• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

米汤炮制天麻工艺的优化及抗炎作用

董欣, 隋欣彤, 胡力铭, 王仁广, 李占国, 王景龙, 王淑敏, 梁磊

董欣,隋欣彤,胡力铭,等. 米汤炮制天麻工艺的优化及抗炎作用[J]. 食品工业科技,2024,45(16):358−367. doi: 10.13386/j.issn1002-0306.2023090066.
引用本文: 董欣,隋欣彤,胡力铭,等. 米汤炮制天麻工艺的优化及抗炎作用[J]. 食品工业科技,2024,45(16):358−367. doi: 10.13386/j.issn1002-0306.2023090066.
DONG Xin, SUI Xintong, HU Liming, et al. Optimization of the Processing with Decoction of Millet Technology of Gastrodia elata and Its Anti-inflammatory Efficacy[J]. Science and Technology of Food Industry, 2024, 45(16): 358−367. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090066.
Citation: DONG Xin, SUI Xintong, HU Liming, et al. Optimization of the Processing with Decoction of Millet Technology of Gastrodia elata and Its Anti-inflammatory Efficacy[J]. Science and Technology of Food Industry, 2024, 45(16): 358−367. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090066.

米汤炮制天麻工艺的优化及抗炎作用

基金项目: 吉林省科技发展计划项目(20210204198YY)。
详细信息
    作者简介:

    董欣(1985−),女,博士,研究方向:中药炮制关键技术及科学内涵,E-mail:dongxin85@163.com

    通讯作者:

    王淑敏(1965−),女,博士,教授,研究方向:中药炮制、中药分析、药用微生物物质基础与药效学,E-mail:wangsm@ccucm.edu.cn

  • 中图分类号: TS201.4

Optimization of the Processing with Decoction of Millet Technology of Gastrodia elata and Its Anti-inflammatory Efficacy

  • 摘要: 优选米汤制天麻的炮制工艺,并考察其对脂多糖(Lipopolysaccharide,LPS)诱导的小胶质细胞(BV-2)炎症反应的作用。采用高效液相色谱法检测天麻提取物中天麻素、对羟基苯甲醇、巴利森苷E、巴利森苷B、巴利森苷C、巴利森苷A的含量,以六种成分含量为评价指标,以米汤与水体积比、煮制时间、干燥温度为单因素变量,在单因素的基础上,通过三个指标综合考虑,设计正交试验,优化米汤制天麻的制备工艺,并比较6种成分在不同炮制品中的含量。脂多糖诱导的神经炎症细胞模型,CCK-8法测定天麻炮制品提取物对BV2细胞存活率的影响;ELISA法检测细胞培养上清液中TNF-α、IL-6、IL-1β的释放水平;Western blot法检测TLR4、MYD88、P65、INOS、COX-2、IL-1β蛋白的表达变化。结果表明,煮制时间和米汤与水体积比对试验结果有显著(P<0.05)影响,米汤制天麻的炮制工艺:米汤与水体积比为1:3,煮制25 min,75 ℃烘干。米汤制品中6种成分含量综合评分高于蒸制制品。天麻提取物对LPS诱导BV2细胞损伤具有不同程度的保护作用。与正常对照组比较,LPS组TNF-α、IL-1β、IL-6的分泌显著上升(P <0.001),与LPS组,两种炮制品均可抑制TNF-αP<0.05)、IL-1βP<0.05,P<0.001)、IL-6(P<0.05,P<0.001)的释放。Western blot结果显示,与LPS组比较,两种炮制品可能显著抑制LPS诱导的TLR4/MYD88/NF-κB信号通路的激活,减少TLR4(P<0.01)、MYD88(P<0.01,P<0.05)、P65(P<0.01)、INOS(P<0.05)、COX-2(P<0.05,P<0.001)、IL-1βP<0.001)蛋白的表达。优选的米汤制天麻工艺操作简便,稳定可行;天麻炮制品可能通过抑制TLR4/MYD88/NF-κB信号通路,而降低炎症因子的表达。
    Abstract: To optimize the processing technology of Gastrodia elata by water in which millet had been cooked and investigate the effects of LPS-induced microglia (BV2) inflammatory responses. Determination of gastrodin, p-hydroxybenzyl alcohol, parishin A, parishin B, parishin C, parishin E in the extract of Gastrodia elata by high-performance liquid chromatography (HPLC), and the content of six components were used as evaluation index, the volume ratio of water in which millet had been cooked to water, cooking time and drying temperature were selected as single factor variables. The designation of orthogonal test was based on single factor on three indicators, then optimization of the preparation technology. Comparison of the content of six components in different processed product. The neuroinflammatory cell model was induced by LPS and the cell viability was evaluated after treatment with the extract of processed products by a Cell Counting kit 8 (CCK-8) assay. The levels of TNF-α, IL-6, IL-1β in the cell culture medium were measured with ELISA kits. The protein expressions of TLR4, MYD88, P65, INOS, COX-2, IL-1β in LPS-induced BV2 cells were detected by Western blot. The results showed that the cooking time and the volume ratio of water in which millet had been cooked to water had a significant effect on the test results. The water in which millet had been cooked of Gastrodia elata processing technology: The ratio of the volume water in which millet had been cooked to water was 1:3, the boiling time was 25 min and the temperature of drying was 75 ℃. The comprehensive score of the six components in processing with water in which millet had been cooked products was higher than that of steamed products. The extract of Gastrodia elata had exhibited varying degrees of protective activity on LPS-induced BV2 cells. The results showed that the secretion of TNF-α, IL-6, IL-1β was significantly increased in BV2 microglial cells induced by LPS compared with the normal control group (P<0.001). Compared with the LPS group, the two extract of Gastrodia elata significantly decreased the expression level of TNF-α (P<0.05), IL-6 (P<0.05, P<0.001), IL-1β (P<0.05, P<0.001) in LPS-induced BV2 microglial cells. The result of Western blot showed that PZH significantly inhibited the LPS-induced TLR4/MYD88/NF-κB signaling pathway activation, and decreased the protein expressions of TLR4 (P<0.01), MYD88 (P<0.01, P<0.05), P65 (P<0.01), INOS (P<0.05), COX-2 (P<0.05, P<0.001), IL-1β (P<0.001). The optimized processing technique is simple, stable and feasible. The mechanism of processed drugs of Gastrodia elata may reduce inflammatory factor expression by inhibiting the TLR4/MYD88/NF-κB signaling pathway.
  • 天麻为兰科植物天麻(Gastrodia elata BI.)的干燥块茎,为我国临床常用中药材[1],自2019年起天麻成为“药食同源”品种,具有药用、保健和食用三重价值[2]。天麻含有较多成分,多采用加热的方法来保护苷类的含量,如煮制、蒸制、酒制、姜制、蜜制等[3],不同方法炮制后各种化学成分含量也会有变化[45]。天麻提取物或活性成分具抗炎、抗氧化[67]、抗癫痫、改善调整记忆[89]和神经保护等作用[1011]

    神经炎症的发生是导致神经退行性病变进展的主要机制之一,如帕金森、阿尔茨海默病等。神经炎症的发生与小胶质活化密切关联,进而增加促炎因子的释放,导致神经元细胞阶段性死亡[1213]。天麻中主要活性成分天麻素可抑制Toll样受体-4(Toll-like receptor4,TLR-4)的表达,降低了脓毒症急性肺损伤小鼠模型全身和肺脏中的炎症因子,并能够减轻肺脏的损伤[14],可改善神经炎症诱导的大鼠认知功能障碍[15],也可通过调节肠道微生物群组成和减轻神经元兴奋来改善AD小鼠模型的记忆[16],改善小鼠的抑郁和焦虑样行为[1719],也可减轻LPS诱导的小鼠神经炎症和抑郁-焦虑样行为[20],还可以改善衰老的小胶质细胞,增加细胞活力以减少炎症因子的释放[21],抑制NF-κB信号通路的激活[22],调节TLR4/TRAF6/NF-kappaB通路,减少小胶质细胞活化[23],发挥抗神经炎症作用;从中药天麻中分离的联苯化合物20C通过MAPKs和TLR4/AKT/mTOR信号通路调节LPS激活的小胶质细胞的自噬,可显著抑制TLR4的表达水平[24]。天麻炮制品提取物是否能抑制BV2小胶质细胞激活后的神经炎症反应以及潜在的分子作用机制还需要进一步研究。

    米汤制天麻为吉林省道地药材长白山乌杆天麻的独特炮制方法,已成为吉林省天麻炮制特色,如何使特色工艺方法规范化,可控化,充分发挥其食药用价值,尚有待解决。因此,本研究采用正交试验法,优化米汤制天麻的制备工艺,结合高效液相色谱法检测其提取物中天麻素、对羟基苯甲醇、巴利森苷A、巴利森苷B、巴利森苷C、巴利森苷E的含量,并与药典中收录的炮制方法蒸制天麻进行含量比较。以脂多糖诱导小胶质细胞(BV2)建立神经炎症细胞模型,考察米汤制天麻、蒸制天麻提取物是否抑制神经炎症细胞的炎性反应,并进一步探讨其作用机制,以期为天麻的炮制加工生产提供基础理论依据。

    天麻药材 购自吉林省白山市,经王淑敏教授鉴定为兰科植物天麻(Gastrodia elata Bl.)的干燥块茎(批号20220926);小鼠小胶质细胞(BV2) 购自中国科学院上海细胞研究所;对羟基苯甲醇 中国食品药品检定研究院;天麻素、巴利森苷A、巴利森苷B、巴利森苷C、巴利森苷E 上海源叶生物科技有限公司;脂多糖 Sigma公司;DMEM/F12 Grand Island Biological公司;胎牛血清 Viva Cell公司;TLR4、β-Actin、MYD88、COX-2、NF-κB p65、m-IgGκBP-HRP Santa-Cruz公司;INOS Abcam公司;封闭液 碧云天公司;TNF-α、IL-6、IL-1β 南京建成生物工程研究所;乙腈、甲醇 美国Fisher公司;乙醇 北京化工厂有限责任公司;水为超纯水。

    LC-20AT高效液相色谱仪DAD检测器 岛津(中国)有限公司;XSelect HSS T3色谱柱(4.6 mm×250 mm,5 µm) 美国Waters公司;电子分析天平(十万分之一) 瑞士Mettler Toledo公司;ChemiScope 5300化学发光成像系统 上海勤翔科学仪器;3111细胞培养箱、1300生物安全柜、X1离心机、1510酶标仪 美国Thermo Fisher Scientific公司。

    根据文献[25]报道及药农经验,采用小米与水的质量比为1:3,煮制,水沸计时3 min(米无白心),关火,纱布过滤,米汤备用。

    取同一批次大小相近的新鲜天麻清洗干净(30±5) g,备用。使用米汤水溶液煮制鲜天麻干燥后备用。

    取同一批次大小相近的新鲜天麻清洗干净(30±5) g,蒸软(30 min),切薄片,干燥[1]

    取炮制品粉末(过40目筛),精密称取2.0 g,参照《中国药典》2020版天麻项下供试品溶液的制备方法制备[1]

    精密称取巴利森苷E、天麻素、对羟基苯甲醇、巴利森苷C、巴利森苷B、巴利森苷A对照品适量,3%乙腈水溶液溶解,并制成质量浓度依次为3.2100、3.2301、3.2422、3.2802、3.2908、3.3240 mg/mL的贮备液。取适量,稀释后至每1 mL中分别含0.8025、0.1615、0.1621、0.1640、0.1645、0.1662 mg/mL的溶液,即得。

    采用Waters XSelect HSS T3色谱柱(4.6 mm×250 mm,5 µm);以乙腈(A)/0.1%磷酸溶液(B)为流动相,梯度洗脱,具体程序详见表1,检测波长220 nm,流速1 mL·min−1,柱温30 ℃,进样体积10 μL。

    表  1  梯度洗脱程序
    Table  1.  Gradient elution programs
    时间(min)流动相A(%)流动相B(%)
    0.01~51~199~99
    5~81~599~95
    8~135~595~95
    13~285~1295~88
    28~3012~1288~88
    30~3512~17.588~82.5
    35~5017.5~17.582.5~82.5
    下载: 导出CSV 
    | 显示表格

    取大小相近的新鲜天麻清洗干净(30±5) g,米汤与水混合液煮制,沸腾后计时20 min,干燥温度设定为70 ℃,设定米汤与水体积比为1:1、1:3、1:6、1:9、1:12。以6种成分含量综合评分高低来确定米汤与水体积比。

    取大小相近的新鲜天麻清洗干净(30±5) g,米汤与水体积为1:3,混合后煮制天麻,沸腾后计时,设定煮制时间为10、15、20、25、30 min,干燥温度设定为70 ℃。以6种成分含量综合评分高低来确定煮制时间。

    取大小相近的新鲜天麻清洗干净(30±5) g,米汤与水体积为1:3,混合后煮制天麻,沸腾后计时,煮制时间为20 min,设定干燥温度为60、65、70、75、80 ℃。以6种成分含量综合评分高低来确定干燥温度。

    根据单因素结果,以米汤与水体积比(A)、煮制时间(B)、干燥温度(C)为考察因素,以天麻素等六种成分含量的综合评分为评价指标,将指标性成分天麻素、对羟基苯甲醇、巴利森苷E、巴利森苷B、巴利森苷C、巴利森苷A的含量作为权重指标赋值,天麻素和对羟基苯甲醇含量分别赋值0.1,巴利森苷A含量赋值0.35,巴利森苷E、巴利森苷B、巴利森苷C的含量分别赋值0.15。因此,综合评分=(天麻素含量/天麻素含量最大值×0.1+对羟基苯甲醇含量/对羟基苯甲醇含量最大值×0.1+巴利森苷E含量/巴利森苷E含量最大值×0.15+巴利森苷B含量/巴利森苷B含量最大值×0.15+巴利森苷C含量/巴利森苷C含量最大值×0.15+巴利森苷A含量/巴利森苷A含量最大值×0.35)×100%。 采用L9(34)正交试验法[26]进行工艺优化,正交试验设计具体见表2

    表  2  正交试验的因素及水平
    Table  2.  Factors and level selection of orthogonal test
    因素 水平
    1 2 3
    A:米汤与水体积比例 1:1 1:3 1:6
    B:煮制时间(min) 15 20 25
    C:干燥温度(℃) 65 70 75
    下载: 导出CSV 
    | 显示表格

    取3份天麻鲜品,应用1.2.6项下最佳工艺制备米汤制炮制品,按照“供试品溶液制备方法”制备样品,并按“色谱条件”进样检测,与蒸制天麻中各成分含量进行比较。

    应用DEME/F12完全培养基(含有10% FBS)培养,5% CO2,37 ℃条件下培养。

    将BV2细胞配制成5×104 个/mL的细胞悬液,接种于96孔板中培养(100 μL/孔),贴壁后弃去培养基,并更换含有不同质量浓度的天麻提取物、LPS的培养基,作用细胞24 h,10 μL/孔CCK-8试剂,培养条件下孵育1 h,在450 nm波长下测定吸光度(OD)值。细胞活力(%)=(OD给药组/OD空白组)×100。

    细胞试验分为正常对照组(DEME/F12培养基);LPS组(含有1 μg/mL的DEME/F12培养基);天麻提取物组(含有250 μg/mL蒸制天麻制品提取物、250 μg/mL米汤制天麻品提取物的DEME/F12培养基,给药4 h后添加LPS),各组均培养24 h。

    制备细胞悬液接种于6孔板中过夜培养,1.5×105个/mL,2 mL/孔,参照1.2.8.3项下分组、培养24 h。从培养箱中取出孔板置于冰上,收集培养上清液(检测因子待用),80 μL/孔蛋白裂解液,作用细胞30 min,然后离心15 min(预先设置4 ℃,12000 r/min),取上清,检测蛋白含量,将蛋白置于沸水浴中变性处理。10% SDS-PAGE凝胶电泳后转于PVDF膜上,封闭2 h,分别使用TLR4、MYD88、P65、INOS、COX-2、IL-1ββ-Actin的抗体(1:800)于4 ℃孵育过夜,TBST清洗后加入二抗(1:2000)室温孵育,再次清洗,然后化学发光法显影。通过Image J1.8软件可以对所得的各图像灰度值进行解析,并以目的蛋白质灰度值和内参蛋白(β-Actin)灰度值的比较,作为该蛋白质的表达水平值。

    将1.2.8.4项下收集的培养上清液,按照ELISA试剂盒说明书操作,检测天麻蒸制品和米汤制品提取物对LPS诱导的BV2的TNF-α、IL-6、IL-1β释放的影响。

    采用GraphpadPrism 5.0和Excel WPS对数据进行分析处理,组间比较采用单因素方差分析(ANOVA),P<0.05为差异显著,有统计学意义。

    精密吸取“1.2.3”中对照品适量,以甲醇为溶剂,制成不同质量浓度的对照品溶液,在“1.2.4”项色谱条件进样检测,每个质量浓度进样3次,10 μL/次。以质量浓度(X,μg·mL−1)为横坐标、峰面积(Y)为纵坐标进行回归。六种成分在其各自范围内线性关系良好,色谱峰分离良好,无其他杂质干扰,见图1,具体结果见表3

    图  1  混合标准品、样品的色谱图
    注:a:混合标准品;b:样品。
    Figure  1.  Chromatograms of standard mixture and samples
    表  3  各成分线性关系
    Table  3.  Linear relationships of various constituents
    成分 回归方程 r 线性范围
    (μg·mL−1
    天麻素 Y=13722.2X+12648.0 0.9991 10.72~161.83
    对羟基苯甲醇 Y=26715.7X+26233.1 0.9992 10.79~161.75
    巴利森苷E Y=13273.2X+59802.9 0.9994 10.90~161.82
    巴利森苷B Y=14018.4X+6502.89 0.9991 10.99~162.00
    巴利森苷C Y=3671.74X+5933.08 0.9991 10.09~162.33
    巴利森苷A Y=11545.7X+9961.51 0.9993 54.53~806.91
    下载: 导出CSV 
    | 显示表格

    精密吸取“1.2.3”中对照品溶液10 μL,按“1.2.4”色谱条件连续进样6次。天麻素、对羟基苯甲醇、巴利森苷E、巴利森苷B、巴利森苷C、巴利森苷A的RSD值分别为0.29%、1.11%、0.26%、0.21%、0.26%、0.68%,结果表明仪器精密度良好。

    取一份药材粉末按“1.2.2”方法制备供试品溶液,室温条件下放置0、2、4、8、12、24 h后,分别进样10 μL测定。天麻素、对羟基苯甲醇、巴利森苷E、B、C、A的RSD值分别为0.56%、0.75%、0.47%、0.45%、0.30%、0.15%,结果表明该方法制备的供试品溶液在24 h内稳定。

    取6份同一样品,按“1.2.2”方法制备供试品溶液,按“1.2.4”色谱条件进样测定。测得天麻素、对羟基苯甲醇、巴利森苷E、B、C、A的色谱峰面积,得RSD值分别为0.68%、1.83%、0.41%、0.44%、0.84%、0.32%,结果表明该制备方法重复性良好。

    精密称取各成分含量已知的本品内容物粉末6份,精密加入对照品溶液, 按 “1.2.2”项下方法制备供试品溶液,在“1.2.4”项色谱条件下进样。天麻素、对羟基苯甲醇、巴利森苷E、巴利森苷B、巴利森苷C、巴利森苷A的平均加样回收率分别为100.30%、96.62%、96.73%、98.93%、101.59%、96.31%,RSD值分别为1.44%、1.07%、1.41%、1.04%、1.21%、1.30%,表明此方法准确可行,结果见表4

    表  4  各成分加样回收率试验结果
    Table  4.  Results of recovery tests for various constituents
    成分 样品含有量
    (mg)
    加入量
    (mg)
    测得量
    (mg)
    回收率
    (%)
    平均回收率
    (%)
    RSD
    (%)
    天麻素 2.013 2.021 4.009 98.76 100.30 1.44
    2.027 2.021 4.078 101.49    
    2.005 2.021 4.077 102.52    
    1.997 2.021 4.000 99.11    
    2.014 2.021 4.032 99.85    
    2.011 2.021 4.033 100.05    
    对羟基苯甲醇 0.7510 0.7552 1.5086 100.31 99.62 1.07
    0.7634 0.7552 1.5091 98.73    
    0.7613 0.7552 1.5101 99.15    
    0.7562 0.7552 1.5129 100.19    
    0.7648 0.7552 1.5070 98.29    
    0.7597 0.7552 1.5229 101.05    
    巴利森苷E 1.2037 1.1875 2.3294 94.80 96.73 1.41
    1.2293 1.1875 2.3757 96.54
    1.2164 1.1875 2.3831 98.25
    1.1958 1.1875 2.3622 98.22
    1.2025 1.1875 2.3394 95.74
    1.2167 1.1875 2.3663 96.80
    巴利森苷B 1.2642 1.2813 2.5426 99.78 98.93 1.04
    1.3247 1.2813 2.5760 97.66
    1.2882 1.2813 2.5652 99.67
    1.2591 1.2813 2.5397 99.95
    1.2713 1.2813 2.5242 97.78
    1.2891 1.2813 2.5543 98.74
    巴利森苷C 0.9454 0.9375 1.8833 100.04 101.59 1.21
    0.9669 0.9375 1.9237 102.06
    0.9578 0.9375 1.9248 103.15
    0.9650 0.9375 1.9091 100.71
    0.9667 0.9375 1.9123 100.86
    0.9611 0.9375 1.9239 102.70
    巴利森苷A 1.3079 1.3125 2.5650 95.78 96.31 1.30
    1.3123 1.3125 2.6004 98.14
    1.3424 1.3125 2.5865 94.79
    1.3457 1.3125 2.5987 95.46
    1.3528 1.3125 2.6314 97.42
    1.3687 1.3125 2.6323 96.27
    下载: 导出CSV 
    | 显示表格

    天麻素等6种成分含量的综合评分结果见图2a,由图2a可知,当二者体积比为1:3时,6种成分含量的综合评分最高,故米汤与水的体积比选择1:3为单因素最适条件,并选用1:1、1:3、1:6三个水平进行后续的正交试验。

    图  2  各种因素对米汤制天麻品中6种成分含量的影响
    Figure  2.  Effects of each factor on the content of 6 components in processing with water in which millet has been cooked drugs of Gastrodia elata

    天麻素等6种成分含量的综合评分结果见图2b,由图2b可知,当煮制时间为20 min时,6种成分含量的综合评分最高,故选择煮制时间20 min为单因素最适条件,并选用15、20、25 min三个水平进行后续的正交试验。

    天麻素等6种成分含量的综合评分结果见图2c,由图2c可知,当干燥温度为70 ℃时,6种成分含量的综合评分最高,故选择干燥温度70 ℃为单因素最适条件,并选用65、70、75 ℃三个水平进行后续的正交试验。

    按照L9(34)正交试验法进行实验对9份样本进行含量测定,结果见表5表6

    表  5  正交试验设计和结果
    Table  5.  Design and results of orthogonal test
    实验号 因素 天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    A B C D(空列)
    1 1 1 1 1 3.107 1.331 3.185 3.864 3.120 7.473 65.73
    2 1 2 2 2 2.566 1.343 3.247 3.917 3.176 7.490 80.69
    3 1 3 3 3 3.372 1.787 7.534 4.646 3.640 6.227 84.87
    4 2 1 2 3 2.087 1.829 4.715 3.112 2.869 6.452 75.46
    5 2 2 3 1 2.571 1.322 3.297 3.952 3.231 7.446 79.16
    6 2 3 1 2 3.611 2.372 4.745 5.193 4.605 8.060 95.15
    7 3 1 3 2 2.504 2.024 5.010 3.618 3.321 6.937 69.90
    8 3 2 1 3 2.655 0.811 4.867 4.337 2.989 7.073 66.09
    9 3 3 2 1 3.296 1.696 7.707 4.602 3.517 6.090 73.69
    k1 77.10 70.36 75.66 72.86
    k2 83.26 75.31 76.61 81.91
    k3 69.89 84.57 77.98 75.47
    R 13.36 14.21 2.32 9.053
    下载: 导出CSV 
    | 显示表格
    表  6  方差分析结果
    Table  6.  Results of variance analysis
    因素 偏差平方和 自由度 F F临界值 P
    A米汤与水比例 268.412 2 32.910 19.000 <0.05
    B煮制时间 312.018 2 38.256 19.000 <0.05
    C干燥温度 8.156 2 1.000 19.000 >0.05
    误差 8.160 2
    下载: 导出CSV 
    | 显示表格

    根据表5直观分析中极差R值比较可知,3个因素对天麻素等6个成分的含量的影响大小为煮制时间(B)>米汤与水体积比(A)>干燥温度(C),对于因素A:k2>k1>k3,对于因素B:k3>k2>k1,因素C:k3>k2>k1。从表6方差分析结果可知,米汤与水体积比、煮制时间两个因素对试验结果有显著影响,干燥温度对试验结果影响不明显。因此,米汤制天麻的最佳炮制工艺条件为A2B3C3,即取米汤与水体积比为1:3,煮制25 min,75 ℃烘干,即得。

    经最佳工艺制备的3批天麻炮制品,各成分含量结果见表7,生品和炮制品外观见图3。米汤制天麻色泽呈黄棕色,3批验证试验综合评分均值为99.227%,RSD为0.190%,验证工艺的综合评分高于正交试验中的任何工艺综合评分,表明该制备工艺可行。

    表  7  最佳工艺验证结果
    Table  7.  Verification testing results
    评价指标天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    含量3.713±0.0212.367±0.0164.651±0.0205.038±0.0634.521±0.0228.226±0.05199.227±0.155
    下载: 导出CSV 
    | 显示表格
    图  3  天麻的生品(a)、蒸制制品(b)、米汤制品(c)图
    Figure  3.  Figure of raw drugs (a) steamed drugs (b) and processing with water in which millet has been cooked drugs (c) of Gastrodia elata

    天麻蒸制炮制品中除巴利森苷E,其他5种成分含量均低于米汤制品,对蒸制制品和米汤制品中的6种成分进行综合评价,炮制品的综合评分为99.227%,而蒸制制品的综合评分为46.306%,天麻经米汤水煮制后各成分含量呈升高趋势,具体见表8,初步说明该炮制工艺下制得的炮制品在各成分含量优于药典炮制方法。

    表  8  不同炮制品的含量测定
    Table  8.  Determination of different processed products
    评价指标天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    米汤制品3.713±0.0212.367±0.0164.651±0.0205.038±0.0634.521±0.0228.226±0.05199.227±0.155
    蒸制制品1.805±0.1100.432±0.0865.535±0.0332.071±0.0651.563±0.0232.529±0.04846.306±0.45
    下载: 导出CSV 
    | 显示表格

    采用CCK-8法筛选各药物对BV2细胞的作用浓度。结果显示LPS在1~20 μg/mL的浓度下,均可显著降低细胞活力(P<0.001),因此选取1 μg/mL为LPS的后续实验浓度,诱导BV2细胞建立炎症细胞模型,结果见图4a;天麻蒸制和米汤制品提取物均在作用浓度为20~50 μg/mL的条件下影响细胞活力,并呈降低趋势,具有显著性(P<0.05),说明两种天麻炮制品提取物在质量浓度为2.5~10 μg/mL,对细胞不具有毒性,因此选取10 μg/mL用于后续实验,具体见图4b图4c

    图  4  LPS(a)、米汤制品(b)、蒸制制品(c)对BV2细胞活力的影响
    注:与空白组比较,*P<0.05;**P<0.01;***P<0.001。
    Figure  4.  Effects of LPS (a), water in which millet has been cooked processed drugs (b), and steamed processed drugs (c) on BV2 cell viability

    TLR4蛋白是脂多糖的受体,位于细胞膜上,在神经炎症中行使重要功能[27],当与脂多糖结合后,通过MYD88触发信号传导级联反应,导致NF-κB发生活化,调控其他炎症因子合成,诱导COX-2蛋白[2829]。因此,本实验中选取LPS诱导小胶质细胞,结果显示,与正常组比,LPS组的TLR4、IL-1β、COX2表达明显增加(P<0.001),MYD88、INOS表达增加(P<0.01),P65表达也增加(P<0.05);与模型组比,蒸制天麻组和米汤制天麻组均能降低TLR4(P<0.05)、MyD88(P<0.05,P<0.01)、INOS(P<0.01)、IL-1βP<0.001)、COX2(P<0.01,P<0.001)、P65(P<0.05)的表达,具有显著性;其中炎症因子IL-1β、COX2,给药组间比较具有显著性(P<0.01),表明天麻炮制品提取物对脂多糖诱导的BV2细胞的炎症损伤有抑制作用。TLR4/MyD88/NF-κB信号通路在炎症反应中发挥重要作用[3031],研究显示天麻素可改善BV2 细胞衰老染色和衰老蛋白表达[21],可通过调控NF-κB/NLRP3信号通路抑制BV2细胞的炎症损伤[32];而酚性成分组合物(含对羟基苯甲醛、对羟基苯甲醇、4-甲氧基苄醇、3,4 -二羟基苯甲醛)也可明显抑制BV2细胞炎症反应,并能促进促炎表型的M1型小胶质细胞转化为抗炎表型的M2型小胶质细胞[33]。本实验中所用的天麻炮制品提取物含有天麻素、对羟基苯甲醇等成分,且米汤制品提取物对炎症因子的抑制优于蒸制制品提提取物,具体见图5,抗炎作用机制见图6所示。

    图  5  天麻炮制品提取物对LPS诱导BV2细胞TLR4、MYD88、P65、INOS、COX2、IL-1β、蛋白表达的影响
    注:与空白组比较,**P<0.01;、***P<0.001;与模型组比较,#P<0.05,##P<0.01;###P<0.001;给药组间比较,$$P<0.01;图7同。
    Figure  5.  Effects of extract of Gastrodia elata processed drugs on LPS-induced expression of TLR4, MYD88, P65,INOS, COX2, IL-1β, proteins in BV2 cells
    图  6  天麻炮制品通过TLR4-MyD88-NF-кB通路抑制脂多糖诱导BV2细胞的神经炎症
    注:绿色箭头表示信号通路的方向,红色箭头表示天麻炮制品提取物对该通路的抑制作用。
    Figure  6.  Anti-neuroinflammatory effects of Gastrodia elata processed drugs involving TLR4-MyD88-NF-кB signaling pathways in LPS-stimulated BV2 cells

    研究表明,小胶质细胞被过度激活会合成并释放大量的NO、TNF-α、IL-6、IL-1β等炎性因子,促使神经元细胞损伤或死亡[34],可通过下调TNF-α、IL-6、IL-1β的水平来抑制神经炎症[35]。本实验中,小胶质细胞经LPS诱导后,刺激其分泌炎症因子,与空白组比较,模型组TNF-α、IL-6、IL-1β释放增多(P<0.001);与模型组比较,蒸制天麻组和米汤制天麻组的TNF-αP<0.01)、IL-6(P<0.01,P<0.001)、IL-1βP<0.01,P<0.001)释放减少,说明蒸制和米汤制制品提取物均可抑制LPS诱导的BV2细胞中TNF-α、IL-6、IL-1β的释放,结果见图7

    图  7  天麻炮制品提取物对LPS诱导BV2 细胞炎症因子的影响
    Figure  7.  Effect of extract of Gastrodia elata processed drugs on inflammatory cytokines induced by LPS in BV2 cells

    本研究在流动相使用方面,分别采用甲醇-0.05%磷酸水溶液、乙腈-0.1%磷酸水溶液、乙腈-水3个流动相进行考察,发现乙腈-0.1%磷酸水溶液作为流动相进行梯度洗脱,在检测波长为220 nm的条件下,6个成分的色谱峰分离度较好,可实现完全分离。采用L9(34)正交试验法显示使用小米汤与水比为1:3,煮制25 mim,干燥温度为75 ℃为最佳工艺,该制备工艺稳定,并且实操简便,便于推广使用。天麻生品气味特殊,有“马尿味”,不易让人接受。天麻蒸制干燥后呈灰白色,而经米汤水煮制干燥后得炮制品则呈黄棕色,色泽鲜亮通透。将米汤制品粉碎,取微粉用开水冲泡后,呈糊状,口感略微苦,回甘,易于食用,并且微粉也有神经保护作用,并且粒径越小药效越好。米汤制品与蒸制制品比较,除巴利森苷E其他5种成分含量均高2~5倍不等,综合评分也高于蒸制制品,初步说明米汤制天麻较药典中的炮制方法,不仅主要活性成分含量高,而且外观色泽佳,提高米汤制天麻的市场竞争力。本研究中,BV2细胞在预先加入天麻蒸制品和米汤制品的提取物后,可抵御LPS的诱导伤害,在蛋白水平上显著减弱了TLR4、MyD88、P65、INOS、IL-1β、COX2的表达,并抑制细胞上清液中IL-1β、TNF-α、IL-6等炎症因子的分泌。说明天麻蒸制和米汤制炮制品的提取物对LPS诱导的BV2细胞炎症有一定保护作用,其作用机制可能是通过抑制TLR4/MyD88/NF-κB信号通路的激活,减少细胞炎性介质COX-2、INOS、炎性细胞因子TNF-α、IL-6、IL-1β的释放,从而减轻LPS对细胞的损伤。

  • 图  1   混合标准品、样品的色谱图

    注:a:混合标准品;b:样品。

    Figure  1.   Chromatograms of standard mixture and samples

    图  2   各种因素对米汤制天麻品中6种成分含量的影响

    Figure  2.   Effects of each factor on the content of 6 components in processing with water in which millet has been cooked drugs of Gastrodia elata

    图  3   天麻的生品(a)、蒸制制品(b)、米汤制品(c)图

    Figure  3.   Figure of raw drugs (a) steamed drugs (b) and processing with water in which millet has been cooked drugs (c) of Gastrodia elata

    图  4   LPS(a)、米汤制品(b)、蒸制制品(c)对BV2细胞活力的影响

    注:与空白组比较,*P<0.05;**P<0.01;***P<0.001。

    Figure  4.   Effects of LPS (a), water in which millet has been cooked processed drugs (b), and steamed processed drugs (c) on BV2 cell viability

    图  5   天麻炮制品提取物对LPS诱导BV2细胞TLR4、MYD88、P65、INOS、COX2、IL-1β、蛋白表达的影响

    注:与空白组比较,**P<0.01;、***P<0.001;与模型组比较,#P<0.05,##P<0.01;###P<0.001;给药组间比较,$$P<0.01;图7同。

    Figure  5.   Effects of extract of Gastrodia elata processed drugs on LPS-induced expression of TLR4, MYD88, P65,INOS, COX2, IL-1β, proteins in BV2 cells

    图  6   天麻炮制品通过TLR4-MyD88-NF-кB通路抑制脂多糖诱导BV2细胞的神经炎症

    注:绿色箭头表示信号通路的方向,红色箭头表示天麻炮制品提取物对该通路的抑制作用。

    Figure  6.   Anti-neuroinflammatory effects of Gastrodia elata processed drugs involving TLR4-MyD88-NF-кB signaling pathways in LPS-stimulated BV2 cells

    图  7   天麻炮制品提取物对LPS诱导BV2 细胞炎症因子的影响

    Figure  7.   Effect of extract of Gastrodia elata processed drugs on inflammatory cytokines induced by LPS in BV2 cells

    表  1   梯度洗脱程序

    Table  1   Gradient elution programs

    时间(min)流动相A(%)流动相B(%)
    0.01~51~199~99
    5~81~599~95
    8~135~595~95
    13~285~1295~88
    28~3012~1288~88
    30~3512~17.588~82.5
    35~5017.5~17.582.5~82.5
    下载: 导出CSV

    表  2   正交试验的因素及水平

    Table  2   Factors and level selection of orthogonal test

    因素 水平
    1 2 3
    A:米汤与水体积比例 1:1 1:3 1:6
    B:煮制时间(min) 15 20 25
    C:干燥温度(℃) 65 70 75
    下载: 导出CSV

    表  3   各成分线性关系

    Table  3   Linear relationships of various constituents

    成分 回归方程 r 线性范围
    (μg·mL−1
    天麻素 Y=13722.2X+12648.0 0.9991 10.72~161.83
    对羟基苯甲醇 Y=26715.7X+26233.1 0.9992 10.79~161.75
    巴利森苷E Y=13273.2X+59802.9 0.9994 10.90~161.82
    巴利森苷B Y=14018.4X+6502.89 0.9991 10.99~162.00
    巴利森苷C Y=3671.74X+5933.08 0.9991 10.09~162.33
    巴利森苷A Y=11545.7X+9961.51 0.9993 54.53~806.91
    下载: 导出CSV

    表  4   各成分加样回收率试验结果

    Table  4   Results of recovery tests for various constituents

    成分 样品含有量
    (mg)
    加入量
    (mg)
    测得量
    (mg)
    回收率
    (%)
    平均回收率
    (%)
    RSD
    (%)
    天麻素 2.013 2.021 4.009 98.76 100.30 1.44
    2.027 2.021 4.078 101.49    
    2.005 2.021 4.077 102.52    
    1.997 2.021 4.000 99.11    
    2.014 2.021 4.032 99.85    
    2.011 2.021 4.033 100.05    
    对羟基苯甲醇 0.7510 0.7552 1.5086 100.31 99.62 1.07
    0.7634 0.7552 1.5091 98.73    
    0.7613 0.7552 1.5101 99.15    
    0.7562 0.7552 1.5129 100.19    
    0.7648 0.7552 1.5070 98.29    
    0.7597 0.7552 1.5229 101.05    
    巴利森苷E 1.2037 1.1875 2.3294 94.80 96.73 1.41
    1.2293 1.1875 2.3757 96.54
    1.2164 1.1875 2.3831 98.25
    1.1958 1.1875 2.3622 98.22
    1.2025 1.1875 2.3394 95.74
    1.2167 1.1875 2.3663 96.80
    巴利森苷B 1.2642 1.2813 2.5426 99.78 98.93 1.04
    1.3247 1.2813 2.5760 97.66
    1.2882 1.2813 2.5652 99.67
    1.2591 1.2813 2.5397 99.95
    1.2713 1.2813 2.5242 97.78
    1.2891 1.2813 2.5543 98.74
    巴利森苷C 0.9454 0.9375 1.8833 100.04 101.59 1.21
    0.9669 0.9375 1.9237 102.06
    0.9578 0.9375 1.9248 103.15
    0.9650 0.9375 1.9091 100.71
    0.9667 0.9375 1.9123 100.86
    0.9611 0.9375 1.9239 102.70
    巴利森苷A 1.3079 1.3125 2.5650 95.78 96.31 1.30
    1.3123 1.3125 2.6004 98.14
    1.3424 1.3125 2.5865 94.79
    1.3457 1.3125 2.5987 95.46
    1.3528 1.3125 2.6314 97.42
    1.3687 1.3125 2.6323 96.27
    下载: 导出CSV

    表  5   正交试验设计和结果

    Table  5   Design and results of orthogonal test

    实验号 因素 天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    A B C D(空列)
    1 1 1 1 1 3.107 1.331 3.185 3.864 3.120 7.473 65.73
    2 1 2 2 2 2.566 1.343 3.247 3.917 3.176 7.490 80.69
    3 1 3 3 3 3.372 1.787 7.534 4.646 3.640 6.227 84.87
    4 2 1 2 3 2.087 1.829 4.715 3.112 2.869 6.452 75.46
    5 2 2 3 1 2.571 1.322 3.297 3.952 3.231 7.446 79.16
    6 2 3 1 2 3.611 2.372 4.745 5.193 4.605 8.060 95.15
    7 3 1 3 2 2.504 2.024 5.010 3.618 3.321 6.937 69.90
    8 3 2 1 3 2.655 0.811 4.867 4.337 2.989 7.073 66.09
    9 3 3 2 1 3.296 1.696 7.707 4.602 3.517 6.090 73.69
    k1 77.10 70.36 75.66 72.86
    k2 83.26 75.31 76.61 81.91
    k3 69.89 84.57 77.98 75.47
    R 13.36 14.21 2.32 9.053
    下载: 导出CSV

    表  6   方差分析结果

    Table  6   Results of variance analysis

    因素 偏差平方和 自由度 F F临界值 P
    A米汤与水比例 268.412 2 32.910 19.000 <0.05
    B煮制时间 312.018 2 38.256 19.000 <0.05
    C干燥温度 8.156 2 1.000 19.000 >0.05
    误差 8.160 2
    下载: 导出CSV

    表  7   最佳工艺验证结果

    Table  7   Verification testing results

    评价指标天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    含量3.713±0.0212.367±0.0164.651±0.0205.038±0.0634.521±0.0228.226±0.05199.227±0.155
    下载: 导出CSV

    表  8   不同炮制品的含量测定

    Table  8   Determination of different processed products

    评价指标天麻素
    (mg·g−1
    对羟基苯甲醇
    (mg·g−1
    巴利森苷E
    (mg·g−1
    巴利森苷B
    (mg·g−1
    巴利森苷C
    (mg·g−1
    巴利森苷A
    (mg·g−1
    综合评分
    (%)
    米汤制品3.713±0.0212.367±0.0164.651±0.0205.038±0.0634.521±0.0228.226±0.05199.227±0.155
    蒸制制品1.805±0.1100.432±0.0865.535±0.0332.071±0.0651.563±0.0232.529±0.04846.306±0.45
    下载: 导出CSV
  • [1] 国家药典委员会. 中华人民共和国药典[M]. 北京:中国医药科技出版社, 2020:59−60. [State Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing:China Medical Science and Technology Press, 2020:59−60.]

    State Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Medical Science and Technology Press, 2020: 59−60.

    [2] 单锋, 周良云, 蒋长顺, 等. 天麻的食用历史及发展建议[J]. 中国食品药品监管,2021,3:110−115. [SHAN F, ZHOU L Y, JIANG C S, et al. Food history and development suggestions of Gastrodia elata[J]. China Food & Drug Administration Magazine,2021,3:110−115.]

    SHAN F, ZHOU L Y, JIANG C S, et al. Food history and development suggestions of Gastrodia elata[J]. China Food & Drug Administration Magazine, 2021, 3: 110−115.

    [3] 周娜, 王进, 王蕾, 等. 金寨天麻蒸制、干燥工艺的优化[J]. 中成药,2021,43(7):1858−1862. [ZHOU N, WANG J, WANG L, et al. Optimization of steaming and drying process of Gastrodia elata in Jinzhai[J]. Chinese Traditional Patent Medicine,2021,43(7):1858−1862.] doi: 10.3969/j.issn.1001-1528.2021.07.032

    ZHOU N, WANG J, WANG L, et al. Optimization of steaming and drying process of Gastrodia elata in Jinzhai[J]. Chinese Traditional Patent Medicine, 2021, 43(7): 1858−1862. doi: 10.3969/j.issn.1001-1528.2021.07.032

    [4] 张玮玮, 郑司浩, 王永辉, 等. 不同干燥和炮制方法对天麻品质的影响[J]. 世界科学技术-中医药现代化,2020,22(4):1278−1284. [ZHANG W W, ZHENG S H, WANG Y H, et al. Study on the quality of gastrodiae rhizoma under different drying and processing methods[J]. Modernization of Traditional Chinese Medicine and Materia Materia-World Science and Technology,2020,22(4):1278−1284.]

    ZHANG W W, ZHENG S H, WANG Y H, et al. Study on the quality of gastrodiae rhizoma under different drying and processing methods[J]. Modernization of Traditional Chinese Medicine and Materia Materia-World Science and Technology, 2020, 22(4): 1278−1284.

    [5] 左雅敏, 张煜, 王燕, 等. 不同炮制方法对天麻6个成分含量的影响与评价术[J]. 贵州科学,2018,36(4):83−88. [ZUO Y M, ZHANG Y, WANG Y, et al. Effects of different processing methods on the content of six components in Gastrodia elata[J]. Guizhou Science,2018,36(4):83−88.] doi: 10.3969/j.issn.1003-6563.2018.04.018

    ZUO Y M, ZHANG Y, WANG Y, et al. Effects of different processing methods on the content of six components in Gastrodia elata[J]. Guizhou Science, 2018, 36(4): 83−88. doi: 10.3969/j.issn.1003-6563.2018.04.018

    [6]

    PENG Z W, WANG S Q, CHEN G J, et al. Gastrodin alleviates cerebral Ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway[J]. Neurochemical Research,2015,40(4):661−673. doi: 10.1007/s11064-015-1513-5

    [7]

    TAN W J, ZHENG Q H, FENG K X, et al. Neuroprotection of Gastrodia elata polyphenols against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress[J]. Front in Pharmacoogyl,2022,13:1050775. doi: 10.3389/fphar.2022.1050775

    [8]

    YANG L, TSAI T H. Neuroprotective effect and herbal-drug pharmacokinetic interaction of Gastrodia elata extract on valproic acid[J]. Biomedicine & Pharmacotherapy,2022,156:113938.

    [9]

    HUANG Hong, JIANG Ning, ZHANG Yiwen, et al. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment[J]. Life Sci Space Res,2021,31:51−58. doi: 10.1016/j.lssr.2021.07.004

    [10]

    LIU Y, GAO J l, PENG M, et al. A review on central Nervous system effects of gastrodin[J]. Front in Pharmacoogyl,2018,9(24):1−18.

    [11]

    YANG F, LI G Z, LIN B, et al. Gastrodin suppresses pyroptosis and exerts neuroprotective effect in traumatic brain injury model by inhibiting NLRP3 inflammasome signaling pathway[J]. Journal of Integrative Neuroscience,2022,21(2):072−077. doi: 10.31083/j.jin2102072

    [12]

    AN J, CHEN B, KANG X, et al. Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia[J]. American Journal of Translational Research,2020,12(6):2353−2378.

    [13]

    YAO Y Y, LING E A, LU D I. Microglia mediated neuroinflammation-signaling regulation and therapeutic considerations with special reference to some natural compounds[J]. Histology and Histopathology,2020,35(11):1229−1250.

    [14] 俞江灏, 周金山, 蒋晓宁, 等. 天麻素通过抑制TLR4/ASK1信号减轻脓毒症小鼠的肺脏炎症[J]. 中成药,2021,43(9):2520−2524. [YU J H, ZHOU J S, JIANG X N, et al. Gastrodin attenuated lung inflammation in septic mice by inhibiting TLR4/ASK1 signaling[J]. Chinese Traditional Patent Medicine,2021,43(9):2520−2524.] doi: 10.3969/j.issn.1001-1528.2021.09.047

    YU J H, ZHOU J S, JIANG X N, et al. Gastrodin attenuated lung inflammation in septic mice by inhibiting TLR4/ASK1 signaling[J]. Chinese Traditional Patent Medicine, 2021, 43(9): 2520−2524. doi: 10.3969/j.issn.1001-1528.2021.09.047

    [15]

    ZHENG X, GONG T W, TANG C C, et al. Gastrodin improves neuroinflammation-induced cognitive dysfunction in rats by regulating NLRP3 inflammasome[J]. BMC Anesthesiology,2022,22(1):371. doi: 10.1186/s12871-022-01915-y

    [16]

    FASINA O B, WANG J, MO J, et al. Gastrodin from Gastrodia elata enhances cognitive function and neuroprotection of AD mice via the regulation of gut microbiota composition and inhibition of neuron inflammation[J]. Front Pharmacol,2022,13:814271. doi: 10.3389/fphar.2022.814271

    [17]

    HUANG Y J, CHOONG L C, PANYOD S, et al. Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress-induced depression mouse model[J]. Phytother Res,2021,35(9):5133−5142. doi: 10.1002/ptr.7091

    [18]

    GAO M, WU Y, YANG L, et al. Anti-depressant-like effect of fermented Gastrodia elata Bl. by regulating monoamine levels and BDNF/NMDAR pathways in mice[J]. J Ethnopharmacol,2023,301:115832. doi: 10.1016/j.jep.2022.115832

    [19]

    ZHANG J Q, LI L Y, LIU Q, et al. Gastrodin programs an Arg-1+microglial phenotype in hippocampus to ameliorate depression-and anxiety-like behaviors via the Nrf2 pathway in mice[J]. Phytomedicine,2023,113:154725. doi: 10.1016/j.phymed.2023.154725

    [20]

    SONG J J, LI H, WANG N, et al. Gastrodin ameliorates the lipopolysaccharide-induced neuroinflammation in mice by downregulating miR-107-3p[J]. Front in Pharmacoogyl,2022,13:1044375. doi: 10.3389/fphar.2022.1044375

    [21] 管桐, 高丽莎, 隋德志, 等. 天麻素调控SIRT3改BV2细胞衰老和炎症的作用[J]. 食品工业科技,2022,43(19):410−418. [GUAN T, GAO L S, SUI D Z, et al. Ameliorative effect of gastrodin on aging and inflammation of BV2 cells by regulating SIRT3[J]. Science and Technology of Food Industry,2022,43(19):410−418.]

    GUAN T, GAO L S, SUI D Z, et al. Ameliorative effect of gastrodin on aging and inflammation of BV2 cells by regulating SIRT3[J]. Science and Technology of Food Industry, 2022, 43(19): 410−418.

    [22]

    FU J, LU ZT, WU G, et al. Gastrodia elata specific miRNA attenuates neuroinflammation via modulating NF-kappaB signaling pathway[J]. Int J Neurosci,2023,15:1−11.

    [23]

    WANG W, WANG Y, WANG F, et al. Gastrodin regulates the TLR4/TRAF6/NF-kappaB pathway to reduce neuroinflammation and microglial activation in an AD model[J]. Phytomedicine,2024,128:155518. doi: 10.1016/j.phymed.2024.155518

    [24]

    SHAO Q H, ZHANG X L, CHEN Y, et al. Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways[J]. Cellular & Molecular Immunology,2018,99:115−123.

    [25] 周莉萍. 米汤炙党参炮制最佳工艺筛选研究[J]. 现代农业科技,2018,8:79−83. [ZHOU L P. Research on the best processing with water in which rice has been cooked Codonopsis pilosula[J]. Modern Agricultural Science and Technology,2018,8:79−83.] doi: 10.3969/j.issn.1007-5739.2018.01.051

    ZHOU L P. Research on the best processing with water in which rice has been cooked Codonopsis pilosula[J]. Modern Agricultural Science and Technology, 2018, 8: 79−83. doi: 10.3969/j.issn.1007-5739.2018.01.051

    [26] 叶喜德, 彭巧珍, 李旭冉, 等. 正交设计法优选建昌帮姜制天麻炮制工艺研究[J]. 时珍国医国药,2018,29(2):347−349. [YE X D, PENG Q Z, LI X R, et al. Optimization of processing technology of Gastrodia elata with ginger in Jianchang by orthogonal design[J]. Lishizhen Medicine and Materia Medica Research,2018,29(2):347−349.]

    YE X D, PENG Q Z, LI X R, et al. Optimization of processing technology of Gastrodia elata with ginger in Jianchang by orthogonal design[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(2): 347−349.

    [27]

    SANGARAN PG, IBRAHIM ZA, CHIK Z, et al. LPS preconditioning attenuates apoptosis mechanism by inhibiting NF-κB and caspase-3 activity:TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection[J]. Molecular Neurobiology,2021,58:2407−2422. doi: 10.1007/s12035-020-02227-3

    [28]

    MARIA P, MARIA CR, LUCIA N, et al. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage[J]. International Union of Biochemistry and Molecular Biology, 2021:1-16.

    [29]

    LI J, ADAM C, JIN J L, et al. Therapeutic developments targeting toll-like receptor-4-mediated neuroinflammation[J]. Journal of Medicine Chem,2016,11(2):154−165.

    [30] 吴小盈, 周雪, 胡晓霞, 等. 天麻素通过调控NF-κB/NLRP3信号通路对BV2细胞炎症损伤的保护作用[J]. 中成药,2023,45(3):918−923. [WU X Y, ZHOU X, HU X X, et al. Gastrodin protects against inflammatory damage in BV2 cells by regulating the NF-κB/NLRP3 signaling pathway[J]. Chinese Traditional Patent Medicine,2023,45(3):918−923.] doi: 10.3969/j.issn.1001-1528.2023.03.039

    WU X Y, ZHOU X, HU X X, et al. Gastrodin protects against inflammatory damage in BV2 cells by regulating the NF-κB/NLRP3 signaling pathway[J]. Chinese Traditional Patent Medicine, 2023, 45(3): 918−923. doi: 10.3969/j.issn.1001-1528.2023.03.039

    [31] 聂发龙, 郑俭彬, 朱紫陌, 等. 天麻酚性成分组合物减轻LPS刺激致BV2细胞炎症模型的影响[J]. 云南中医中药杂志,2022,43(12):62−67. [NIE F L, ZHENG J B, ZHU Z M, et al. Gastrodia phenol-based composition alleviates the effect of LPS-induced inflammatory model of BV2 cells[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica,2022,43(12):62−67.] doi: 10.3969/j.issn.1007-2349.2022.12.016

    NIE F L, ZHENG J B, ZHU Z M, et al. Gastrodia phenol-based composition alleviates the effect of LPS-induced inflammatory model of BV2 cells[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2022, 43(12): 62−67. doi: 10.3969/j.issn.1007-2349.2022.12.016

    [32] 李翠茹, 周康, 彭买姣, 等. 天麻饼干的研制[J]. 保鲜与加工,2023,23(7):50−56. [LI C R, ZHOU K, PENG M J, et al. Development of Gastrodia elata Bl biscuits[J]. Storage and Process,2023,23(7):50−56.] doi: 10.3969/j.issn.1009-6221.2023.07.007

    LI C R, ZHOU K, PENG M J, et al. Development of Gastrodia elata Bl biscuits[J]. Storage and Process, 2023, 23(7): 50−56. doi: 10.3969/j.issn.1009-6221.2023.07.007

    [33] 陈亭亭, 刘帆, 陈艳, 等. 不同粒径天麻超微粉对脑缺血再灌注脑损伤大鼠的保护作用[J]. 中国实验方剂学杂志, 2019, 25(8):71−76. [CHEN T T, LIU F, CHEN Y, et al. Protective effect of Gastrodiae rhizoma powder with different particle sizes on cerebral ischemia reperfusion injury in rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(8):71−76.]

    CHEN T T, LIU F, CHEN Y, et al. Protective effect of Gastrodiae rhizoma powder with different particle sizes on cerebral ischemia reperfusion injury in rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(8): 71−76.

    [34] 陈婷婷, 周雪, 徐旖旎, 等. 天麻超微粉调控胆碱能系统改善血管性痴呆大鼠学习记忆能力[J]. 中国实验方剂学杂志, 2020, 26(15):26−32. [CHEN T T, ZHOU X, XU N A, et al. Effect of ultrafine powder of Gastrodiae rhizoma in improving learning and memory ability of vascular dementia rats by regulating cholinergic system[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(15):26−32.]

    CHEN T T, ZHOU X, XU N A, et al. Effect of ultrafine powder of Gastrodiae rhizoma in improving learning and memory ability of vascular dementia rats by regulating cholinergic system[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(15): 26−32.

    [35]

    ZHANG Y, YE P, ZHU H, et al. Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway[J]. CNS Neurosci Ther,2024,30(3):e14456. doi: 10.1111/cns.14456

  • 期刊类型引用(2)

    1. 李军年,全威,娄爱华,刘焱,沈清武. 烟熏液辅助腌制液熏腊肉生产工艺优化及其对产品品质的影响. 肉类研究. 2024(02): 17-27 . 百度学术
    2. 张聪,韩秀丽,刘磊,段博文,王伟伟. 基于响应面法的烧结矿还原指数优化. 烧结球团. 2024(04): 1-9+18 . 百度学术

    其他类型引用(0)

  • 其他相关附件

图(7)  /  表(8)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  36
  • PDF下载量:  29
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-09-10
  • 网络出版日期:  2024-06-19
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回
x 关闭 永久关闭