Loading [MathJax]/jax/output/SVG/fonts/TeX/Size1/Regular/Main.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

复配保鲜剂对冷藏加州鲈鱼片品质特性的影响

曾璐瑶, 劳梦甜, 王海滨, 王琦, 彭利娟, 路洪艳, 黄锦荣

曾璐瑶,劳梦甜,王海滨,等. 复配保鲜剂对冷藏加州鲈鱼片品质特性的影响[J]. 食品工业科技,2024,45(16):328−339. doi: 10.13386/j.issn1002-0306.2023110290.
引用本文: 曾璐瑶,劳梦甜,王海滨,等. 复配保鲜剂对冷藏加州鲈鱼片品质特性的影响[J]. 食品工业科技,2024,45(16):328−339. doi: 10.13386/j.issn1002-0306.2023110290.
ZENG Luyao, LAO Mengtian, WANG Haibin, et al. Effects of Compound Preservatives on Quality Characteristics of Refrigerated Micropterus salmoides Fillets[J]. Science and Technology of Food Industry, 2024, 45(16): 328−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110290.
Citation: ZENG Luyao, LAO Mengtian, WANG Haibin, et al. Effects of Compound Preservatives on Quality Characteristics of Refrigerated Micropterus salmoides Fillets[J]. Science and Technology of Food Industry, 2024, 45(16): 328−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110290.

复配保鲜剂对冷藏加州鲈鱼片品质特性的影响

基金项目: 佛山市大斑水产科技有限公司委托技术开发课题(101-08022421)。
详细信息
    作者简介:

    曾璐瑶(1999−),女,硕士研究生,研究方向:畜禽与水产品加工及贮藏工程,E-mail:1055199154@qq.com

    通讯作者:

    王海滨(1964−),男,博士,教授,研究方向:畜禽与水产品加工及贮藏工程,E-mail:whb6412@163.com

  • 中图分类号: TS254.4

Effects of Compound Preservatives on Quality Characteristics of Refrigerated Micropterus salmoides Fillets

  • 摘要: 为解决冷藏加州鲈鱼货架期短以及贮藏期间品质下降等问题,选择海藻糖(trehalose,Tre)、生姜提取物(ginger extract,GE)、乳酸链球菌素(Nisin)这3种保鲜剂进行单因素实验,通过L9(34)正交试验优化复配保鲜剂的配比,采用最优配比的复配保鲜剂对冷藏期间加州鲈鱼片的菌落总数(total viable count,TVC)、pH、总挥发性盐基氮(total volatile base nitrogen,TVB-N)含量、感官评定、持水力、水分分布、质构以及肌原纤维蛋白(myofibrillar protein,MP)氧化稳定性相关指标进行测定。通过单因素实验和正交试验优化筛选得到最优配比的复配保鲜剂:3.0% Tre、0.06% GE和0.06% Nisin。结果表明,在冷藏第8 d时,对照组(CK组)菌落总数lg(CFU/g)值为6.01,已超过规定的腐败限值;在贮藏第16 d时,最优配比的复配保鲜剂组(EG2组)的菌落总数lg(CFU/g)值仍低于6.00,TVB-N含量未超过20 mg/100 g,pH小于7.20。与CK组相比,复配保鲜剂组(EG1组和EG2组(即优选组))鱼肉自由水含量显著减少(P<0.05),持水力显著提高(P<0.05),且鱼肉的硬度、咀嚼性以及感官评分均优于CK组。MP氧化稳定性相关指标显示,复配保鲜剂组(EG1组和EG2组(即优选组))的总巯基含量和Ca2+-ATPase活性显著高于CK组(P<0.05),表面疏水性和羰基含量显著低于CK组(P<0.05),且EG2组对MP氧化稳定性的保护作用优于EG1组。由相关性分析可知,复配保鲜剂处理加州鲈鱼片的各指标间存在极显著(P<0.01)相关性。综合分析可得,复配保鲜剂处理可以有效延缓冷藏加州鲈鱼的品质劣变,显著抑制加州鲈鱼MP的氧化,其中最优配比组(EG2组)综合效果最佳。本研究为冷藏加州鲈鱼保水和保鲜技术的开发与应用提供了理论依据。
    Abstract: In order to solve the problems of short shelf life of refrigerated Micropterus salmoides and the deterioration of quality during refrigerated storage, three preservatives including trehalose (Tre), ginger extract (GE) and Nisin were selected for single factor experiment. L9(34) orthogonal experiment was used to optimize the ratio of the compound preservative. The total viable count (TVC), pH, total volatile basic nitrogen (TVB-N) content, sensory evaluation, water holding capacity, moisture distribution, texture properties and myofibrillar protein (MP) oxidation stability indexes of Micropterus salmoides during refrigerated storage were measured with the optimal ratio of the compound preservative. The optimal ratio of the compound preservative (3.0% Tre, 0.06% GE and 0.06% Nisin) was obtained by single factor experiment and orthogonal experiment. The results showed that on the 8th day of refrigeration, the logarithm of TVC of control group (CK group) was 6.01, which exceeded the specified limit of spoilage. At the 16th day of storage, the logarithm of TVC of EG2 group was still lower than 6.00, the content of TVB-N was not more than 20 mg/100 g and the pH was less than 7.20. Compared with CK group, free water content in compound preservative groups (EG1 group and EG2 group (that was preferred group)) were significantly decreased, water holding capacity were significantly increased (P<0.05), and the hardness, chewiness and sensory scores of Micropterus salmoides were better than CK group. The related indexes of MP oxidation stability showed that the total sulfhydryl content and Ca2+-ATPase activity in compound preservative groups (EG1 group and EG2 group (that was preferred group)) were significantly higher than those in CK group (P<0.05), while the surface hydrophobicity and carbonyl group content were significantly lower than those in CK group (P<0.05), meanwhile, the protective effect of EG2 group on the oxidation stability of MP was better than that of EG1 group. The correlation analysis showed that there was significant correlation (P<0.01) among the indexes of Micropterus salmoides fillets treated with compound preservatives. Comprehensive analysis showed that the quality deterioration of refrigerated Micropterus salmoides could be effectively delayed and the MP oxidation of refrigerated Micropterus salmoides could be significantly inhibited, among which the optimal ratio group (EG2 group) had the best comprehensive effect. This study would provide a theoretical basis for the development and application of water retention and preservation technology for refrigerated Micropterus salmoides.
  • 加州鲈鱼(Micropterus salmoides)又称大口黑鲈,原产于美国加州淡水流域。上世纪八十年代,中国开始引进加州鲈鱼,并在广东省开始养殖。随着加州鲈鱼养殖技术的进步与成熟,加州鲈鱼养殖规模和产量在逐渐增加。据统计,加州鲈鱼总产量2021年约为70.21万吨,2022年增至80.25万吨[1]。加州鲈鱼肉质嫩滑,味道鲜美,无肌间刺,蛋白质含量高(约为18.6%),氨基酸组成与人体必需氨基酸均衡模式接近,脂肪含量约为3.4%,其不饱和脂肪酸含量占比约为48.1%,其中二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)含量较高,分别为12.5%和18.0%,具有较高的营养价值[23]。然而由于富含蛋白质和不饱和脂肪酸,鱼肉在冷藏运输过程中易受到微生物和内源酶的作用发生水解和氧化[4],因此需要结合合适的保鲜技术进行冷藏,从而达到既能延长冷藏加州鲈鱼货架期,又能够尽可能地保持其感官品质和营养品质的效果。

    海藻糖(trehalose,Tre)是一种非还原性二糖,含有大量羟基,可以与蛋白质结合从而阻止蛋白质的聚集和变性[5]。Tre中的游离羟基也可以与水发生相互作用,降低共晶点,保护蛋白质。Li等[6]研究表明Tre可以显著降低冷冻罗非鱼片的解冻损失,减缓鱼片MP内部水分向外部的迁移,提高鱼片保水性。除了保水作用外,詹毅等[7]研究还表明海藻糖还具有一定的保鲜作用,可将冷鲜肉保质期延长至8 d。生姜提取物(ginger extract,GE)是从生姜中获得的天然物质,近几年,有许多报道表明GE具有有益的功能特性,例如抗炎作用、抗氧化性等,因此GE也逐渐作为天然生物防腐剂被应用于食品的保鲜中。Islam等[8]研究GE对4±1 ℃下保存的罗非鱼的保鲜效果,发现与对照组对比,15%的GE在维持鱼肉感官品质的同时抑制了微生物的生长,显著降低了罗非鱼蛋白质和脂质的氧化水解速度,将鱼肉的货架期延长至12 d。乳酸链球菌素(Nisin)是由34个氨基酸组成的多肽物质,可以有效抑制或杀死革兰氏阳性菌,对产孢子的细菌也有很强的抑制作用[9]。然而,Nisin通常对革兰氏阴性菌、霉菌等不具有抑制效果[10],且在实际应用过程中受食品体系中存在的酶、脂质等的影响,Nisin抗菌活性的稳定性及持续性会有所下降,因此将Nisin与其他物质如植物提取物、精油等复合使用,对扩大抑菌范围具有积极作用,且可以延长食品的贮藏期限[11]

    目前,关于复配保鲜剂对水产品保鲜方面的研究已有较多[1214],其中关于Tre、GE和Nisin这三种天然保鲜剂复配对冷藏加州鲈鱼片品质和蛋白质氧化稳定性的研究仍较少。本研究结合企业关于冷藏加州鲈鱼货架期短以及贮藏期间品质下降等问题,拟采用Tre、GE和Nisin这3种保鲜剂进行复配,通过正交试验筛选最优配比的复配保鲜剂,研究复配保鲜剂对冷藏期间加州鲈鱼片品质特性的影响,结合鱼肉MP氧化稳定性相关指标进一步探讨复配保鲜剂对加州鲈鱼蛋白质氧化稳定性的影响,以期对冷藏加州鲈鱼复配保鲜剂的相关研究加以优化和完善,为冷藏加州鲈鱼保水、保鲜技术的开发与应用提供理论依据。

    鲜活加州鲈鱼(体长300±10 mm,重量500±50 g) 于5月购入20尾,用木锤击晕后去鳞、去内脏、去头尾,清洗干净后用聚乙烯密封袋单独包装并置于4±1 ℃预冷,湖北省武汉市中百仓储超市有限公司;生姜 湖北省武汉市中百仓储超市有限公司;聚乙烯密封袋 武汉飞扬生物科技有限公司;Tre 食品级,德州汇洋生物科技有限公司;Nisin 食品级,洛阳奇泓生物科技有限公司;2,4-二硝基苯肼(2,4-Dinitrophenylhydrazine,DNPH) 上海麦克林生化科技有限公司;5,5’-二硫代双(2-硝基苯甲酸)(5,5’-Dithiobis(2-Nitrobenzoic acid),DTNB) 美国Sigma-Aldrich公司;盐酸胍 德国Biofroxx公司;超微量ATP酶(Ca2+-ATPase)检测试剂盒 南京建成生物工程研究所;其他试剂均为分析纯。

    TA-XT plus型质构分析仪 上海保圣实业发展有限公司;XHF-DY高速分散器 宁波新芝生物科技股份有限公司;UV-5100紫外分光光度计 上海元析仪器有限公司;FC5718R冷冻离心机 美国Ohaus公司;NMI20-040V-I核磁共振成像(low field nuclear magnetic resonance,LF-NMR)分析仪 苏州纽迈分析仪器股份有限公司。

    参考卢航等[15]方法制备GE,并稍作修改。将新鲜生姜清洗、沥干、切片,置于65~75 ℃电热烘干箱烘干至恒重。将烘干的姜片用磨粉机粉碎,并过40目筛。称取一定量姜粉,按照料液比1:15(g/mL)加入75%乙醇,在80 ℃下磁力搅拌提取2.5 h,采用真空抽滤得到滤液,滤渣按照前述方法重复提取一次,将两次提取得到的滤液用旋转蒸发仪除去乙醇,得到的无乙醇气味的膏状物即为GE,将GE密封后置于4 ℃保存备用。

    采用福林酚法[16]测定GE总酚含量。根据以没食子酸(gallic acid,GA)绘制标准工作曲线计算样品的总酚浓度,然后按式(1)计算出总酚含量(mg GA/g),经测定样品中总酚含量为13.10 mg GA/g。

    (mg GA/g)=C×V×Nm
    (1)

    式中:C为样品的总酚浓度(mg/mL);V为所取样品的体积(mL);N为溶液稀释的倍数;m为生姜提取物样品的质量(g)。

    将新鲜宰杀好的加州鲈鱼去鳞、去内脏、去头尾,沿脊椎剖下鱼两侧的鱼肉,清洗干净后将鱼肉切成大小均一的鱼片(长×宽×高约为40 mm×20 mm×10 mm)。

    分别配制浓度为0.5%、1.0%、3.0%、5.0%、7.0%的Tre溶液,浓度为0.01%、0.03%、0.06%、0.09%、0.20%的GE溶液以及浓度为0.01%、0.03%、0.06%、0.09%、0.20%的Nisin溶液。以无菌水浸泡作为空白对照,将1.2.2中处理好的加州鲈鱼样品按照料液比1:3(g/mL)浸泡处理30 min,沥干后分装于聚乙烯密封袋,4 ℃贮藏6 d后测定各组样品的TVB-N含量,从而筛选出合适的浓度梯度。

    以加州鲈鱼片在4 ℃贮藏 6 d的TVB-N含量为评价指标,在单因素实验的基础上,分别选取Tre、GE和Nisin的3个浓度,进行三因素三水平 L9 (34)正交试验,筛选最优配比的复配保鲜剂。复配保鲜剂配比优化因素水平见表1

    表  1  复配保鲜剂配比优化因素水平
    Table  1.  Optimization factor levels of compound preservative ratio
    水平因素
    A Tre浓度(%)B GE浓度(%)C Nisin浓度(%)D(空列)
    11.00.030.031
    23.00.060.062
    35.00.090.093
    下载: 导出CSV 
    | 显示表格

    根据正交试验的结果,综合考虑复配保鲜剂的经济成本,将1.2.2中处理好的加州鲈鱼片随机分为3组,其中以EG2组(最优配比的复配保鲜剂组)作为实验组,CK组(无菌水组)作为空白对照组,综合考虑到经济成本的因素,增加了本正交试验设计范围内各组分最低浓度组合构成的复配保鲜剂,即EG1组(1% Tre+0.03% GE+0.03% Nisin)作为实验对照组,按照料液比1:3(g/mL)浸泡处理30 min,取出沥干后分装于聚乙烯密封袋中,在4 ℃条件下进行冷藏,定期(在第0、4、8、12、16 d)进行取样并测定指标。

    参考Wang等[17]和冯佳雯等[18]的方法提取MP,并略作修改。将鱼肉去皮后绞碎,称取鱼肉糜后加入6倍体积(w:v)隔离缓冲液(10 mmol/L Na3PO4,0.1 mol/L NaCl,2 mmol/L MgCl2,1mmol/L EGTA,pH=7.0),在冰水浴条件下以8000 r/min匀浆三次,每次30 s。然后在4 ℃、6000 r/min离心15 min,保留沉淀物。继续按照上述步骤将沉淀物重复洗涤两次,最后保留沉淀。向沉淀中加入6倍体积的0.1 mol/L NaCl溶液,在冰水浴条件下以8000 r/min匀浆三次,每次30 s。匀浆后在4 ℃下,6000 r/min离心15 min,保留沉淀物。继续加入6倍体积的0.1 mol/L NaCl溶液,重复洗涤两次,最后一次离心前用纱布过滤除去结缔组织后再离心,离心后得到的沉淀即为加州鲈鱼MP。向MP沉淀中加入0.02 mol/L PBS(含0.6 mol/L NaCl,pH=7.0),在冰水浴条件下以8000 r/min匀浆1 min,得到的溶液即为MP溶液,将MP溶液置于4 ℃保存备用,并于48 h内使用。所得MP以牛血清蛋白作为标准蛋白,采用双缩脲法测定蛋白浓度。

    参考GB 4789.2-2022《食品安全国家标准 食品微生物学检测 菌落总数的测定》[19]对样品中的菌落总数进行测定。每组样品平行测定3次,结果以lg(CFU/g)表示。

    参考GB 5009.237-2016《食品安全国家标准 食品pH值的测定》[20]对鱼肉pH进行测定。

    参照GB 5009.228-2016《食品安全国家标准 食品中挥发性盐基氮的测定》[21]中的半微量定氮法对鱼肉中的TVB-N含量进行测定。

    参考 GB 37062-2018《水产品感官评价指南》[22]并稍作修改。选取6名具有食品专业背景的感官评定人员对加州鲈鱼片的外观、气味、质地这三个方面进行评分,最终评分以3个项目的平均分来计算,感官评分为9~10分认定为感官品质好,6~8分认定为感官品质可接受,4~6分认定为基本可接受,4分以下认定为不可接受。加州鲈鱼片感官评价标准见表2

    表  2  加州鲈鱼片感官评价标准
    Table  2.  Sensory evaluation of Micropterus salmoides fillets
    项目 9~10分 6~8分 3~5分 0~2分
    外观 色泽正常,有光泽 色泽正常,较有光泽 色泽稍暗,光泽度一般 色泽暗淡,无光泽
    气味 气味正常,有鱼固有的气味 略有鱼腥味 有明显鱼腥味,略有腐臭味 有强烈的腐臭味
    质地 肌肉紧实,有弹性 肌肉较有弹性 肌肉弹性一般 肌肉弹性较差,偏柔软
    下载: 导出CSV 
    | 显示表格

    参考官缘等[23]方法测定持水力。每组样品平行测定3次,持水力(%)按式(2)计算。

    (%)=(1m1m2m1)×100
    (2)

    式中:m1为离心前样品的质量,g;m2为离心后样品的质量,g。

    参照Zhao等[24]的方法,并稍作修改。将冷藏鱼肉在室温下放置30 min,用滤纸擦干表面水分后,切成规格为20 mm×20 mm×10 mm的加州鲈鱼片,用干燥的保鲜膜将肉样包裹平整,将样品平整放入干燥的核磁共振专用试管内,用Q-CPMG序列对鱼肉的横向弛豫时间进行测定。

    参考张海燕[25]的方法,并稍作修改。将各组冷藏鱼肉提前放置于室温环境,样品在预处理时已修整为20 mm×20 mm×10 mm的鱼片,选择P/50圆柱形探头对鱼片进行全质构测试,测定参数为:测试前的速度为2 mm/s,测试中和测试后的速度均为1 mm/s,触发力为5 g,鱼肉压缩程度为50%,间隔时间为5 s,每组样品平行测定3次。

    MP总巯基含量采用DTNB法[26]测定。制备浓度为2 mg/mL的MP溶液,以0.02 mol/L PBS(含0.6 mol/L NaCl,pH=7.0)作为空白对照,MP总巯基含量按照式(3)计算。

    (µmol/g)=75.53×A412×DC
    (3)

    式中:A412为412 nm处吸光度;D为稀释倍数;C为蛋白浓度,mg/mL。

    参考超微量ATP酶(Ca2+-ATPase)检测试剂盒说明书测定,Ca2+-ATPase活性结果以U /mgprot来表示。

    参考朱文慧等[27]方法,采用2,4-二硝基苯肼(2,4-Dinitrophenyl hydrazine,DNPH)法对MP羰基含量进行测定。每组样品平行测定3次,结果表示为nmol/mg蛋白。

    参考贾娜等[28]测定MP表面疏水性并稍作修改。吸取1 mL 5 mg/mL肌原纤维蛋白溶液与80 μL 1.0 mg/mL溴酚蓝溶液在25 ℃下振荡10 min,在10000 r/min下离心15 min,取上清液对其进行稀释10倍,在595 nm处测定吸光度,以0.02 mol/L PBS(含0.6 mol/L NaCl,pH=7.0)作为空白对照,按式(4)计算。

    (µg)=80×(AA)A
    (4)

    式中:A对照为空白对照组在595 nm处的吸光度;A样品为样品组在595 nm处的吸光度。

    所有指标均进行3次平行测定,结果以平均值±标准差表示,采用Origin 2022作图,采用IBM SPSS Statistics 26软件中的单因素方差分析(ANOVA)和沃勒-邓肯检验进行数据分析,P<0.05表示差异显著。

    图1~图3可知,Tre、GE和Nisin处理组的TVB-N含量显著低于空白对照组(P<0.05),表明这三种保鲜剂对冷藏加州鲈鱼均具有较好的保鲜效果。由图1可知,随着Tre浓度的增加,TVB-N含量增速减缓,这可能是由于海藻糖对好氧微生物具有较好的抑制作用,减缓了微生物对蛋白质的降解,因此TVB-N含量增速减缓[29]。同时,考虑到Tre甜度对鱼肉感官品质的影响以及经济成本因素,选择浓度为1.0%、3.0%和5.0%的Tre进行正交试验。如图2所示,随着GE浓度的增加,鱼肉TVB-N含量呈现先下降后升高的趋势,出现这一变化趋势的原因可能是由于GE浓度越高,其所含的多酚含量越高,多酚易被氧化产生自由基,当多酚浓度增加到一定值时可能会促进氧化,因此当GE浓度过高时,GE的抗氧化作用减弱,TVB-N含量略微升高[30]。因此选取浓度为0.03%、0.06%和0.09%的GE进行正交试验。如图3所示,鱼肉TVB-N含量随着Nisin浓度的升高而减小。当Nisin浓度为0.09%时,TVB-N含量的下降趋势趋于平缓,因此选取浓度为0.03%、0.06%和0.09%的Nisin作进一步正交试验。

    图  1  Tre处理对冷藏加州鲈鱼片TVB-N含量的影响
    注:不同小写字母表示差异显著(P<0.05),图2~图3同。
    Figure  1.  Effects of trehalose treatments on TVB-N content of refrigerated Micropterus salmoides fillets
    图  2  GE处理对冷藏加州鲈鱼片TVB-N含量的影响
    Figure  2.  Effects of ginger extract treatments on TVB-N content of refrigerated Micropterus salmoides fillets
    图  3  Nisin处理对冷藏加州鲈鱼片TVB-N含量的影响
    Figure  3.  Effects of Nisin treatments on TVB-N content of refrigerated Micropterus salmoides fillets

    复配保鲜剂的正交试验结果见表3。根据极差分析可知各个因素的主次顺序是:A>B>C,同时,K值越低,TVB-N 含量越低,因此选择A2B2C2为宜。根据方差分析可知(表4),Tre和GE浓度对加州鲈鱼片的TVB-N含量有显著差异(P<0.05)。综上分析确定复配保鲜剂的最优配比为A2B2C2,即3.0% Tre、0.06% GE和0.06% Nisin进行复配。根据正交试验结果得到的最优配比的复配保鲜剂进行试验验证,最优配比的复配保鲜剂组的TVB-N含量为10.75 mg/100 g,低于正交试验的9个试验组。

    表  3  复配保鲜剂正交试验结果
    Table  3.  Results of orthogonal experiments for optimizing the composition ratio of compound preservatives
    实验号 A Tre浓度
    (%)
    B GE浓度
    (%)
    C Nisin浓度
    (%)
    D
    (空列)
    TVB-N含量
    (mg/100 g)
    1 1(1.0) 1(0.03) 1(0.03) 1 13.79
    2 1 2(0.06) 2(0.06) 2 12.89
    3 1 3(0.09) 3(0.09) 3 14.22
    4 2(3.0) 1 2 3 13.11
    5 2 2 3 1 12.77
    6 2 3 1 2 13.28
    7 3(5.0) 1 3 2 14.38
    8 3 2 1 3 13.54
    9 3 3 2 1 13.82
    K1 40.90 41.29 40.61 40.38
    K2 39.16 39.19 39.83 40.56
    K3 41.74 41.32 41.37 40.86
    R 0.86 0.71 0.51 0.16
    下载: 导出CSV 
    | 显示表格
    表  4  正交试验结果的方差分析
    Table  4.  Variance analysis of orthogonal experiment results
    因素平方和自由度F显著性
    A1.154227.974*
    B0.980223.754*
    C0.40029.704
    误差0.0412
    注: *表示差异显著,P<0.05。
    下载: 导出CSV 
    | 显示表格

    图4所示,加州鲈鱼片的TVC在冷藏期间呈现显著增长的趋势(P<0.05)。与复配保鲜剂组相比,CK组样品的TVC增幅最快,在第8 d时菌落总数lg(CFU/g)值为6.01,已超过规定的腐败限值。复配保鲜剂处理组样品的TVC均显著低于CK组,且EG2组即最优配比组显著最低(P<0.05),这表明复配保鲜剂组具有较好的抑菌效果,且以EG2组最佳。Abdel-Naeem等[31]研究发现添加GE可以显著降低肉的菌落总数。刘舒彦等[32]对加州鲈鱼的优势腐败菌进行分离鉴定发现其优势腐败菌中包括3种革兰氏阳性菌,而Nisin对革兰氏阳性菌具有较好的抑菌性能,因此添加复配保鲜剂的样品菌落总数增幅较慢。EG1组的TVC在第16 d时达到腐败限值,而EG2组的TVC在第16 d时仍低于腐败限值,这表明EG2组的复配保鲜剂对抑制鱼肉中微生物的生长和繁殖具有更为积极的影响,低浓度的复配保鲜剂可能会降低其抑菌效果。

    图  4  复配保鲜剂处理对冷藏期间加州鲈鱼片菌落总数的影响
    注:同一组别不同贮藏时间大写字母不同表示差异显著(P<0.05),同一贮藏时间不同组别小写字母不同表示差异显著(P<0.05),图5~图12同。
    Figure  4.  Effects of compound preservative treatments on the changes in TVC of Micropterus salmoides fillets during refrigerated storage

    图5所示,在贮藏第4 d时,各组鱼肉的pH均呈下降趋势,这可能与贮藏前期鱼肉发生无氧糖酵解产生的大量乳酸以及ATP降解产生的无机磷酸有关;而在贮藏后期由于微生物降解鱼肉中的蛋白质,三甲胺、氨类等碱性物质不断积累,导致pH逐渐上升[33]。在贮藏第8~16 d,复配保鲜剂处理组鱼肉pH显著低于CK组(P<0.05),且EG2组的pH显著最低,这表明复配保鲜剂处理可以抑制鱼肉中微生物的生长,减缓其腐败速率,且最优配比的复配保鲜剂对加州鲈鱼片的抑菌效果最佳,从而抑制了鱼肉中碱性物质的积累,减缓鱼肉pH的增长。

    图  5  复配保鲜剂处理对冷藏期间加州鲈鱼片pH的影响
    Figure  5.  Effects of compound preservative treatments on the changes in pH of Micropterus salmoides fillets during refrigerated storage

    图6可知,各组鱼肉的TVB-N含量随着贮藏时间的延长呈上升趋势。在贮藏期间,复配保鲜剂组的TVB-N含量显著低于CK组(P<0.05),且复配保鲜剂组TVB-N含量的增速较CK组缓慢,这可能是由于复配保鲜剂中Tre的保鲜作用、GE的抗氧化特性以及Nisin的抗菌活性,三者的协同作用抑制了鱼肉中的蛋白质被分解为三甲胺等含氮物质,从而抑制TVB-N含量的上升,这与郑稳等[34]研究结果一致。在贮藏第12 d时,CK组的TVB-N含量为22.04 mg/100 g,已超过GB 2733-2015《食品安全国家标准 鲜、冻动物性水产品》[35]所规定的淡水鱼虾的挥发性盐基氮限值(≤20 mg/100 g)。在贮藏第16 d时,EG2组的TVB-N含量显著低于EG1组(P<0.05),且EG2组的TVB-N含量最低,这表明最优配比的复配保鲜剂对加州鲈鱼片具有更佳的保鲜效果。

    图  6  复配保鲜剂处理对冷藏期间加州鲈鱼片TVB-N含量的影响
    Figure  6.  Effects of compound preservative treatments on the changes in TVB-N content of Micropterus salmoides fillets during refrigerated storage

    表5可知,在贮藏第0 d时,各组加州鲈鱼片外观正常、富有光泽,有正常的鱼腥味,肉质紧实有弹性,因此感官评分最高。随着贮藏时间的延长,各组加州鲈鱼片的感官评分均显著降低(P<0.05),这可能是由于鱼肉中的蛋白质被不断氧化、降解,导致肌肉结构被破坏,同时生成三甲胺、腐胺等异味物质。在第8 d时,CK组的鱼肉色泽变暗,肌肉弹性变差且略有腐臭味,此时EG1组和EG2组的鱼肉感官品质均优于CK组。在第12 d时,CK组的鱼肉黏液浑浊、色泽暗淡,肌肉弹性较差,腐臭味明显,感官评分为2.72分,远低于4分,已经达到不可接受的水平,此时EG1组和EG2组鱼肉感官评分均显著高于CK组(P<0.05),但EG1组的鱼肉已经处于感官品质不可接受的水平,而EG2组仍处于基本可接受范围内。

    表  5  复配保鲜剂处理对冷藏加州鲈鱼片感官评分的影响
    Table  5.  Effects of compound preservative treatments on sensory score of Micropterus salmoides fillets during refrigerated storage
    组别 贮藏时间(d)
    0 4 8 12 16
    CK组 9.00±0.00Aa 7.06±0.10Bb 5.89±0.32Cb 2.72±0.32Dc 1.50±0.14Eb
    EG1组 9.00±0.00Aa 7.56±0.17Ba 6.50±0.22Cab 3.61±0.22Db 2.61±0.24Ea
    EG2组 9.00±0.00Aa 7.72±0.13Ba 6.72±0.13Ca 4.78±0.22Da 3.00±0.24Ea
    注:同一组别不同贮藏时间大写字母不同表示差异显著(P<0.05),同一贮藏时间不同组别小写字母不同表示差异显著(P<0.05),表6同。
    下载: 导出CSV 
    | 显示表格

    有研究表明,肉的持水力与蛋白质结构相关,贮藏期间蛋白质的氧化变性可能会改变鱼体内的水分分布,导致鱼体内水分的大量损失[36]。由图7可知,各组鱼肉的持水力在贮藏过程中均有所下降。在贮藏第16 d时,CK组、EG1组和EG2组的持水力分别为76.06%±0.26%、81.64%±0.33%和83.39%±0.35%,其中复配保鲜剂组的持水力显著高于CK组(P<0.05),这可能是由于复配保鲜剂处理对鱼肉蛋白质结构起到一定的保护作用,抑制了蛋白质的氧化变性,从而维持了鱼肉的持水力。同时,EG2组的持水力显著高于EG1组(P<0.05),这表明最优配比的复配保鲜剂对鱼肉的持水力具有更好的维持作用,且鱼肉的持水力可能与复配保鲜剂的浓度呈正相关。

    图  7  复配保鲜剂处理对冷藏期间加州鲈鱼片持水力的影响
    Figure  7.  Effects of compound preservative treatments on the changes in water holding capacity of Micropterus salmoides fillets during refrigerated storage

    各组鱼肉的横向弛豫时间T2均有4个峰,反映了三种水分状态,分别代表加州鲈鱼样品中存在的结合水(分别为强结合水T21a和弱结合水T21b,<10 ms)、不易流动水(T22,10~100 ms)和自由水(T23,>100 ms)[37]。通过水的峰面积比例计算不同状态水分的相对含量分别表示为P21a、P21b、P22和P23。如图8所示,随着贮藏时间的延长,各组鱼肉的自由水相对含量显著增加,且CK组鱼肉的自由水含量显著高于其他组(P<0.05)。各组的不易流动水在贮藏期间呈现不同程度的降低,在第16 d时,EG1和EG2组的不易流动水显著高于CK组(P<0.05),说明鱼肉蛋白在微生物和内源酶的作用下逐渐被降解,不易流动水流失,而EG1和EG2组的复配保鲜剂比例可能对鱼肉中不易流动水的流失具有较好的保护作用。各组鱼肉的弱结合水T21b随着贮藏时间的延长呈现显著降低的趋势,但各组之间没有显著差异(P>0.05)。各组鱼肉的强结合水T21a在贮藏期间没有显著变化(P>0.05),但随着贮藏时间的延长,EG2组的强结合水T21a显著高于CK组和EG1组(P<0.05),这可能是由于EG2组的复配保鲜剂中Tre添加量更高,可以更好地将水分截留于肌肉组织内部。

    图  8  复配保鲜剂处理对冷藏期间加州鲈鱼片不同状态水分相对含量的影响
    Figure  8.  Effects of compound preservative treatments on water distribution of Micropterus salmoides fillets during refrigerated storage

    表6所示,在冷藏条件下,各组加州鲈鱼片的硬度、咀嚼性随着贮藏时间的延长均呈显著下降的趋势(P<0.05),这可能是由于在鱼肉中微生物和酶的作用下,鱼体肌肉纤维组织和蛋白质结构被分解破坏,导致鱼肉硬度和咀嚼性下降。复配保鲜剂处理组鱼肉硬度和咀嚼性在贮藏后期显著高于CK组(P<0.05),这可能是由于Tre、GE和Nisin的共同作用减缓了微生物和酶对鱼肉蛋白质和肌肉纤维组织的破坏。鱼肉的质构特性由几个内在因素决定,如肌纤维的密度、胶原蛋白的含量等[38]。此外,冷藏过程中质构特性的变化主要与水分含量和水分分布状态有关[39]。结合上述持水力和水分状态结果可知,贮藏后期CK组持水力显著降低,水分从不易流动水向自由水迁移,这表明CK组鱼肉水分流失严重,从而对鱼肉的质构特性产生不利影响。同时,各组样品的弹性在贮藏期间均呈现不同程度的下降,但各组样品的弹性没有显著差异(P>0.05)。上述分析表明,随着冷藏时间的延长,复配保鲜剂处理组和CK组的加州鲈鱼肉的硬度、咀嚼性和弹性均呈现下降趋势,且复配保鲜剂处理组鱼肉的硬度和咀嚼性优于CK组,说明添加复配保鲜剂能在一定程度上延缓加州鲈鱼的腐败变质,维持鱼肉的质构特性。

    表  6  复配保鲜剂处理对冷藏期间加州鲈鱼片质构特性的影响
    Table  6.  Effects of compound preservative treatments on the changes in texture properties of Micropterus salmoides fillets during refrigerated storage
    指标组别贮藏时间(d)
    0481216
    硬度(g)CK组3215.77±142.66Aa2864.04±34.12Ba1897.57±26.57Cb1499.88±34,98Db1205.80±68.09Eb
    EG1组3016.74±29.89Aa2762.01±34.48Ba2275.51±52.03Ca1977.71±32.27Da1830.82±43.25Ea
    EG2组3042.67±59.34Aa2860.53±26.97Ba2407.81±45.08Ca2068.54±37.12Da1914.22±14.81Ea
    弹性CK组0.53±0.01Aa0.44±0.01Ba0.44±0.01Ba0.43±0.02Ba0.41±0.02Ba
    EG1组0.51±0.01Aa0.45±0.01Ba0.45±0.01Ba0.44±0.01Ba0.44±0.01Ba
    EG2组0.52±0.01Aa0.45±0.01Ca0.45±0.01Ca0.49±0.01ABa0.46±0.01BCa
    咀嚼性(gf)CK组892.38±56.45Aa644.30±8.02Ba468.14±3.32Ca367.13±14.48Dc324.75±21.01Db
    EG1组801.93±11.09Aa593.01±14.36Ba494.03±28.20Ca473.62±17.51Cab436.46±19.75Ca
    EG2组858.89±19.87Aa614.15±32.08Ba528.52±43.34BCa513.93±8.60Ca465.54±24.66Ca
    下载: 导出CSV 
    | 显示表格

    MP中的总巯基包括MP表面的活性巯基和隐藏在MP分子内部的巯基[40]。随着贮藏时间的延长,MP总巯基含量会随之下降,其下降程度是反映水产品MP氧化程度的重要指标[41]。从图9可以看出,MP总巯基含量在冷藏期间呈下降趋势,说明鱼肉MP在冷藏过程中发生了不同程度的氧化,出现这一现象的原因可能是MP巯基被氧化后形成二硫键导致巯基含量减少。同时,在贮藏期间复配保鲜剂处理组的巯基含量显著高于CK组(P<0.05),一方面是由于复配保鲜剂中GE所含的酚类化合物具有较多暴露和游离的羟基从而能保护巯基免于被进一步氧化导致[36];另一方面可能是由于Tre中的羟基通过氢键和蛋白质相结合,保证MP结构的稳定性从而避免更多的巯基被氧化[42]。在贮藏第16 d时,EG2组的巯基含量下降程度显著小于EG1组(P<0.05),与第0 d相比,EG1组和EG2组巯基含量分别减少了32.67%和24.98%,这可能与复配保鲜剂的浓度有关,这也表明最优配比的复配保鲜剂对蛋白质氧化稳定性起着更为积极的作用。

    图  9  复配保鲜剂处理对冷藏期间加州鲈鱼MP总巯基含量的影响
    Figure  9.  Effects of compound preservative treatments on total sulfhydryl content of Micropterus salmoides MP during refrigerated storage

    Ca2+-ATPase活性是肌球蛋白完整性的重要指标,肌球蛋白构象变化会导致酶活性的降低,且酶活性越低,表明蛋白质氧化变性程度越大[43]。如图10所示,随着冷藏时间的延长,各组冷藏加州鲈鱼MP的Ca2+-ATPase活性降低,这表明MP在贮藏过程中发生了变性。Ca2+-ATPase活性下降的主要原因可能是肌球蛋白发生交联及其头部构象发生改变。在贮藏后期,复配保鲜剂组的Ca2+-ATPase活性显著高于CK组(P<0.05),其中EG2组的Ca2+-ATPase活性最高,说明添加复配保鲜剂可以有效抑制加州鲈鱼MP的氧化变性,且EG2组的复配保鲜剂对MP保护作用更为有效。此外,肌球蛋白活性位点上的巯基氧化也会导致MP中Ca2+-ATPase活性的下降,这一结果与总巯基含量的结果一致。

    图  10  复配保鲜剂处理对冷藏期间加州鲈鱼MP Ca2+-ATPase活性的影响
    Figure  10.  Effects of compound preservative treatments on Ca2+-ATPase activity of Micropterus salmoides MP during refrigerated storage

    羰基含量是评估蛋白质氧化的关键指标之一,蛋白质羰基化合物的形成主要是由于蛋白质侧链上的氨基酸如赖氨酸、精氨酸和脯氨酸等被羟基自由基攻击导致肽链断裂和脱氨基[4445]。如图11所示,随着贮藏时间的延长,鱼肉MP羰基含量呈上升趋势,这说明鱼肉MP在贮藏期间发生氧化,羰基含量逐渐增加。复配保鲜剂处理组样品的羰基含量显著低于CK组(P<0.05),这可能与复配保鲜剂中GE所含的酚类化合物所具备的清除自由基和螯合金属离子的能力有关,酚类化合物可以通过自氧化形成苯氧基自由基来中和羟基自由基。同时,它们还可以防止亚铁离子诱导的氨基酸侧链基团发生氧化修饰并抑制羰基的形成[46]。此外,在第16 d时,EG2组的羰基含量显著低于EG1组(P<0.05),说明适当提高Tre的浓度对维持蛋白质稳定性具有更为积极的影响。Chen等[47]研究表明Tre可以有效抑制冷冻虾肉肌原纤维蛋白羰基含量的增加,本研究结果与文献一致。

    图  11  复配保鲜剂处理对冷藏期间加州鲈鱼MP 羰基含量的影响
    Figure  11.  Effects of compound preservative treatments on carbonyl content of Micropterus salmoides MP during refrigerated storage

    表面疏水性是反映疏水性结合位点在蛋白质表面的分布程度,可以通过溴酚蓝与蛋白质的结合量表征。从图12可知,随着冷藏时间的延长,加州鲈鱼MP表面疏水性逐渐增加,这说明加州鲈鱼MP在冷藏期间逐渐展开,MP中疏水基团和亲水基团的相对位置发生改变,导致疏水性氨基酸残基的暴露。同时,复配保鲜剂处理组的鱼肉MP表面疏水性显著低于CK组,这可能跟GE中酚类化合物与MP的疏水相互作用有关。Li等[48]研究表明酚类化合物和MP的疏水相互作用可以诱导蛋白质发生聚集从而减少MP在氧化过程中疏水基团的暴露,因此MP表面疏水性降低。

    图  12  复配保鲜剂处理对冷藏期间加州鲈鱼MP 表面疏水性的影响
    Figure  12.  Effects of compound preservative treatments on surface hydrophobicity of Micropterus salmoides myofibrillar protein during refrigerated storage

    表7可知,在冷藏期间,加州鲈鱼片的菌落总数、TVB-N含量、pH、感官评分、WHC、硬度、Ca2+-ATPase活性、巯基含量、羰基含量和表面疏水性之间存在极显著(P<0.01)相关性,表明鱼肉的品质指标(菌落总数、TVB-N含量、pH、感官评分、WHC、硬度等)与蛋白质氧化稳定性相关指标(Ca2+-ATPase活性、巯基含量、羰基含量和表面疏水性)密切相关,原因可能是鱼肉在冷藏过程中由于微生物和内源酶的作用,鱼肉肌原纤维蛋白逐渐发生降解、氧化,蛋白质网络结构遭到破坏,导致肌肉持水力降低,因此鱼肉在贮藏期间品质逐渐下降[49]。综上所述,在冷藏期间,复配保鲜剂处理加州鲈鱼片的品质指标与蛋白质氧化稳定性相关指标间存在良好的相关性。

    表  7  复配保鲜剂处理加州鲈鱼片的指标相关性分析
    Table  7.  Correlation analysis of indices of Micropterus salmoides fillets treated with compound preservative
    指标 菌落总数 TVB-N含量 pH 感官评分 WHC 硬度 Ca2+-ATPase 巯基含量 羰基含量 表面疏水性
    菌落总数 1
    TVB-N含量 0.978** 1
    pH 0.783** 0.827** 1
    感官评分 −0.951** −0.982** −0.895** 1
    WHC −0.903** −0.859** −0.704** 0.817** 1
    硬度 −0.943** −0.943** −0.874** 0.961** 0.800** 1
    Ca2+-ATPase −0.911** −0.953** −0.875** 0.976** 0.779** 0.944** 1
    巯基含量 −0.965** −0.991** −0.878** 0.986** 0.861** 0.961** 0.972** 1
    羰基含量 0.982** 0.965** 0.840** −0.971** −0.879** −0.950** −0.928** −0.961** 1
    表面疏水性 0.982** 0.987** 0.872** −0.982** −0.886** −0.975** −0.960** −0.986** 0.979** 1
    注:**表示极显著相关(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    本研究通过单因素实验和正交试验优化筛选得到最优配比的复配保鲜剂:3.0% Tre、0.06% GE和0.06% Nisin。经过品质指标和蛋白质氧化稳定性指标的结果证明,与CK组相比,复配保鲜剂组(EG1组和EG2组(即优选组))均能抑制加州鲈鱼片菌落总数、TVB-N含量、pH和自由水含量的增加,鱼肉保水性明显改善,且鱼肉的硬度、咀嚼性和感官评分均优于CK组,对鱼肉MP氧化稳定性具有更好的维持作用。通过菌落总数、TVB-N含量和感官评价分析,与CK组相比,EG2组处理可使冷藏加州鲈鱼片的货架期延长至12 d。通过各指标间相关性分析可知,复配保鲜剂处理加州鲈鱼片的品质指标与蛋白质氧化稳定性相关指标间存在良好的相关性。因此,复配保鲜剂可以有效延缓冷藏加州鲈鱼片的品质劣变,抑制加州鲈鱼MP的氧化,本研究为企业解决冷藏加州鲈鱼货架期短以及贮藏期间品质下降等问题提供了参考,为冷藏加州鲈鱼保水和保鲜技术的开发与应用提供了理论依据。

  • 图  1   Tre处理对冷藏加州鲈鱼片TVB-N含量的影响

    注:不同小写字母表示差异显著(P<0.05),图2~图3同。

    Figure  1.   Effects of trehalose treatments on TVB-N content of refrigerated Micropterus salmoides fillets

    图  2   GE处理对冷藏加州鲈鱼片TVB-N含量的影响

    Figure  2.   Effects of ginger extract treatments on TVB-N content of refrigerated Micropterus salmoides fillets

    图  3   Nisin处理对冷藏加州鲈鱼片TVB-N含量的影响

    Figure  3.   Effects of Nisin treatments on TVB-N content of refrigerated Micropterus salmoides fillets

    图  4   复配保鲜剂处理对冷藏期间加州鲈鱼片菌落总数的影响

    注:同一组别不同贮藏时间大写字母不同表示差异显著(P<0.05),同一贮藏时间不同组别小写字母不同表示差异显著(P<0.05),图5~图12同。

    Figure  4.   Effects of compound preservative treatments on the changes in TVC of Micropterus salmoides fillets during refrigerated storage

    图  5   复配保鲜剂处理对冷藏期间加州鲈鱼片pH的影响

    Figure  5.   Effects of compound preservative treatments on the changes in pH of Micropterus salmoides fillets during refrigerated storage

    图  6   复配保鲜剂处理对冷藏期间加州鲈鱼片TVB-N含量的影响

    Figure  6.   Effects of compound preservative treatments on the changes in TVB-N content of Micropterus salmoides fillets during refrigerated storage

    图  7   复配保鲜剂处理对冷藏期间加州鲈鱼片持水力的影响

    Figure  7.   Effects of compound preservative treatments on the changes in water holding capacity of Micropterus salmoides fillets during refrigerated storage

    图  8   复配保鲜剂处理对冷藏期间加州鲈鱼片不同状态水分相对含量的影响

    Figure  8.   Effects of compound preservative treatments on water distribution of Micropterus salmoides fillets during refrigerated storage

    图  9   复配保鲜剂处理对冷藏期间加州鲈鱼MP总巯基含量的影响

    Figure  9.   Effects of compound preservative treatments on total sulfhydryl content of Micropterus salmoides MP during refrigerated storage

    图  10   复配保鲜剂处理对冷藏期间加州鲈鱼MP Ca2+-ATPase活性的影响

    Figure  10.   Effects of compound preservative treatments on Ca2+-ATPase activity of Micropterus salmoides MP during refrigerated storage

    图  11   复配保鲜剂处理对冷藏期间加州鲈鱼MP 羰基含量的影响

    Figure  11.   Effects of compound preservative treatments on carbonyl content of Micropterus salmoides MP during refrigerated storage

    图  12   复配保鲜剂处理对冷藏期间加州鲈鱼MP 表面疏水性的影响

    Figure  12.   Effects of compound preservative treatments on surface hydrophobicity of Micropterus salmoides myofibrillar protein during refrigerated storage

    表  1   复配保鲜剂配比优化因素水平

    Table  1   Optimization factor levels of compound preservative ratio

    水平因素
    A Tre浓度(%)B GE浓度(%)C Nisin浓度(%)D(空列)
    11.00.030.031
    23.00.060.062
    35.00.090.093
    下载: 导出CSV

    表  2   加州鲈鱼片感官评价标准

    Table  2   Sensory evaluation of Micropterus salmoides fillets

    项目 9~10分 6~8分 3~5分 0~2分
    外观 色泽正常,有光泽 色泽正常,较有光泽 色泽稍暗,光泽度一般 色泽暗淡,无光泽
    气味 气味正常,有鱼固有的气味 略有鱼腥味 有明显鱼腥味,略有腐臭味 有强烈的腐臭味
    质地 肌肉紧实,有弹性 肌肉较有弹性 肌肉弹性一般 肌肉弹性较差,偏柔软
    下载: 导出CSV

    表  3   复配保鲜剂正交试验结果

    Table  3   Results of orthogonal experiments for optimizing the composition ratio of compound preservatives

    实验号 A Tre浓度
    (%)
    B GE浓度
    (%)
    C Nisin浓度
    (%)
    D
    (空列)
    TVB-N含量
    (mg/100 g)
    1 1(1.0) 1(0.03) 1(0.03) 1 13.79
    2 1 2(0.06) 2(0.06) 2 12.89
    3 1 3(0.09) 3(0.09) 3 14.22
    4 2(3.0) 1 2 3 13.11
    5 2 2 3 1 12.77
    6 2 3 1 2 13.28
    7 3(5.0) 1 3 2 14.38
    8 3 2 1 3 13.54
    9 3 3 2 1 13.82
    K1 40.90 41.29 40.61 40.38
    K2 39.16 39.19 39.83 40.56
    K3 41.74 41.32 41.37 40.86
    R 0.86 0.71 0.51 0.16
    下载: 导出CSV

    表  4   正交试验结果的方差分析

    Table  4   Variance analysis of orthogonal experiment results

    因素平方和自由度F显著性
    A1.154227.974*
    B0.980223.754*
    C0.40029.704
    误差0.0412
    注: *表示差异显著,P<0.05。
    下载: 导出CSV

    表  5   复配保鲜剂处理对冷藏加州鲈鱼片感官评分的影响

    Table  5   Effects of compound preservative treatments on sensory score of Micropterus salmoides fillets during refrigerated storage

    组别 贮藏时间(d)
    0 4 8 12 16
    CK组 9.00±0.00Aa 7.06±0.10Bb 5.89±0.32Cb 2.72±0.32Dc 1.50±0.14Eb
    EG1组 9.00±0.00Aa 7.56±0.17Ba 6.50±0.22Cab 3.61±0.22Db 2.61±0.24Ea
    EG2组 9.00±0.00Aa 7.72±0.13Ba 6.72±0.13Ca 4.78±0.22Da 3.00±0.24Ea
    注:同一组别不同贮藏时间大写字母不同表示差异显著(P<0.05),同一贮藏时间不同组别小写字母不同表示差异显著(P<0.05),表6同。
    下载: 导出CSV

    表  6   复配保鲜剂处理对冷藏期间加州鲈鱼片质构特性的影响

    Table  6   Effects of compound preservative treatments on the changes in texture properties of Micropterus salmoides fillets during refrigerated storage

    指标组别贮藏时间(d)
    0481216
    硬度(g)CK组3215.77±142.66Aa2864.04±34.12Ba1897.57±26.57Cb1499.88±34,98Db1205.80±68.09Eb
    EG1组3016.74±29.89Aa2762.01±34.48Ba2275.51±52.03Ca1977.71±32.27Da1830.82±43.25Ea
    EG2组3042.67±59.34Aa2860.53±26.97Ba2407.81±45.08Ca2068.54±37.12Da1914.22±14.81Ea
    弹性CK组0.53±0.01Aa0.44±0.01Ba0.44±0.01Ba0.43±0.02Ba0.41±0.02Ba
    EG1组0.51±0.01Aa0.45±0.01Ba0.45±0.01Ba0.44±0.01Ba0.44±0.01Ba
    EG2组0.52±0.01Aa0.45±0.01Ca0.45±0.01Ca0.49±0.01ABa0.46±0.01BCa
    咀嚼性(gf)CK组892.38±56.45Aa644.30±8.02Ba468.14±3.32Ca367.13±14.48Dc324.75±21.01Db
    EG1组801.93±11.09Aa593.01±14.36Ba494.03±28.20Ca473.62±17.51Cab436.46±19.75Ca
    EG2组858.89±19.87Aa614.15±32.08Ba528.52±43.34BCa513.93±8.60Ca465.54±24.66Ca
    下载: 导出CSV

    表  7   复配保鲜剂处理加州鲈鱼片的指标相关性分析

    Table  7   Correlation analysis of indices of Micropterus salmoides fillets treated with compound preservative

    指标 菌落总数 TVB-N含量 pH 感官评分 WHC 硬度 Ca2+-ATPase 巯基含量 羰基含量 表面疏水性
    菌落总数 1
    TVB-N含量 0.978** 1
    pH 0.783** 0.827** 1
    感官评分 −0.951** −0.982** −0.895** 1
    WHC −0.903** −0.859** −0.704** 0.817** 1
    硬度 −0.943** −0.943** −0.874** 0.961** 0.800** 1
    Ca2+-ATPase −0.911** −0.953** −0.875** 0.976** 0.779** 0.944** 1
    巯基含量 −0.965** −0.991** −0.878** 0.986** 0.861** 0.961** 0.972** 1
    羰基含量 0.982** 0.965** 0.840** −0.971** −0.879** −0.950** −0.928** −0.961** 1
    表面疏水性 0.982** 0.987** 0.872** −0.982** −0.886** −0.975** −0.960** −0.986** 0.979** 1
    注:**表示极显著相关(P<0.01)。
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京:中国农业出版社, 2023. [Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook[M]. Beijing:China Agriculture Press, 2023.]

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2023.

    [2] 吴燕燕, 李冰, 朱小静, 等. 养殖海水和淡水鲈鱼的营养组成比较分析[J]. 食品工业科技,2016,37(20):348−352,359. [WU Y Y, LI B, ZHU X J, et al. Comparison of nutrient composition of cultured sea bass and cultured fresh-water bass, Lateolabrax japonicas and Micropterus salmoides[J]. Science and Technology of Food Industry,2016,37(20):348−352,359.]

    WU Y Y, LI B, ZHU X J, et al. Comparison of nutrient composition of cultured sea bass and cultured fresh-water bass, Lateolabrax japonicas and Micropterus salmoides[J]. Science and Technology of Food Industry, 2016, 37(20): 348−352,359.

    [3] 杨月欣. 中国食物成分表[M]. 北京:北京大学医学出版社, 2019. [YANG Y X. China food composition tables standard edition[M]. Beijing:Peking University Medical Press, 2019.]

    YANG Y X. China food composition tables standard edition[M]. Beijing: Peking University Medical Press, 2019.

    [4] 石钢鹏, 阙凤, 高天麒, 等. 速冻方式对冷冻贮藏中大口黑鲈鱼肉蛋白质特性的影响[J]. 食品工业科技,2021,42(20):309−319. [SHI G P, QUE F, GAO T Q, et al. Effects of different quick-freezing methods on protein properties of largemouth bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry,2021,42(20):309−319.]

    SHI G P, QUE F, GAO T Q, et al. Effects of different quick-freezing methods on protein properties of largemouth bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319.

    [5] 王帅静, 朱延光, 蓝尉冰, 等. 海藻糖对生鲜类食品保鲜的机理及其应用研究[J]. 中国调味品,2017,42(10):165−170. [WANG S J, ZHU Y G, LAN W B, et al. Study on the mechanism of trehalose for fresh food preservation and its application[J]. China Condiment,2017,42(10):165−170.]

    WANG S J, ZHU Y G, LAN W B, et al. Study on the mechanism of trehalose for fresh food preservation and its application[J]. China Condiment, 2017, 42(10): 165−170.

    [6]

    LI M, LUO J, ZHANG Y, et al. Effects of different phosphorus free water retaining agents on the quality of frozen tilapia fillets[J]. Food Science & Nutrition,2022,10(3):633−644.

    [7] 詹毅, 孙劲松, 刘洋, 等. 基于模糊数学的天然保鲜剂对冷鲜肉保鲜效果评价[J]. 肉类研究,2020,34(11):72−77. [ZHAN Y, SUN J S, LIU Y, et al. Evaluating the effect of natural preservatives on the preservation of chilled pork based on fuzzy mathematics[J]. Meat Research,2020,34(11):72−77.]

    ZHAN Y, SUN J S, LIU Y, et al. Evaluating the effect of natural preservatives on the preservation of chilled pork based on fuzzy mathematics[J]. Meat Research, 2020, 34(11): 72−77.

    [8]

    ISLAM M, HOSSAIN A, RAHMAN M, et al. Potentiality of ginger extract as natural preservative for raw tilapia fish (Oreochromis mossambicus) during storage at refrigerated temperature[J]. Journal of Food Processing and Preservation,2022,46(7):1−11.

    [9] 黄可榆, 谢彩锋, 杭方学, 等. 乳酸链球菌素抗菌活性的改善及在食品保鲜中的研究进展[J]. 中国食品添加剂,2021,32(12):208−213. [HUANG K Y, XIE C F, HANG F X, et al. Research progress on the improvement of antibacterial activity of Nisin and its application in food preservation[J]. China Food Additives,2021,32(12):208−213.]

    HUANG K Y, XIE C F, HANG F X, et al. Research progress on the improvement of antibacterial activity of Nisin and its application in food preservation[J]. China Food Additives, 2021, 32(12): 208−213.

    [10]

    GHARSALLAOUI A, OULAHAL N, JOLY C, et al. Nisin as a food preservative:Part 1:physicochemical properties, antimicrobial activity, and main uses[J]. Critical Reviews in Food Science and Nutrition,2016,56(8):1262−1274. doi: 10.1080/10408398.2013.763765

    [11]

    WU J J, ZANG M W, WANG S W, et al. Nisin:From a structural and meat preservation perspective[J]. Food Microbiology,2023,111:104207. doi: 10.1016/j.fm.2022.104207

    [12] 张亚美, 池帅, 李颖畅, 等. 生物保鲜剂在水产品保鲜中的应用及研究进展[J]. 中国食品添加剂,2023,34(11):36−44. [ZHANG Y M, CHI S, LI Y C, et al. Application and research progress of biological preservatives in aquatic products preservation[J]. China Food Additives,2023,34(11):36−44.]

    ZHANG Y M, CHI S, LI Y C, et al. Application and research progress of biological preservatives in aquatic products preservation[J]. China Food Additives, 2023, 34(11): 36−44.

    [13] 张小敏, 郭全友, 周国燕, 等. 壳聚糖协同乳酸链球菌素抗轻腌大黄鱼源特定腐败菌抑制效应研究[J]. 中国食品学报,2022,22(5):259−270. [ZHANG X M, GUO Q Y, ZHOU G Y, et al. Inhibitory effect of chitosan and nisin on specific spoilage bacteria from lightly salted large yellow croaker[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(5):259−270.]

    ZHANG X M, GUO Q Y, ZHOU G Y, et al. Inhibitory effect of chitosan and nisin on specific spoilage bacteria from lightly salted large yellow croaker[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(5): 259−270.

    [14] 白婵, 许萍, 黄敏, 等. 复配生物保鲜剂对大口黑鲈冷藏保鲜效果的影响[J]. 食品科技,2021,46(2):103−111. [BAI C, XU P, HUANG M, et al. Effect of compound preservative on the preservation of weevers (Micropterus salmoides)[J]. Food Science and Technology,2021,46(2):103−111.]

    BAI C, XU P, HUANG M, et al. Effect of compound preservative on the preservation of weevers (Micropterus salmoides)[J]. Food Science and Technology, 2021, 46(2): 103−111.

    [15] 卢航, 王语嫣, 刘晓燕, 等. 壳聚糖与生姜提取物对冷鲜肉贮藏过程中的保鲜效果[J]. 食品与发酵工业,2023,49(8):89−96. [LU H, WANG Y Y, LIU X Y, et al. Preservation effect of chitosan and ginger extract on cooled pork during storage[J]. Food and Fermentation Industries,2023,49(8):89−96.]

    LU H, WANG Y Y, LIU X Y, et al. Preservation effect of chitosan and ginger extract on cooled pork during storage[J]. Food and Fermentation Industries, 2023, 49(8): 89−96.

    [16] 敬小波. 三种香辛料提取物抗氧化活性及清除自由基能力的研究[J]. 饮料工业,2019,22(2):1−4. [JING X B. A study on antioxidant activity and free radical scavenging capacities of the extract of three spices[J]. Beverage Industry,2019,22(2):1−4.] doi: 10.3969/j.issn.1007-7871.2019.02.001

    JING X B. A study on antioxidant activity and free radical scavenging capacities of the extract of three spices[J]. Beverage Industry, 2019, 22(2): 1−4. doi: 10.3969/j.issn.1007-7871.2019.02.001

    [17]

    WANG L M, XIA M Q, ZHOU Y H, et al. Gel properties of grass carp myofibrillar protein modified by low-frequency magnetic field during two-stage water bath heating[J]. Food Hydrocolloids,2020,107:105920. doi: 10.1016/j.foodhyd.2020.105920

    [18] 冯佳雯, 郑云芳, 张芳, 等. 超声处理对鲈鱼肌原纤维蛋白结构和功能特性的影响[J]. 食品工业科技,2022,43(17):95−103. [FENG J W, ZHENG Y F, ZHANG F, et al. Effect of ultrasonic treatment on the structure and functional properties of myofibrillar protein in sea bass[J]. Science and Technology of Food Industry,2022,43(17):95−103.]

    FENG J W, ZHENG Y F, ZHANG F, et al. Effect of ultrasonic treatment on the structure and functional properties of myofibrillar protein in sea bass[J]. Science and Technology of Food Industry, 2022, 43(17): 95−103.

    [19] 国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 食品微生物学检验 菌落总数测定:GB 4789.2-2022[S]. 北京:中国标准出版社, 2022:4−6. [National Health Commission of the People's Republic of China, State Administration for Market Regulation. GB 4789.2-2022 Methods for food microbiology test, determination of total bacterial colonies[S]. Beijing:Standards Press of China, 2022:4−6.]

    National Health Commission of the People's Republic of China, State Administration for Market Regulation. GB 4789.2-2022 Methods for food microbiology test, determination of total bacterial colonies[S]. Beijing: Standards Press of China, 2022: 4−6.

    [20] 国家卫生和计划生育委员会. GB 5009.237-2016食品安全国家标准 食品pH值的测定[S]. 北京:中国标准出版社, 2016:1−6. [National Health and Family Planning Commission of the People's Republic of China. GB 5009.237-2016 National food safety standard, determination of pH in foods[S]. Beijing:Standards Press of China, 2016:1−6.]

    National Health and Family Planning Commission of the People's Republic of China. GB 5009.237-2016 National food safety standard, determination of pH in foods[S]. Beijing: Standards Press of China, 2016: 1−6.

    [21] 国家卫生和计划生育委员会. 食品安全国家标准 食品挥发性盐基氮的测定:GB 5009.228-2016[S]. 北京:中国标准出版社, 2016:1−10. [National Health and Family Planning Commission of the People's Republic of China. GB 5009.228-2016 National food safety standard, determination of total volatile basic-Nitrogen in food[S]. Beijing:Standards Press of China, 2016:1−10.]

    National Health and Family Planning Commission of the People's Republic of China. GB 5009.228-2016 National food safety standard, determination of total volatile basic-Nitrogen in food[S]. Beijing: Standards Press of China, 2016: 1−10.

    [22] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 37062-2018水产品感官评价指南[S]. 北京:中国标准出版社, 2019:1−11. [State Administration for Market Regulation, Standardization Administration of China. GB/T 37062-2018 Guidelines for the sensory evaluation of aquatic products[S]. Beijing:Standards Press of China, 2019:1−11.]

    State Administration for Market Regulation, Standardization Administration of China. GB/T 37062-2018 Guidelines for the sensory evaluation of aquatic products[S]. Beijing: Standards Press of China, 2019: 1−11.

    [23] 官缘, 蓝蔚青, 孙雨晴, 等. 超声-咖啡酸联合处理对海鲈鱼冷藏期间品质变化的影响[J]. 食品科学,2022,43(9):207−214. [GUAN Y, LAN W Q, XUN Y Q, et al. Effect of ultrasonic treatment combined with caffeic acid on the quality of sea bass (Lateolabrax japonicas) during refrigerated storage[J]. Food Science,2022,43(9):207−214.]

    GUAN Y, LAN W Q, XUN Y Q, et al. Effect of ultrasonic treatment combined with caffeic acid on the quality of sea bass (Lateolabrax japonicas) during refrigerated storage[J]. Food Science, 2022, 43(9): 207−214.

    [24]

    ZHAO Y N, LAN W Q, SHEN J L, et al. Combining ozone and slurry ice treatment to prolong the shelf-life and quality of large yellow croaker (Pseudosciaena crocea)[J]. LWT,2022,154:112615. doi: 10.1016/j.lwt.2021.112615

    [25] 张海燕. 冷鲜调理海鲈鱼片加工技术研究[D]. 湛江:广东海洋大学, 2019:30−42. [ZHANG H Y. Study on processing technology of chilled prepared Lateolabrax japonicus[D]. Zhanjiang:Guangdong Ocean University, 2019:30−42.]

    ZHANG H Y. Study on processing technology of chilled prepared Lateolabrax japonicus[D]. Zhanjiang: Guangdong Ocean University, 2019: 30−42.

    [26]

    YONGSAWATDIGUL J, PARK J W. Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food Chemistry,2003,83(3):409−416. doi: 10.1016/S0308-8146(03)00105-5

    [27] 朱文慧, 郭慧芳, 单春雨, 等. 微波纳米解冻对秘鲁鱿鱼保水性和蛋白结构的影响[J]. 中国食品学报,2022,22(8):145−152. [ZHU W H, GUO H F, SHAN C Y, et al. Effects of microwave nanoparticles thawing on water holding capacity and protein structure of jumbo squid (Dosidicus gigas)[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(8):145−152.]

    ZHU W H, GUO H F, SHAN C Y, et al. Effects of microwave nanoparticles thawing on water holding capacity and protein structure of jumbo squid (Dosidicus gigas)[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(8): 145−152.

    [28] 贾娜, 林世文, 王乐田, 等. 没食子酸诱导肌原纤维蛋白巯基含量和表面疏水性变化对蛋白凝胶特性的影响[J]. 食品科学,2020,41(22):1−7. [JIA N, LIN S W, WANG L T, et al. Effects of changes in sulfhydryl content and surface hydrophobicity of myofibrillar protein induced by gallic acid on its gel properties[J]. Food Science,2020,41(22):1−7.]

    JIA N, LIN S W, WANG L T, et al. Effects of changes in sulfhydryl content and surface hydrophobicity of myofibrillar protein induced by gallic acid on its gel properties[J]. Food Science, 2020, 41(22): 1−7.

    [29] 李昕. 绿球藻多糖的提取、抗氧化和复配保鲜液对冷鲜猪肉保鲜效果研究[D]. 延吉:延边大学, 2022:34−50. [LI X. Study on the effect of extraction, antioxidant and compound fresh-keeping solution of polysaccharide from Chlorella virescence on the fresh-keeping of chilled pork[D]. Yanji:Yanbian University, 2022:34−50.]

    LI X. Study on the effect of extraction, antioxidant and compound fresh-keeping solution of polysaccharide from Chlorella virescence on the fresh-keeping of chilled pork[D]. Yanji: Yanbian University, 2022: 34−50.

    [30] 李亚丽, 许玉娟, 徐幸莲. 多酚对肌原纤维蛋白结构与功能特性的影响研究进展[J]. 食品与发酵工业,2021,47(19):296−306. [LI Y L, XU Y J, XU X L. Research progress on the effect of polyphenols on the structural and functional properties of myofibrillar protein[J]. Food and Fermentation Industries,2021,47(19):296−306.]

    LI Y L, XU Y J, XU X L. Research progress on the effect of polyphenols on the structural and functional properties of myofibrillar protein[J]. Food and Fermentation Industries, 2021, 47(19): 296−306.

    [31]

    ABDEL-NAEEM H H S, TALAAT M M, IMRE K, et al. Structural changes, electrophoretic pattern, and quality attributes of camel meat treated with fresh ginger extract and papain powder[J]. Foods,2022,11(13):1876. doi: 10.3390/foods11131876

    [32] 刘舒彦, 熊光权, 李海蓝, 等. 加州鲈优势腐败菌的分离鉴定[J]. 现代食品科技,2019,35(11):120−125,230. [LIU S Y, XIONG G Q, LI H L, et al. Isolation and identification of the dominant spoilage bacteria from california bass (Micropterus salmoides)[J]. Modern Food Science and Technology,2019,35(11):120−125,230.]

    LIU S Y, XIONG G Q, LI H L, et al. Isolation and identification of the dominant spoilage bacteria from california bass (Micropterus salmoides)[J]. Modern Food Science and Technology, 2019, 35(11): 120−125,230.

    [33]

    LANG A, LAN W Q, GU Y J, et al. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets[J]. Journal of the Science of Food and Agriculture,2022,103(1):152−163.

    [34] 郑稳, 赵璐, 庄文静, 等. 复合生物保鲜剂对微冻大口黑鲈鱼保鲜效果的优化配比[J/OL]. 甘肃农业大学学报:1−13 [2023-11-21]. http://kns.cnki.net/kcms/detail/62.1055.s.20230912.1831.002.html. [ZHENG W, ZHAO L, ZHUNAG W J, et al. Optimal ratio of compound biopreservatives to the preservation effect of micro-frozen Micropterus salmoides[J/OL]. Journal of Gansu Agricultural University:1−13 [2023-11-21]. http://kns.cnki.net/kcms/detail/62.1055.s.20230912.1831.002.html.]

    ZHENG W, ZHAO L, ZHUNAG W J, et al. Optimal ratio of compound biopreservatives to the preservation effect of micro-frozen Micropterus salmoides[J/OL]. Journal of Gansu Agricultural University: 1−13 [2023-11-21]. http://kns.cnki.net/kcms/detail/62.1055.s.20230912.1831.002.html.

    [35] 国家卫生和计划生育委员会. 食品安全国家标准 鲜、冻动物性水产品:GB 2733-2015[S]. 北京:中国标准出版社, 2015:1−4. [National Health and Family Planning Commission of the People's Republic of China. GB 2733-2015 National food safety standard, fresh and frozen animal aquatic products[S]. Beijing:Standards Press of China, 2015:1−4.]

    National Health and Family Planning Commission of the People's Republic of China. GB 2733-2015 National food safety standard, fresh and frozen animal aquatic products[S]. Beijing: Standards Press of China, 2015: 1−4.

    [36]

    TONG L, TANG H Q, CHEN J Y, et al. Origin of static magnetic field induced quality improvement in sea bass (Lateolabrax japonicus) during cold storage:Microbial growth inhibition and protein structure stabilization[J]. Frontiers in Nutrition,2022,9:1066964. doi: 10.3389/fnut.2022.1066964

    [37] 蓝蔚青, 张炳杰, 周大鹏, 等. 超声联合微酸性电解水处理对真空包装海鲈鱼冷藏期间品质变化的影响[J]. 食品科学,2022,43(5):62−68. [LAN W Q, ZHANG B J, ZHOU D P, et al. Effect of ultrasonic combined with slightly acidic electrolyzed water treatment on quality changes of vacuum-packaged sea bass (Lateolabrax japonicas) during refrigerated storage[J]. Food Science,2022,43(5):62−68.]

    LAN W Q, ZHANG B J, ZHOU D P, et al. Effect of ultrasonic combined with slightly acidic electrolyzed water treatment on quality changes of vacuum-packaged sea bass (Lateolabrax japonicas) during refrigerated storage[J]. Food Science, 2022, 43(5): 62−68.

    [38]

    HERNANDEZ M D, LOPEZ M B, ALVAREZ A, et al. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage[J]. Food Chemistry,2009,114:237−45. doi: 10.1016/j.foodchem.2008.09.045

    [39]

    CHEN L H, JIAO D X, LIU H M, et al. Effects of water distribution and protein degradation on the texture of high pressure-treated shrimp (Penaeus monodon) during chilled storage[J]. Food Control,2022,132:108555. doi: 10.1016/j.foodcont.2021.108555

    [40]

    IVANE N M A, ELYSÉ F K R, HARUNA S A, et al. The anti-oxidative potential of ginger extract and its constituent on meat protein isolate under induced fenton oxidation[J]. Journal of Proteomics,2022,269:104723. doi: 10.1016/j.jprot.2022.104723

    [41]

    MA T T, WANG Q, WEI P Y, et al. EGCG-gelatin biofilm improved the protein degradation, flavor and micromolecule metabolites of tilapia fillets during chilled storage[J]. Food Chemistry,2022,375:131662. doi: 10.1016/j.foodchem.2021.131662

    [42] 罗翌元, 陈梁, 齐贺, 等. 不同添加物结合真空渗透处理对冻藏虾仁肌原纤维蛋白稳定性的影响[J]. 食品科学,2024,45(4):35−41. [LUO Y Y, CHEN L, QI H, et al. Effects of different additives combined with vacuum permeation treatment on the stability of myofibrillar proteins of peeled shrimp during frozen storage[J]. Food Science,2024,45(4):35−41.]

    LUO Y Y, CHEN L, QI H, et al. Effects of different additives combined with vacuum permeation treatment on the stability of myofibrillar proteins of peeled shrimp during frozen storage[J]. Food Science, 2024, 45(4): 35−41.

    [43]

    MEHTA K N, CHOUKSEY K M, BALANGE K A, et al. Physicochemical and gel properties of myofibrillar protein from sin croaker (Johnius dussumieri) fish during ice storage[J]. Journal of Aquatic Food Product Technology,2016,26(1):71−85.

    [44]

    ZHANG L T, LI Q, BAO Y L, et al. Recent advances on characterization of protein oxidation in aquatic products:A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2022,64(6):1572−1591.

    [45]

    XU Y, QI J, YU M M, et al. Insight into the mechanism of water-insoluble dietary fiber from star anise (Illicium verum Hook. f.) on water-holding capacity of myofibrillar protein gels[J]. Food Chemistry,2023,423:136348. doi: 10.1016/j.foodchem.2023.136348

    [46]

    CHENG J R, LIN Y S, TANG D B, et al. Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals[J]. LWT,2022,156:113073. doi: 10.1016/j.lwt.2022.113073

    [47]

    CHEN J S, YING X G, DENG S G, et al. Trehalose and alginate oligosaccharides enhance the stability of myofibrillar proteins in shrimp (Litopenaeus vannamei) muscle during frozen storage[J]. Journal of Food Processing and Preservation,2022,46(4):e16469.

    [48]

    LI N, ZHANG K X, DONG X H, et al. Modification of the structure and function of myofibrillar protein by structurally relevant natural phenolic compounds[J]. Food Bioscience,2023,53:102676. doi: 10.1016/j.fbio.2023.102676

    [49] 李红月, 王金厢, 李学鹏, 等. 竹荚鱼冻藏过程中肌肉品质与蛋白质理化性质的变化及其相关性分析[J]. 食品工业科技,2022,43(12):325−337. [LI H Y, WANG J X, LI X P, et al. Changes of trachurus japonicus muscle quality and protein physicochemical properties during frozen storage and correlation analysis[J]. Science and Technology of Food Industry,2022,43(12):325−337.]

    LI H Y, WANG J X, LI X P, et al. Changes of trachurus japonicus muscle quality and protein physicochemical properties during frozen storage and correlation analysis[J]. Science and Technology of Food Industry, 2022, 43(12): 325−337.

  • 期刊类型引用(2)

    1. 李亚俐,王雪莉,石柳,吴文锦,陈胜,陈朗,郭晓嘉,熊光权,汪兰,孙智达. 壳聚糖-绿原酸复合保鲜剂对冷藏鮰鱼片食用品质的影响. 肉类研究. 2025(01): 42-50 . 百度学术
    2. 李瑞琳,陆健航,陈凤美,刘宇,张宾,姜维. 肉桂提取物浸渍处理对冷藏预制小黄鱼品质的影响. 食品工业科技. 2024(23): 349-357 . 本站查看

    其他类型引用(1)

  • 其他相关附件

图(12)  /  表(7)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  16
  • PDF下载量:  22
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-11-25
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回
x 关闭 永久关闭