022, 50(11): 1542−1548.

    [34] 周锦燕, 张芸, 刘良燕, 等. ‘紫加1号’花色苷提取工艺及抗氧化活性分析[J]. 中国农学通报,2023,39(3):133−140. [ZHOU J Y, ZHANG Y, LIU L Y, et al. 'Zijia No. 1' anthocyanin extraction process and antioxidant activity analysis[J]. Chinese Agricultural Science Bulletin,2023,39(3):133−140.]

    ZHOU J Y, ZHANG Y, LIU L Y, et al. 'Zijia No. 1' anthocyanin extraction process and antioxidant activity analysis[J]. Chinese Agricultural Science Bulletin, 2023, 39(3): 133−140.

    [35]

    CHEN Wenwei, JIA Zhenbao, ZHU Jiajie, et al. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities[J]. International Journal of Biological Macromolecules,2019,140:1116−1125. doi: 10.1016/j.ijbiomac.2019.08.136

    [36]

    ZHOU L, XIE M, YANG F, et al. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota[J]. LWT,2020,117:108621. doi: 10.1016/j.lwt.2019.108621

    [37] 石晓岩. 蓝莓中花青素的抗氧化活性研究[J]. 中国食品添加剂,2023,34(12):162−168. [SHI X Y. Study on the antioxidant activity of anthocyanins in blueberries[J]. China Food Additives,2023,34(12):162−168.]

    SHI X Y. Study on the antioxidant activity of anthocyanins in blueberries[J]. China Food Additives, 2023, 34(12): 162−168.

    [38] 郝丽, 杨志伟. 超声波-酶法提取紫甘蓝花青素条件优化及其抗氧化和消化酶抑制活性研究[J]. 食品安全质量检测学报,2023,14(22):295−304. [HAO L, YANG Z W. Optimization of anthocyanins extracted from purple cabbage by ultrasonic-enzymatic method and their antioxidant and digestive enzyme inhibitory activities[J]. Journal of Food Safety and Quality Inspection,2023,14(22):295−304.]

    HAO L, YANG Z W. Optimization of anthocyanins extracted from purple cabbage by ultrasonic-enzymatic method and their antioxidant and digestive enzyme inhibitory activities[J]. Journal of Food Safety and Quality Inspection, 2023, 14(22): 295−304.

  • 其他相关附件

图(12)  /  表(4)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  6
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 网络出版日期:  2024-10-14
  • 刊出日期:  2024-12-14

目录

/

返回文章
返回
x 关闭 永久关闭