• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
吴思怡,吴林秀,王凡,等. 不动杆菌磷脂酶D基因的表达、生物信息学及底物选择性分析[J]. 食品工业科技,2024,45(13):1−8. doi: 10.13386/j.issn1002-0306.2023090014.
引用本文: 吴思怡,吴林秀,王凡,等. 不动杆菌磷脂酶D基因的表达、生物信息学及底物选择性分析[J]. 食品工业科技,2024,45(13):1−8. doi: 10.13386/j.issn1002-0306.2023090014.
WU Siyi, WU Linxiu, WANG Fan, et al. Gene Expression, Bioinformatics and Substrate Selectivity of Phospholipase D from Acinetobacter sp. DUT-2[J]. Science and Technology of Food Industry, 2024, 45(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090014.
Citation: WU Siyi, WU Linxiu, WANG Fan, et al. Gene Expression, Bioinformatics and Substrate Selectivity of Phospholipase D from Acinetobacter sp. DUT-2[J]. Science and Technology of Food Industry, 2024, 45(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090014.

不动杆菌磷脂酶D基因的表达、生物信息学及底物选择性分析

Gene Expression, Bioinformatics and Substrate Selectivity of Phospholipase D from Acinetobacter sp. DUT-2

  • 摘要: 微生物来源磷脂酶D(Phospholipase D,PLD)因其较高的催化活性和广泛的底物选择谱而成为磷脂合成应用中的热点。本研究以Acinetobacter sp. DUT-2来源的PLD(ADPLD)为研究对象,首先通过生物信息学分析蛋白序列特征,然后构建重组质粒并在大肠杆菌中实现异源表达,进一步纯化酶蛋白并分析ADPLD对不同酰基链长磷脂酰胆碱(PC)的底物选择性,最后通过分子对接和分子模拟探究ADPLD的底物识别机制。通过对ADPLD和其他微生物来源的PLD多序列比对和进化树分析表明,ADPLD与链霉菌来源PLD序列相似度低于30%,且只有一个保守的HKD基序,这表明ADPLD的催化机制可能与传统认知中需要两个HKD基序完成PLD催化过程的反应机制有所不同。ADPLD主要以可溶性蛋白形式表达,仅通过Ni2+亲和层析在50 mmol/L的低浓度咪唑下便能纯化出较为均一的蛋白,以大豆PC为底物时的比活性约为4.09 U/mg。ADPLD对中和短链PC(C6-C14)的活性相对较高,其中ADPLD对8:0/8:0-PC的比活性高于其它酰基链长的PC底物,为13.2 U/mg。当PC的酰基链长从C14增加至C16时,ADPLD对PC的活性明显降低。分子模拟和分子对接结果显示ADPLD的氨基酸残基Thr205、Pro209、Phe293、Ala324、Lys329和Phe453能够分别与PC形成疏水相互作用。Arg383和Gly326能够与PC形成氢键,其中Arg383(N)、Gly326(N)与PC(P)之间的距离<3 Å。这些结果表明,ADPLD能够与磷脂分子形成一个稳定的酶与底物的中间体。研究结果为ADPLD的分子改造和进一步工业应用奠定了基础。

     

    Abstract: Microbial phospholipase D (PLD) showed a more competent potential for phospholipids production due to its higher catalytic activity and broader substrate specificity. In this study, the PLD from Acinetobacter sp. DUT-2 (ADPLD) was used as the research object. Firstly, bioinformatics was used to examine the protein sequence characteristics. Then, the recombinant plasmid was generated and heterologously expressed in Escherichia coli. The enzyme protein was purified further, and the substrate selectivity of ADPLD to phosphatidylcholine (PC) with various acyl chains was investigated. Finally, the substrate recognition mechanism of ADPLD was investigated using molecular docking and molecular dynamics simulation. Multiple sequence alignment and phylogenetic tree analysis of ADPLD and other microbial-derived PLDs revealed that the sequence similarity between ADPLD and Streptomyces-derived PLDs was less than 30%, and there was only one conserved HKD motif, indicating that the catalytic mechanism of ADPLD might differ from the reaction mechanism in traditional cognition, which required two HKD motifs to complete the PLD catalytic process. ADPLD was mostly produced as a soluble protein, and a relatively uniform protein could be purified using Ni2+ affinity chromatography at a low concentration of 50 mmol/L imidazole. When soybean PC was utilized as a substrate, the specific activity of ADPLD was about 4.09 U/mg. ADPLD showed relatively high activity in neutralizing short-chain PC (C6-C14), with a specific activity of 13.2 U/mg for 8: 0/8: 0-PC, which was higher than that of other PC substrates with long acyl chains. The activity of ADPLD on PC reduced dramatically when the acyl chain length of PC grew from C14 to C16. Molecular dynamics simulation and molecular docking experiments revealed that the ADPLD amino acid residues Thr205, Pro209, Phe293, Ala324, Lys329, and Phe453 might form hydrophobic interactions with PC. Arg383 and Gly326 could form hydrogen bonds with PC when the distance between Arg383 (N), Gly326 (N), and PC (P) was <3 Å. These results indicate that ADPLD can form a stable enzyme substrate intermediate with phospholipid molecules. These findings set the groundwork for ADPLD molecular modification and future industrial applications.

     

/

返回文章
返回