• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

真空微波干燥对草莓脯品质的影响

何茸茸, 牛丽影, 李大婧, 张钟元, 唐冬妹, 刘春菊, 肖亚冬, 聂梅梅, 肖丽霞

何茸茸,牛丽影,李大婧,等. 真空微波干燥对草莓脯品质的影响[J]. 食品工业科技,2024,45(16):64−72. doi: 10.13386/j.issn1002-0306.2023090087.
引用本文: 何茸茸,牛丽影,李大婧,等. 真空微波干燥对草莓脯品质的影响[J]. 食品工业科技,2024,45(16):64−72. doi: 10.13386/j.issn1002-0306.2023090087.
HE Rongrong, NIU Liying, LI Dajing, et al. Effect of Vacuum Microwave Drying on Quality of Candied Strawberry[J]. Science and Technology of Food Industry, 2024, 45(16): 64−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090087.
Citation: HE Rongrong, NIU Liying, LI Dajing, et al. Effect of Vacuum Microwave Drying on Quality of Candied Strawberry[J]. Science and Technology of Food Industry, 2024, 45(16): 64−72. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090087.

真空微波干燥对草莓脯品质的影响

基金项目: 江苏省重点研发项目(BE2021316);芜湖市科技计划项目(2021cg05)。
详细信息
    作者简介:

    何茸茸(1999−),女,硕士研究生,研究方向:食品质量与安全控制,E-mail:18893248689@163.com

    通讯作者:

    肖丽霞(1966−),女,博士,教授,研究方向:农产品加工与贮藏,E-mail:Lxxiao@yzu.edu.cn

  • 中图分类号: TS255.36

Effect of Vacuum Microwave Drying on Quality of Candied Strawberry

  • 摘要: 为了研究真空环境下不同微波干燥条件对草莓脯质地和营养品质的影响,本文以热风干燥为对照,对3种真空微波处理条件(2.5 w/g-1.5 h、3.5 w/g-1 h、4.5 w/g-0.5 h)获得的草莓脯的水分迁移特性、质构特性、微观结构、色泽及花色苷和酚类物质进行了测定。结果显示,真空微波干燥将草莓脯干燥至含水量20%±2%所需时间显著低于热风,微波功率越大,干燥时间越短。另外,干燥后获得的草莓脯中水分主要呈现结合水与不易流动水2种状态。真空微波干燥获得草莓脯的弛豫时间T2随微波功率增加而增大,说明水分自由度增加;横截面显微观察发现,真空微波干燥使细胞壁发生破裂,微波功率越大,裂隙形成部位越靠近髓芯,裂隙越大,孔隙率越小,而热风干燥的样品细胞完整性、孔隙率高于微波干燥。另外,真空微波干燥的草莓脯硬度、粘力、a*值均低于热风干燥的样品,但L*值、总糖、花青素以及酚类物质的含量均较高。综上所述,真空微波干燥具有更高的干燥效率,并能更好保留草莓脯中花色苷等营养物质。
    Abstract: To investigate the effects of different microwave drying conditions on the texture and nutritional quality of candied strawberries in a vacuum environment. This study investigated the effects of three different vacuum microwave treatment conditions (2.5 w/g-1.5 h, 3.5 w/g-1 h, 4.5 w/g-0.5 h) on moisture migration characteristics, texture, microstructure, color, anthocyanins, and phenolics of candied strawberries, which were evaluated by hot air drying. The results showed that the time required for vacuum microwave drying to dry candied strawberries to 20%±2% moisture content was significantly lower than that of hot air, and the higher the microwave power, the shorter the drying time. In addition, the water in the candied strawberries obtained after drying mainly appeared in two states, namely, bound water and water not easy to flow. The relaxation time T2 of strawberry candied strawberries obtained by vacuum microwave drying increased with the increase of microwave power, which indicated that the degree of freedom of water increased. Cross-sectional microscopic observation found that vacuum microwave drying caused cell wall rupture, and the higher the microwave power, the closer the site of fissure formation to the medullary core, and the bigger the fissure, and the smaller the porosity, whereas the cellular integrity and the porosity of the samples dried by the hot air were higher than that of microwave drying. In addition, the hardness, viscosity, and a* value of vacuum microwave-dried dried strawberry preserves were lower than those of hot air-dried samples, but the L* value, total sugar, anthocyanin, and phenolic content were higher. In conclusion, vacuum microwave drying had higher drying efficiency and could better retain the nutrients such as anthocyanins in candied strawberries.
  • 草莓含有丰富的花色苷等酚类物质,具有良好的抗氧化功能,经历糖渍及烘干脱水制成草莓脯[1],延长了保存期,并形成甜糯口感,广受消费者喜爱。但草莓脯加工中花色苷等酚类物质损失严重,甚至可达50%以上[2],并且在贮藏过程中酚类物质的降解氧化[3]会导致其发生褐变并加剧营养损失。因此,如何降低酚类物质的损失成为草莓脯加工中普遍关注的问题。

    热风干燥是草莓脯最常用的干燥方式,该方法简便操作,但是时间长,易造成果品营养风味损失、质地塌陷等问题[4]。目前,新型干燥方式在食品干燥中凸显出不同的优势并在不同领域得到应用,其中真空干燥是一种“绿色干燥”方式,其工作原理是在真空环境中加热,由于真空降低了水分汽化温度,可以在低温下实现水分快速蒸发,减少干燥时间[5],并有效避免氧化造成的褐变和营养损失[6]。据报道,相比常压热风干燥,真空干燥显著提高了玉竹黄酮含量与多糖含量的保留率,同时显著提高了DPPH、ABTS+自由基清除能力[7]。另外,微波干燥具有干燥效率高、节能的显著优势,并且可大幅提高茶叶中茶多酚的保留率以及更好的色泽[89]。微波干燥过程中存在的不均匀性[10]能够通过与真空结合缓解[11],同时真空环境中水分沸点低氧气含量低的特点[12],更能够促进微波干燥速率[1314]

    另外,最新研究显示,不同干燥方式对果蔬多酚等营养成分的保留[15]与果蔬的微观结构[15]、水分状态与迁移密切相关[16]。但是,真空微波对果脯类产品干燥会有怎样的影响尚无报道[17]。因此,本研究测定了不同功率真空微波干燥条件下草莓脯水分分布、微观结构、理化以及营养物质的含量,并与热风干燥进行了比较,以期为新型干燥方式在草莓脯加工中的应用提供借鉴。

    “蒙特瑞”速冻草莓 产自云南省曲靖县;亚硫酸钠、蔗糖、偏磷酸、2,6-二氯靛酚、福林酚、碳酸钠 国药集团化学试剂有限公司;原儿茶素、儿茶素、芦丁、槲皮素、绿原酸、表儿茶素、芝麻素 上海源叶生物科技有限公司。

    MesoMR23-060H-1低场核磁共振分析仪 苏州纽迈分析仪器股份有限公司;CT3质构仪 美国Brookfield 公司;DH6-9073BS-Ⅲ电热恒温鼓风干燥 上海新苗医疗机械制造有限公司;TG16-WS 台式高速离心机 湖南湘仪离心机仪器有限公司;TU-1810紫外可见分光光度计 北京普析通用仪器有限公司;1200高效液相色谱仪 美国Agilent公司;HH-8数显恒温水浴锅 上海江星仪器有限公司;XWJD6SW-2真空微波杀菌干燥设备 南京孝马机电设备厂。

    将速冻草莓采用0.3%的亚硫酸钠溶液解冻4 h,取出沥除水分,加入草莓质量40%的蔗糖、10%的麦芽糖、0.5%的柠檬酸进行糖渍。糖渍72 h后将草莓分成两份进行干燥。a.热风干燥:将浸渍结束的草莓脯在60 ℃下干燥至6 h时进行上下翻面后,继续烘干6 h,累计在60 ℃下干燥12 h;b.真空微波干燥:取浸渍后的草莓脯在真空度−80 kPa,三种不同功率(2.5 W/g-1.5 h、3.5 W/g-1 h、4.5 W/g-0.5 h)条件下,干至含水量为20%±2%结束。

    参考 Carlos等[18]的测定方法,并稍作修改。将草莓脯置于核磁专用60 mm的四氟乙烯管的磁场中心区域、设置核磁强度0.5 T、磁场温度32 ℃主频为21 MHZ。在FID序列下确定中心频率以及寻找90°和180°脉冲宽度,收集CPMG弛豫信号。信号采集参数在90°和180°脉冲时间分别为24.48 µs和40.00 µs。两次扫描时间的重复采用等待时间TW为4000 ms,模拟增益RGI为20,前置放大增益PRG为0,回波个数NECH为15000,累加次数Ns为16。在用Multi Exp Inv Analysis软件,对CPMG弛豫数据进行多指数拟合,迭代次数为100000,将结果反演得到T2弛豫反演图谱,作为分析样品各组分变化的依据。

    参考Chawla等[19]的测定方法。将草莓脯视为由果蒂至果顶的纵向轴为对称结构,垂直于纵轴切割草莓脯。切片厚度为0.5 cm,依次进行固定、脱水、浸蜡、包埋、切片,在光学显微镜下进行观察。

    为了进一步定量分析微观组织结构的变化,采用CaseViewer软件将染色结果图进行清晰度亮度处理,用image J软件对图像进行灰度转换、边缘检测、图像修补,最后进行孔隙率的计算。参照多孔介质的计算方法[20]

    孔隙率:在横截面上内部孔隙与总面积之比,计算公式如下:

    e=1ApA1

    式中:e为孔隙率;AP为细胞面积(μm2);A1为总面积(μm2)。

    参考胡丽丽等[21]方法稍作修改,将草莓脯视为由果蒂至果顶的纵向轴为对称结构,以其对称轴中点为中心点,测试时将果脯中心点对应质构仪探头柱形探头中心轴的顶点的中心点。采用TA39探头,纵向受力方向进行测定,参数设置均为1.0 mm/s、触发力为7 g、压缩距离为4 mm、循环次数为2次,做6次重复试验。

    采用色差仪测定L*a*b*值,每个处理进行10次重复试验。

    样液制备:参考蔡红梅等[22]的方法,取草莓果脯1.00 g置于研钵中,加入10 mL的水研磨匀浆,置于具塞试管内,涡旋10 s,超声提取30 min,转速10000 r/min,离心10 min,取上清液。

    标曲的制作:将葡萄糖于105 ℃烘箱内烘至恒重,称取100 mg葡萄糖溶解并定容至100 mL,配制为1.00 mg/mL的葡萄糖标准溶液,分别移液枪吸取0.00、1.00、2.00、4.00、8.00、10 mL葡萄糖标准溶液,定容至100 mL。精确吸取定容后的溶液2 mL,加入1 mL 5%苯酚试液,再加入5 mL浓硫酸,静置5 min,于40 ℃水浴上加热30 min,取出,冷却至室温,在490 nm测吸光度值,绘制标准曲线。回归方程为y=0.0077x+0.0542,R2=0.9996。

    样品测定:精确量取上清液2 mL,加入1 mL 5%苯酚试液,再加入5 mL浓硫酸,静置5 min,于40 ℃水浴加热30 min,取出冷却至室温,在490 nm测吸光度值。

    参考Li等[23]的测定方法,采用pH示差法。称取草莓浆1.00 g,以酸乙醇溶液[V(99%无水乙醇):V(0.2 mol/L盐酸)=3:2]为提取剂,料液比1:10(g/mL),将浆液溶解。在50 ℃水浴下提取60 min,提取液离心20 min,转速4000 r/min。取上清液。分别用pH1.0的氯化钾缓冲液和pH4.5的无水乙酸钠缓冲液稀释10倍,平衡110 min,在525和700 nm波长处测定稀释液的吸光度。按照下列公式计算花青素含量:

    (mg/100g)=A×MW×DF×1000ε×L

    式中:MW为矢车菊花素-3-葡萄糖苷的分子质量,449.2 g/mol;DF为稀释因子;ε为矢车菊花素-3-葡萄糖苷的消光系数,26900 L/mol;L为光程。

    样品处理:参考郑嘉敏等[23]的方法,取0.50 g草莓脯,加入4 mL 80%的乙醇研磨匀浆,置于具塞试管中,超声提取30 min,50 ℃水浴振荡4 h,转速1000 r/min离心15 min,取上清液加80%的乙醇定容至5 mL。待测。

    标曲的制作:分别配制原儿茶素、儿茶素、芦丁、槲皮素、绿原酸、表儿茶素、芝麻素的母液浓度,再分别稀释成浓度梯度为0.25、0.5、0.75、1.0、2.5、5 mg/mL的标准液,进行HPLC检测分析,测定各标准浓度峰值绘制标准曲线,用于样品中酚类物质的定量计算。回归方程分别为:原儿茶素y=50665x+2.3008,R2=0.9995;儿茶素y=13957x−68.368,R2=0.9971;芦丁y=30278x+14.514,R2=0.9993;槲皮素y=72791x+17.954,R2=0.9992;绿原酸y=57311x−1.0144,R2=0.9993;表儿茶素y=49907x+14.052,R2=0.9994;芝麻素y=41819x+29.398,R2=0.9994。

    色谱条件:Inertsil.ODS色谱柱(4.6 mm×250 mm,3.5 μm);二极管检测器:柱温25 ℃;检测波长280 nm;进样量:20 μL;流动相A:1%醋酸水溶液;流动相B:1%醋酸甲醇溶液;流速:0.6 mL/min,洗脱程序见表1

    表  1  流动性梯度洗脱程序(VA+VB
    Table  1.  Mobility gradient elution program (VA+VB)
    时间(min)A(%)B(%)
    09010
    107426
    256040
    453565
    55595
    589010
    659010
    下载: 导出CSV 
    | 显示表格

    采用Excel 2010进行整理数据,结果采用三次重复实验数据的平均值和标准差表示(¯x±s),采用Origin 2020绘制相关图示。采用 SPSS 26软件通过Duncan分析比较多组间显著性差异,(P<0.05)表示差异显著。采用CaseViewer 和image J软件进行图像处理。

    由核磁共振原理可知,氢质子所处的化学环境不同,弛豫时间便不同,水分自由度也会不同[24]。弛豫时间越短表明水与物质结合越紧密,自由度越低,越难排除;弛豫时间越长说明自由度越高,越容易排除。因此弛豫时间可以间接反应水分相态特征[25]。不同弛豫时间波峰的信号峰值及弛豫时间T2区间的积分面积表示各个区间氢质子的相对含量,可以实现对不同相态水分的定量测定[26]。弛豫时间的变化能反映出水分的流动性,因此可以了解草莓脯不同微波功率干燥后的水分迁移规律。

    果蔬中的水一般有三种,分别对应弛豫时间范围为:结合水(0.1~1 ms)、不易流动水(1~100 ms)、自由水(100~1000 ms),其中最短弛豫时间T21为最紧密的结合水;弛豫时间T22组分的水自由度介于结合水和自由水之间,容易发生转化,故定义为不易流动水[27];弛豫时间T23为最容易脱除的自由水。由图1可知,草莓脯T2反演图谱上存在2个波峰,分别对应弛豫时间0.1~1 ms和1~100 ms,说明草莓脯中主要为不易流动水和结合水。由于自由水弛豫时间在100~1000 ms。氢质子受束缚程度较小,水分容易脱除[28],所以草莓脯干燥后自由水最先被脱除。

    图  1  真空微波干燥与热风干燥条件下草莓脯横向弛豫时间T2反演谱
    Figure  1.  Inversion spectrum of transverse relaxation time T2 of candied strawberry under vacuum microwave drying and hot air drying conditions

    不同干燥条件下草莓脯水分分布与迁移规律不同。由表2得出,真空微波干燥后草莓脯T2弛豫时间大于热风干燥,且微波功率越大,T2值发生右移,说明经过真空微波干燥后,草莓脯内部的水分自由度更高,更容易脱除。水分的自由度升高可能与草莓果胶、糖、水三者形成凝胶结构有关[24]。因为蔗糖与细胞壁上的果胶对水具有一定的竞争性,经真空微波干燥后草莓内部的凝胶结构被破坏,不易流动水与果胶的结合程度降低,不易流动水的自由度则更高[29]。A21值呈4.5 W/g-0.5 h<热风干燥<3.5 W/g-1 h<2.5 W/g-1.5 h排布,A22值则呈2.5 W/g-1.5 h<热风干燥<4.5 W/g-0.5 h<3.5 W/g-1 h顺序,2.5 W/g-1.5 h干燥后的草莓脯中不易流动水的比例最高。另外,虽然4.5 W/g-0.5 h和热风干燥使草莓脯中A21值和A22值最为接近,但是二者的弛豫时间差别最大。综上,说明微波功率对草莓脯水分分布影响很大,不同状态的水如何相互转换仍待进一步研究。

    表  2  真空微波干燥对草莓脯水分状态的影响
    Table  2.  Effects of vacuum microwave drying on the moisture state of candied strawberry
    样品 T21(ms) T22(ms) A21 A22
    热风干燥 0.498±0.02c 7.06±0.9c 622.23±67.75b 20150.98±93.63c
    2.5 W/g-1.5 h 0.55±0.04bc 6.136±0.77d 915.63±72.28a 18649.86±95.19d
    3.5 W/g-1 h 0.76±0.1b 12.94±0.6b 643.81±45.91b 21639.24±87.59a
    4.5 W/g-0.5 h 1.06±0.02a 16.30±0.67a 610.73±23.87b 20550.23±66.38b
    注:T21为结合水弛豫时间;T22为不易流动水弛豫时间;A21为结合水弛豫峰面积;A22为不易流动水弛豫峰面积;同列字母上标不同表示显著差异(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    草莓脯在干燥过程中会发生明显的物理收缩变形,而宏观上的变化是由微观结构变化引起的[29]。经过PAS染色,可以明显看出草莓脯内部分布结构[30]。如图2所示,热风干燥后草莓脯的显微结构相对于真空微波干燥更加完整,主要呈现大小不一的孔型,髓部维管束结构清晰连贯。而真空微波干燥对草莓脯结构影响较大,并且这种影响随功率的升高而增大;2.5 W/g-1.5 h处理草莓脯髓部相对完整,仅有少量细小裂隙,但其外围细胞破裂成通道状,整个草莓脯界面呈现类菊花的花盘与花舌状分布;3.5 W/g-1 h处理则在髓部出现较大的裂隙,髓外周组织则较堆叠较为致密;3.5 W/g-1 h处理则出现贯穿髓心到表面的通道,使切面碎块化。

    图  2  真空微波干燥与热风干燥条件下草莓脯PAS染色结果
    注:A. 热风干燥;B. 2.5 W/g-1.5 h;C. 3.5 W/g-1 h;D. 4.5 W/g-0.5 h。
    Figure  2.  PAS staining results of candied strawberry under vacuum microwave drying and hot air drying conditions

    孔隙率指组织横截面上多孔介质内部孔隙占总面积之比[31],根据孔隙率变化直方图(图3)可知,经过微波干燥后后草莓脯整体孔隙率呈降低趋势,所测得孔隙率均显著小于热风干燥(P<0.05)。微波功率越大,孔隙率越小,原因可能在于真空微波会导致更多的细胞破裂融合现象,孔隙率进而减小。出现以上现象可能是因为与热风干燥相反,微波作用于物料,具有内部热效应高于外部的特点[32]。因此,真空微波干燥的样品微观结构的差异可能是因为微波导致细胞壁内外产生蒸气压差,在此压差驱动下,内部水分向外逸出时的应力破坏了细胞结构,甚至形成了管状通道,最终发生不可逆的结构变化[33],且微波功率越大,对微观结构的这种改变作用越明显。草莓脯热风干燥过程中,先由外缘失水而形成水分梯度,逐渐向内部推进[34],烘干时间长并且对细胞的作用温和,不易使细胞破裂。

    图  3  真空微波干燥与热风干燥条件下草莓脯孔隙率变化
    注:不同小写字母表示数据组间差异显著,P<0.05;图4~图8同。
    Figure  3.  Porosity changes of candied strawberry under vacuum microwave drying and hot air drying conditions

    食品的质构品质是食品基质与结构性质的感官体现[35]。质构特性直接影响食用口感,是决定产品质量的关键感官属性[36]。如图4所示,热风干燥后的草莓脯硬度最高,可能是因为热空气迅速带走了表面的水分,表面收缩而细胞密度增大,使得硬度升高。真空微波干会破坏草莓脯的细胞结构,使得细胞壁破裂融合。微波功率越大,细胞壁破裂越严重,整体结构收缩越明显[37],硬度值则更高。不同方式干燥后草莓脯的粘力值也有显著差异(P<0.05),这可能是因为热风干燥后表面水分含量较少,所以粘力降低。弹性指压缩后难以恢复到预变形程度[38],咀嚼性反映了将食物从咀嚼状态变化到可吞咽状态所需的能量[39],热风干燥后的草莓脯弹性与咀嚼性高于真空微波,可能是因为真空微波干燥后细胞结构破坏,难以保持均匀孔状结构,可能出现失形堆叠情况,进而影响了弹性和咀嚼性。

    图  4  真空微波干燥与热风干燥条件下草莓脯的质构特性的变化
    Figure  4.  Changes in texture properties of candied strawberry under vacuum microwave drying and hot air drying

    据报道,草莓中呈色物质主要为花青素[40],所以在干燥过程中草莓脯色泽的变化可能是因为花青素降解。由于花青素在热处理过程中非常容易发生降解和聚合,形成无色或棕色的聚合色素,引起色泽变化[41]。色差仪测定的L*a*b*值,其中L*代表亮度, L*值越大,表示颜色越明亮,L*值越小表示颜色越暗沉;a*值代表的范围是从红色到绿色,a*值越大,说明颜色越红,反之,说明颜色越绿;b*值代表的范围是从黄到蓝,b*值越大,说明颜色越黄,反之说明颜色越蓝[42]。从图5可以看出,利用真空微波干燥草莓脯至含水量为20%左右所需的时间明显少于热风干燥。热风干燥后的草莓脯L*低于真空微波干燥,这可能是由于干燥和氧化引起的美拉德反应导致亮度降低,而真空微波干燥过程中真空环境抑制了酶促反应和美拉德反应的发生[43],从而使得L*值较高。热风干燥后草莓脯的a*值最低,可能是因为在真空环境产生的缺氧状态能够有效减少花青素的降解[44]。微波功率越大,干燥速率越大,耗时越短,花青素的降解程度也会越小,a*值越大。不同干燥情况下的草莓脯b*值变化差异不显著(P>0.05)。

    图  5  真空微波干燥与热风干燥条件下草莓脯色泽的变化
    Figure  5.  Changes of color of candied strawberry under vacuum microwave drying and hot air drying

    不同方式干制后的草莓脯之间的总糖含量存在显著差异(P<0.05)(图6)。热风干燥后的草莓脯总糖含量为62.37 g/100 g,显著低于真空微波干燥后草莓脯的总糖含量(P<0.05),且不同微波功率下草莓脯总糖之间的保留率也具有显著性差异(P<0.05),在3.5 W/g-1 h的功率下草莓脯总糖含量最高为75.91 g/100 g。分别高出功率为2.5 W/g-1.5 h与4.5 W/g-0.5 h草莓脯的6.05%与13.91%。比热风干燥高21.71%。出现以上差异可能是因为草莓脯在富氧环境和干燥时间较长的情况下,可能会使糖的分子结构中发生羟基氧化和分子间氢键的断裂[45],从而使得总糖含量降低。

    图  6  真空微波干燥与热风干燥条件下草莓脯总糖含量的变化
    Figure  6.  Changes in total sugar content of candied strawberry under vacuum microwave drying and hot air drying

    据报道,新鲜的“蒙特瑞”草莓中总花青素含量为8~10 mg/100 g[46],花青素是果蔬中含量丰富的黄酮类物质,是植物中各个部分呈现出多种颜色的主要原因[47]。如图7所示,在真空微波干燥条件下,三种微波功率干燥后,草莓脯之间的花青素含量存在显著性差异(P<0.05),分别为2.84±0.08、4.67±0.08、5.48±0.13 mg/100 g。4.5 W/g-0.5 h微波功率下草莓脯的花青素含量最高。说明在真空条件下,微波功率为4.5 W/g-0.5 h的真空微波干燥方式下花青素含量的保留率最好。出现以上情况可能是因为花青素性质不稳定,易受温度、氧气和光的影响[48]。真空微波干燥是在低温、缺氧条件下进行。所以热风干燥显著低于真空微波干燥后花青素的含量(P<0.05)。据报道,糖类物质对食品中的天然色素具有保护作用[43],微波功率为3.5 W/g-1 h条件下的草莓脯总糖含量最高,所以花青素含量也高于其他干燥方式下的花青素含量。

    图  7  真空微波干燥与热风干燥条件下草莓脯花青素含量的变化
    Figure  7.  Changes in proanthocyanin content of s candied strawberry under vacuum microwave drying and hot air drying

    据报道,草莓中主要含有槲皮素、儿茶素、芦丁等多种酚类物质[49]。参考Kjersti等 [50]的检测方法,在草莓脯中检测出的酚类物质分别为原儿茶素、儿茶素、芦丁、槲皮素、绿原酸、表没食子酸和表儿茶素。根据检测结果可以看出儿茶素含量最高,其次为芦丁、原儿茶素、槲皮素等,与文献[50]报道略有差异,可能是因为所使用的色谱柱与检测方法不同的原因。从图8可以看出,不同的干燥方式得到的草莓脯酚类物质含量存在显著差异(P<0.05)。真空微波干燥后草莓脯中含有的原儿茶酸、儿茶素、芦丁的含量显著高于热风干燥(P<0.05)。热风干燥后的草莓脯中未检测出绿原酸、表没食子酸、表儿茶素。与热风干燥相比,真空微波干燥后得到的草莓脯酚类物质含量较高,可能是因为儿茶素和槲皮素衍生物等多酚化合物对温度和氧气敏感[5152],真空环境减少了氧气,干燥时间短、温度高,不仅减少了酚类物质的降解,还使氧化酶迅速失活,同时减少了酚类物质由于酶促反应及非酶促反应引起的降解[53]。此外还可能是因为微波干燥可促进结合酚向游离酚的转化[54],使检测出的酚类物质含量以及种类增加。但是,不同微波功率对多酚的转化效果不同,如3.5 W/g-1 h条件下,芦丁的含量最高,而4.5 W/g-0.5 h儿茶素含量最高。

    图  8  真空微波干燥与热风干燥条件下草莓脯酚类物质含量的变化
    Figure  8.  Changes in the content of prophenols in candied strawberry under vacuum microwave drying and hot air drying

    本文以热风干燥为对照,研究了真空微波干燥技术对草莓脯水分分布、微观结构、色泽与质构以及营养物质的影响。真空微波干燥的干燥效率明显提高,功率越大,干燥时间越短,且T2值逐渐增大;真空微波干燥的草莓脯硬度降低,粘力、弹性与咀嚼性增加,微波功率越大,硬度、粘力越大,弹性和咀嚼性越小。热风干燥后的草莓脯L*值,a*值更低。不同微波功率干燥后,草莓脯的色泽与质构无显著区别(P>0.05);真空微波干燥会使草莓脯的细胞壁破裂,使细胞结构发生塌陷,孔隙率降低。微波功率越大,细胞壁破裂越严重。但是内部含有的总糖、花青素以及酚类物质的保留率优于热风干燥。

  • 图  1   真空微波干燥与热风干燥条件下草莓脯横向弛豫时间T2反演谱

    Figure  1.   Inversion spectrum of transverse relaxation time T2 of candied strawberry under vacuum microwave drying and hot air drying conditions

    图  2   真空微波干燥与热风干燥条件下草莓脯PAS染色结果

    注:A. 热风干燥;B. 2.5 W/g-1.5 h;C. 3.5 W/g-1 h;D. 4.5 W/g-0.5 h。

    Figure  2.   PAS staining results of candied strawberry under vacuum microwave drying and hot air drying conditions

    图  3   真空微波干燥与热风干燥条件下草莓脯孔隙率变化

    注:不同小写字母表示数据组间差异显著,P<0.05;图4~图8同。

    Figure  3.   Porosity changes of candied strawberry under vacuum microwave drying and hot air drying conditions

    图  4   真空微波干燥与热风干燥条件下草莓脯的质构特性的变化

    Figure  4.   Changes in texture properties of candied strawberry under vacuum microwave drying and hot air drying

    图  5   真空微波干燥与热风干燥条件下草莓脯色泽的变化

    Figure  5.   Changes of color of candied strawberry under vacuum microwave drying and hot air drying

    图  6   真空微波干燥与热风干燥条件下草莓脯总糖含量的变化

    Figure  6.   Changes in total sugar content of candied strawberry under vacuum microwave drying and hot air drying

    图  7   真空微波干燥与热风干燥条件下草莓脯花青素含量的变化

    Figure  7.   Changes in proanthocyanin content of s candied strawberry under vacuum microwave drying and hot air drying

    图  8   真空微波干燥与热风干燥条件下草莓脯酚类物质含量的变化

    Figure  8.   Changes in the content of prophenols in candied strawberry under vacuum microwave drying and hot air drying

    表  1   流动性梯度洗脱程序(VA+VB

    Table  1   Mobility gradient elution program (VA+VB)

    时间(min)A(%)B(%)
    09010
    107426
    256040
    453565
    55595
    589010
    659010
    下载: 导出CSV

    表  2   真空微波干燥对草莓脯水分状态的影响

    Table  2   Effects of vacuum microwave drying on the moisture state of candied strawberry

    样品 T21(ms) T22(ms) A21 A22
    热风干燥 0.498±0.02c 7.06±0.9c 622.23±67.75b 20150.98±93.63c
    2.5 W/g-1.5 h 0.55±0.04bc 6.136±0.77d 915.63±72.28a 18649.86±95.19d
    3.5 W/g-1 h 0.76±0.1b 12.94±0.6b 643.81±45.91b 21639.24±87.59a
    4.5 W/g-0.5 h 1.06±0.02a 16.30±0.67a 610.73±23.87b 20550.23±66.38b
    注:T21为结合水弛豫时间;T22为不易流动水弛豫时间;A21为结合水弛豫峰面积;A22为不易流动水弛豫峰面积;同列字母上标不同表示显著差异(P<0.05)。
    下载: 导出CSV
  • [1]

    OZCELIK M M, OZKAN G, KARACABEY E. Evaluation of carbonic maceration effect as a pre-treatment on the drying process of strawberry[J]. Agriculture,2022,12(12):2113. doi: 10.3390/agriculture12122113

    [2] 胡丽丽. 草莓果脯加工及贮藏过程中品质变化研究[D]. 扬州:扬州大学, 2022. [HU L L. Study on quality change of preserved strawberry fruit during processing and storage[D]. Yangzhou: Yangzhou University, 2022.]

    HU L L. Study on quality change of preserved strawberry fruit during processing and storage[D]. Yangzhou: Yangzhou University, 2022.

    [3]

    HU X, WANG R R, XIE Q T, et al. Changes in water state, distribution, and physico-chemical properties of preserved kumquats during different processing methods[J]. Journal of Food Process Engineering,2021,44(7):e13716. doi: 10.1111/jfpe.13716

    [4]

    GENG Z H, ZHU L C, WANG J, et al. Drying sea buckthorn berries (Hippophae rhamnoides L.):Effects of different drying methods on drying kinetics, physicochemical properties, and microstructure[J]. Frontiers in Nutrition,2023,10:1106009. doi: 10.3389/fnut.2023.1106009

    [5] 刘玉, 王书贤, 袁一博, 等. 真空和热风干燥对猪肉干品质的影响[J]. 中国调味品,2022,47(8):66−70. [LIU Y, WANG S X, YUAN Y B, et al. Effects of vacuum and hot air drying on the quality of pork jerky[J]. China Condiment,2022,47(8):66−70.] doi: 10.3969/j.issn.1000-9973.2022.08.013

    LIU Y, WANG S X, YUAN Y B, et al. Effects of vacuum and hot air drying on the quality of pork jerky[J]. China Condiment, 2022, 47(8): 66−70. doi: 10.3969/j.issn.1000-9973.2022.08.013

    [6] 牛坡, 张艮, 王攀, 等. 橘皮的干燥特性研究与品质的研究[J]. 食品与发酵工业,2023,49(20):205−214. [NIU P, ZHANG G, WANG P, et al. Study on drying characteristics and quality of orange peel[J]. Food and Fermentation Industry,2023,49(20):205−214.]

    NIU P, ZHANG G, WANG P, et al. Study on drying characteristics and quality of orange peel[J]. Food and Fermentation Industry, 2023, 49(20): 205−214.

    [7] 彭小伟, 彭雅兰, 何旭华, 等. 不同干燥方式对玉竹干燥动力学特征及品质的影响[J]. 中南林业科技大学学报, 2022, 42(11):164−172. [PENG X W, PENG Y L, HE X H, et al. The influence of different drying methods on the drying kinetics and quality of polygonatum odoratum[J]. Journal of Central South Forestry University, 2022, 42 (11):164−172.]

    PENG X W, PENG Y L, HE X H, et al. The influence of different drying methods on the drying kinetics and quality of polygonatum odoratum[J]. Journal of Central South Forestry University, 2022, 42 (11): 164−172.

    [8] 任晨刚, 翟静静, 马森, 等. 小麦干燥技术及其对小麦品质的影响研究进展[J]. 粮食与食品工业, 2022, 29(5):46−50. [REN C G, ZHAI J J, MA S, et al. Research progress on wheat drying technology and its impact on wheat quality[J]. Grain and Food Industry, 2022, 29(5):46−50.]

    REN C G, ZHAI J J, MA S, et al. Research progress on wheat drying technology and its impact on wheat quality[J]. Grain and Food Industry, 2022, 29(5): 46−50.

    [9] 朱珺语, 杨希, 陈玉琼, 等. 不同干燥方式对黑茶品质的影响[J]. 食品安全质量检测学报, 2022, 13(14):4423−4430. [ZHU J Y, YANG X, CHEN Y Q, et al. The effect of different drying methods on the quality of black tea[J]. Journal of Food Safety and Quality Testing, 2022, 13 (14):4423−4430.]

    ZHU J Y, YANG X, CHEN Y Q, et al. The effect of different drying methods on the quality of black tea[J]. Journal of Food Safety and Quality Testing, 2022, 13 (14): 4423−4430.

    [10]

    DUMPLER J, MORARU C I. Modeling the drying kinetics of microwave vacuum drying of concentrated skim milk:Correlation of dielectric properties, drying stages, and specific energy demand at pilot scale[J]. Drying Technology,2023,41(1):17−33. doi: 10.1080/07373937.2022.2080220

    [11]

    ZHAO Y T, ZHU H Z, XU J X, et al. Microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds:Effects of ultrasonic pretreatment on color, antioxidant activity, and rehydration capacity[J]. LWT,2021,149:111603. doi: 10.1016/j.lwt.2021.111603

    [12]

    YOORA S, SONGSERMPONG S. Effects of water, guar gum, potassium chloride, and drying methods on quality and rehydration time of instant fermented rice noodles[J]. International Journal of Food Science & Technology,2022,57(9):6069.

    [13]

    HUANG L L, CHEN H Z, ZHANG M, et al. Simulation of temperature during vacuum microwave drying of mixed potato and apple slices[J]. Drying Technology,2022,40(15):3177−3185. doi: 10.1080/07373937.2021.2006214

    [14]

    GONZÁLEZ-CAVIERES L, PÉREZ-WON M, TABILO-MUNIZAGA G, et al. Advances in vacuum microwave drying (VMD) systems for food products[J]. Trends in Food Science & Technology,2021,116:626−638.

    [15]

    WANG H, LI X Y, WANG J, et al. Effects of postharvest ripening on water status and distribution, drying characteristics, volatile profiles, phytochemical contents, antioxidant capacity and microstructure of kiwifruit (Actinidia deliciosa)[J]. Food Control,2022,139:109062. doi: 10.1016/j.foodcont.2022.109062

    [16] 聂梅梅, 肖亚冬, 张钟元, 等. 真空微波干燥中微波强度对胡萝卜和南瓜中类胡萝卜素生物利用率的影响[J]. 食品工业科技, 2021, 42(13):74−79. [NIE M M, XIAO Y D, ZHANG Z Y, et al. The effect of microwave intensity on the bioavailability of carotenoids in carrots and pumpkins during vacuum microwave drying[J]. Food Industry Technology, 2021, 42 (13):74−79.]

    NIE M M, XIAO Y D, ZHANG Z Y, et al. The effect of microwave intensity on the bioavailability of carotenoids in carrots and pumpkins during vacuum microwave drying[J]. Food Industry Technology, 2021, 42 (13): 74−79.

    [17]

    ISHIBASHI R, NUMATA T, TANIGAWA H, et al. In-situ measurements of drying and shrinkage characteristics during microwave vacuum drying of radish and potato[J]. Journal of Food Engineering,2022,323:110988. doi: 10.1016/j.jfoodeng.2022.110988

    [18]

    CARLOS M, AMIN O, PATRÍCIA K D A S, et al. Molecular transport in ionic liquids under confinement studied by low field NMR[J]. Microporous and Mesoporous Materials,2018,269:171−174. doi: 10.1016/j.micromeso.2017.11.050

    [19]

    CHAWLA M, VERMA V, KAPOOR M, et al. A novel application of periodic acid-Schiff (PAS) staining and fluorescence imaging for analyzing tapetum and microspore development[J]. Histochemistry and Cell Biology,2017,147(1):103−110. doi: 10.1007/s00418-016-1481-0

    [20] 杨佳琪. 果蔬干燥过程微观组织结构变化的实验研究[D]. 西安:陕西科技大学, 2020. [YANG J Q. Experimental study on the changes in microstructure during the drying process of fruits and vegetables[D]. Xi'an:Shaanxi University of Science and Technology, 2020.]

    YANG J Q. Experimental study on the changes in microstructure during the drying process of fruits and vegetables[D]. Xi'an: Shaanxi University of Science and Technology, 2020.

    [21] 胡丽丽, 牛丽影, 李大婧, 等. 质构仪探头选择及样品处理对草莓脯TPA测定结果的影响[J]. 食品研究与开发, 2022, 43(5):170−176. [HU L L, NIU L Y, LI D J, et al. The influence of probe selection and sample processing of texture analyzer on the TPA determination results of strawberry preserves[J]. Food Research and Development, 2022, 43 (5):170−176.]

    HU L L, NIU L Y, LI D J, et al. The influence of probe selection and sample processing of texture analyzer on the TPA determination results of strawberry preserves[J]. Food Research and Development, 2022, 43 (5): 170−176.

    [22] 蔡红梅, 田子玉. 苯酚-硫酸法测定草莓中总糖含量[J]. 吉林农业, 2019(4):46. [CAI H M, TIAN Z Y. Determination of total sugar content in strawberries using phenol sulfuric acid method[J]. Jilin Agriculture, 2019 (4):46.]

    CAI H M, TIAN Z Y. Determination of total sugar content in strawberries using phenol sulfuric acid method[J]. Jilin Agriculture, 2019 (4): 46.

    [23]

    LI J F, LI Z P, MA Q S, et al. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment[J]. Innovative Food Science and Emerging Technologies,2023,84:103294. doi: 10.1016/j.ifset.2023.103294

    [24]

    JIA C, WANG L, YIN S W, et al. Low-field nuclear magnetic resonance for the determination of water diffusion characteristics and activation energy of wheat drying[J]. Drying Technology,2020,38(7):917−927. doi: 10.1080/07373937.2019.1599903

    [25]

    HAN Z Y, ZHANG J L, ZHENG J Y, et al. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy[J]. Food Chemistry,2019,280:263−269. doi: 10.1016/j.foodchem.2018.12.071

    [26]

    SIMCIC A J, ABRAMI M, ERAK I, et al. Use of low-field NMR and rheology to evaluate the microstructure and stability of a poly(D,L-lactide-co-glycolide)-based W/O emulsion to be processed by spray drying[J]. International Journal of Pharmaceutics, 2023, 631.

    [27]

    CAO X H, ZHANG M, MUJUMDAR A S, et al. Measurement of water mobility and distribution in vacuum microwave-dried barley grass using low-field-NMR[J]. Drying Technology,2018,36(15):1892−1899. doi: 10.1080/07373937.2018.1449753

    [28] 赵红伟, 曹彬彬, 张谐天, 等. 不同渗透方式对芒果脱水效率和品质的影响[J]. 食品工业科技, 2022, 43(15):98-105. [ZHAO H W, CAO B B, ZHANG X T, et al. The effect of different infiltration methods on the dehydration efficiency and quality of mangoes [J] Food Industry Technology, 2022, 43 (15):98-105.]

    ZHAO H W, CAO B B, ZHANG X T, et al. The effect of different infiltration methods on the dehydration efficiency and quality of mangoes [J] Food Industry Technology, 2022, 43 (15): 98-105.

    [29]

    NOWAK D, JAKUBCZYK E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials[J]. Foods,2020,9(10):1488. doi: 10.3390/foods9101488

    [30]

    FISHMAN M L, CHAU H K, KOLPAK F, et al. Solvent effects on the molecular properties of pectins[J]. Journal of Agricultural and Food Chemistry,2001,49(9):4494−4501. doi: 10.1021/jf001317l

    [31] 洪晨. 气流膨化干燥苹果切片的微观组织结构特性试验研究[D]. 西安:陕西科技大学, 2022. [HONG C. Experimental study on the microstructural characteristics of airflow expanded dried apple slices[D]. Xi'an:Shaanxi University of Science and Technology, 2022.]

    HONG C. Experimental study on the microstructural characteristics of airflow expanded dried apple slices[D]. Xi'an: Shaanxi University of Science and Technology, 2022.

    [32]

    YAN L, SERGEI S, ZHENHUA D. Research of physicochemical properties and antioxidant activity of beetroots as affected by vacuum microwave drying conditions[J]. Technology audit and production reserves,2021,5(3):61.

    [33]

    DAI J W, FU Q Q, LI M, et al. Drying characteristics and quality optimization of papaya crisp slices based on microwave vacuum drying[J]. Journal of Food Processing and Preservation,2022,46(5):e16506.

    [34] 何茸茸, 牛丽影, 李大婧, 等. 草莓脯恒温与分阶烘干过程中水分迁移特性与品质比较[J]. 食品工业科技,2023,44(16):51−58. [HE R R, NIU L Y, LI D J, et al. Comparison of water migration characteristics and quality of strawberry preserves during constant temperature and step drying processes[J]. Food Industry Technology,2023,44(16):51−58.]

    HE R R, NIU L Y, LI D J, et al. Comparison of water migration characteristics and quality of strawberry preserves during constant temperature and step drying processes[J]. Food Industry Technology, 2023, 44(16): 51−58.

    [35]

    MISHRA G, SAHNI P, PANDISELVAM R, et al. Emerging non-destructive techniques to quantify the textural properties of food:A state-of-art review[J]. Journal of Texture Studies, 2023.

    [36]

    ACAR O, KOKSEL H. A study on the estimation of dough sheeting behaviour and textural properties of baklava from commercial flour properties[J]. Journal of Cereal Science,2023,110:103647. doi: 10.1016/j.jcs.2023.103647

    [37]

    ZANG Z P, HUANG X P, HE C C, et al. Improving drying characteristics and physicochemical quality of angelica sinensis by novel tray rotation microwave vacuum drying[J]. Foods,2023,12(6):1202. doi: 10.3390/foods12061202

    [38]

    ALICE V, CARLA S, ANA S A, et al. Texture quality of candied fruits as influenced by osmotic dehydration agents[J]. Journal of Texture Studies,2016,47(3):239−252. doi: 10.1111/jtxs.12177

    [39]

    PATRÍCIA A P P, VANESSA R D S, TAÍSA R T, et al. Rheological behavior of functional sugar-free guava preserves:Effect of the addition of salts[J]. Food Hydrocolloids,2013,31(2):404−412. doi: 10.1016/j.foodhyd.2012.11.014

    [40]

    CHERYL C, THANANUNT R, WILLIAM M, et al. Stability improvement of natural food colors:Impact of amino acid and peptide addition on anthocyanin stability in model beverages[J]. Food Chemistry,2017,218:277−284. doi: 10.1016/j.foodchem.2016.09.087

    [41]

    CHUA L Y W C. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs:A review[J]. Food and bioprocess technology,2019,12(3):450−476. doi: 10.1007/s11947-018-2227-x

    [42]

    TALCOTT S T. Purple sweet potato as a natural food color with bioactive properties[J]. Abstracts of Papers of The American Chemical Society, 2013, 246.

    [43]

    WRAY D, RAMASWAMY H S. Microwave-osmotic/microwave-vacuum drying of whole cranberries:Comparison with other methods[J]. Journal of Food Science,2015,80(10/12):E2792−E2802.

    [44]

    MARZUKI S U, PRANOTO Y, KHUMSAP T, et al. Effect of blanching pretreatment and microwave-vacuum drying on drying kinetics and physicochemical properties of purple-fleshed sweet potato[J]. Journal of Food Science and Technology,2021,58(8):2884−2895. doi: 10.1007/s13197-020-04789-5

    [45]

    HSABC D, ZC A, HZ A, et al. Physicochemical characterization and in vitro biological activities of polysaccharides from alfalfa (Medicago sativa L.) as affected by different drying methods - ScienceDirect[J]. Process Biochemistry,2021,103:39−49. doi: 10.1016/j.procbio.2020.12.011

    [46] 贾冬梅. 草莓加工过程中的变色机理及调控技术研究[D]. 天津:天津科技大学, 2021. [JIA D M. Research on the mechanism and control techniques of color change in strawberry processing[D]. Tianjin:Tianjin University of Science and Technology, 2021.]

    JIA D M. Research on the mechanism and control techniques of color change in strawberry processing[D]. Tianjin: Tianjin University of Science and Technology, 2021.

    [47]

    ORHAN D B, TÜRKYILMAZ M, ÖZKAN M. Clarification of pomegranate and strawberry juices:Effects of various clarification agents on turbidity, anthocyanins, colour, phenolics and antioxidant activity[J]. Food Chemistry,2023,413:135672. doi: 10.1016/j.foodchem.2023.135672

    [48]

    LU Y Y, KONG X F, ZHANG J H, et al. Composition changes in lycium ruthenicum fruit dried by different methods[J]. Front Nutr,2021,8:737521. doi: 10.3389/fnut.2021.737521

    [49]

    MÄÄTTÄ-RIIHINEN K R, KAMAL-ELDIN A, TÖRRÖNEN A R. Identification and quantification of phenolic compounds in berries of Fragaria and rubus species (family Rosaceae)[J]. Journal of agricultural and food chemistry,2004,52(20):6178−6187. doi: 10.1021/jf049450r

    [50]

    KJERSTI A, DAG E A, GRETE S. Characterization of phenolic compounds in strawberry (Fragaria×ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity[J]. J Agric Food Chem,2007,55(11):4395−4406. doi: 10.1021/jf0702592

    [51]

    XU Y Y, XIAO Y D, LAGNIKA C, et al. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods[J]. Food Chemistry,2020,309:124931−124935.

    [52]

    JIANG N, LIU C Q, LI D J, et al. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks:Antioxidant properties, sensory quality, and energy consumption[J]. LWT-Food Science & Technology,2017,82:216−226.

    [53]

    SAMOTICHA J, WOJDYLO A, LECH K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries[J]. LWT-Food Science & Technology,2016,66:484−489.

    [54]

    AN N N, SUN W H, LI B Z, et al. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame[J]. Food Chemistry,2022,373:131411−131412.

  • 期刊类型引用(1)

    1. 宋岩,王志伟,景秋菊,解双瑜,苏云珊,杨瑞华. 草莓的采收、贮藏与加工技术研究进展. 北方园艺. 2025(05): 115-122 . 百度学术

    其他类型引用(4)

  • 其他相关附件

图(8)  /  表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-10-10
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回
x 关闭 永久关闭