• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
王逸凡,王丙辰,闫玮璇,等. 原子转移自由基聚合修饰植物乳杆菌及其对黄曲霉毒素B1吸附脱除作用[J]. 食品工业科技,2024,45(22):124−130. doi: 10.13386/j.issn1002-0306.2023120288.
引用本文: 王逸凡,王丙辰,闫玮璇,等. 原子转移自由基聚合修饰植物乳杆菌及其对黄曲霉毒素B1吸附脱除作用[J]. 食品工业科技,2024,45(22):124−130. doi: 10.13386/j.issn1002-0306.2023120288.
WANG Yifan, WANG Bingchen, YAN Weixuan, et al. Research on Atomic Transfer Radical Polymerization Modified Lactic Acid Bacteria and Their Removal of Aflatoxin B1[J]. Science and Technology of Food Industry, 2024, 45(22): 124−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120288.
Citation: WANG Yifan, WANG Bingchen, YAN Weixuan, et al. Research on Atomic Transfer Radical Polymerization Modified Lactic Acid Bacteria and Their Removal of Aflatoxin B1[J]. Science and Technology of Food Industry, 2024, 45(22): 124−130. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120288.

原子转移自由基聚合修饰植物乳杆菌及其对黄曲霉毒素B1吸附脱除作用

Research on Atomic Transfer Radical Polymerization Modified Lactic Acid Bacteria and Their Removal of Aflatoxin B1

  • 摘要: 为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B1的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜添加原子转移自由基聚合方法(Cell-catalyzed Copper-free Atom Transfer Radical Polymerization,c-ATRP)对植物乳杆菌活细胞表面进行修饰,引导原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系自组装聚合反应形成聚合物材料,对修饰后的植物乳杆菌进行表征,并比较修饰前后植物乳杆菌对黄曲霉毒素B1吸附脱附能力。结果表明,未修饰的植物乳杆菌,细胞表面圆润光滑,经过p-ATRP修饰后的植物乳杆菌,细胞表面变得极为粗糙,经过c-ATRP修饰后的植物乳杆菌,细胞表面出现褶皱;未修饰的植物乳杆菌的Zeta点位为-8.43 mV,经过Dopamine和PNIPAAm修饰后的植物乳杆菌点位分别为1.791和13.767 mV;植物乳杆菌在0.1~100 μg/mL黄曲霉毒素B1吸附率为75.3%,p-ATRP和c-ATRP修饰的植物乳杆菌比未修饰的植物乳杆菌吸附能力分别提高了7.8%和6.4%。在相同黄曲霉毒素B1浓度下,植物乳杆菌脱附率为6.1%,p-ATRP和c-ATRP修饰的植物乳杆菌脱附能力分别提高了14.4%和42%。经过修饰后的植物乳杆菌显著提升了植物乳杆菌对黄曲霉毒素的吸附和脱附能力。

     

    Abstract: To study the new method of aflatoxin removal by Lactobacillus plantarum materials, and provide a new idea for the efficient biological removal of aflatoxin B1, this study used the polydopamine-based atom transfer radical polymerization (p-ATRP) and cell-catalyzed copper-free atom transfer radical polymerization (c-ATRP) to modify the surface modification of living cells of Lactobacillus plantarum, and guided the self-assembly polymerization reaction within the ATRP system to form polymer materials, characterized the modified Lactobacillus plantarum and compared its adsorption and desorption capabilities towards aflatoxin B1 before and after modification. Results showed that, the unmodified Lactobacillus plantarum had a smooth cell surface, while the Lactobacillus plantarum modified by p-ATRP had a very rough cell surface, and the Lactobacillus plantarum modified by c-ATRP had wrinkles on the cell surface. The Zeta point of unmodified Lactobacillus plantarum was -8.43 mV, while the points of Lactobacillus plantarum after PD and PNIPAAm modification were 1.791 and 13.767 mV, respectively. The adsorption rate of Lactobacillus plantarum for aflatoxin B1 at concentrations ranging from 0.1~100 μg/mL was 75.3%. Furthermore, the adsorption capacity of p-ATRP and c-ATRP modified Lactobacillus plantarum exhibited an increase of 7.8% and 6.4%, respectively, compared with unmodified Lactobacillus plantarum. Additionally, at the same concentration of aflatoxin B1, the desorption rate of Lactobacillus plantarum was 6.1%, while the desorption capabilities of p-ATRP and c-ATRP modified Lactobacillus plantarum were enhanced by 14.4% and 42%, respectively. Overall, the modified Lactobacillus plantarum demonstrated a significant enhancement in both adsorption and desorption abilities towards aflatoxin.

     

/

返回文章
返回