Determination of 22 Pesticide Residues in Cowpeas and Mangoes by One-step QuEChERS Combined with Ultra Performance Liquid Chromatography-Mass Spectrometry
-
摘要: 基于超高效液相色谱-串联质谱法(UPLC-MS/MS)建立了豇豆和芒果中22种农药的一步式QuEChERS自动化检测技术,样品经1%乙酸乙腈提取,加入EN萃取盐(无水硫酸镁、氯化钠、柠檬酸三钠、柠檬酸二钠)除水后,使用C18和石墨化碳黑(GCB)净化,经ACQUITY UPLC BEH C18色谱柱分离,以0.01%甲酸水溶液(含2 mmol/L甲酸铵)-0.01%甲酸甲醇为流动相,在多重反应监测(MRM)下进行测定。结果表明,22种农药在0.01~25.00 µg/L质量浓度范围内线性关系良好,决定系数R2均大于0.994,方法的检出限(LOD,S/N=3)在0.05~2 µg/kg范围内,定量限(LOQ,S/N=10)在0.1~5 µg/kg范围内,在1倍LOQ、2倍LOQ和10倍LOQ 3个加标水平下进行回收率实验(n=6),豇豆3个水平的平均回收率分别为70.9%~116.6%、71.9%~118.3%、73.7%~113.7%,芒果平均回收率分别为70.2%~114.6%、71.2%~113.7%、74.3%~118.5%,两种基质相对标准偏差均在20%以内。方法成功应用于42批实际样品检测,有33批检出农药残留。该方法有较高的灵敏度和足够自动化,减少了人为操作步骤,适用于22种农药及农药代谢物的同时检测及准确定量。
-
关键词:
- 一步式QuEChERS /
- 超高效液相色谱-质谱法 /
- 农药残留 /
- 豇豆 /
- 芒果
Abstract: A one-step QuEChERS automated detection technology for 22 pesticides in cowpeas and mangoes was established based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted by acetonitrile containing 1% acetic acid, added with EN extraction salt (anhydrous Mg2SO4, sodium chloride, trisodium citrate dihydrate, disodium hydrogen citrate sesquihydrate) to remove water, and then purified with C18 and graphitized carbon black (GCB). The target analytes were separated by ACQUITY UPLC BEH C18 chromatography column, using 0.01% formic acid aqueous solution (containing 2 mmol/L ammonium formate)-0.01% formic acid methanol as the mobile phase, and determined in multiple reaction monitoring (MRM). The results showed that the 22 pesticides had good linearity in the range of 0.01~25.00 µg/L, with coefficient of determination (R2) higher than 0.994. The limits of detection (LOD, S/N=3) were 0.05~2 µg/kg, and the limits of quantification (LOQ, S/N=10) were 0.1~5 µg/kg. At the spiked levels of 1×LOQ, 2×LOQ, and 10×LOQ, the average recoveries for cowpeas were 70.9%~116.6%, 71.9%~118.3%, and 73.7%~113.7%, respectively, and for mangoes were 70.2%~114.6%, 71.2%~113.7%, and 74.3%~118.5%, respectively. The relative standard deviations for them were all within 20%. The method was successfully applied to the detection of 42 actual samples, and 33 samples detected pesticide residues. This method has high sensitivity and a satisfactory level of automation, effectively reducing human operation steps. It is suitable for the simultaneous detection and accurate quantification of 22 pesticides and their metabolites.-
Keywords:
- one-step QuEChERS /
- UPLC-MS/MS /
- pesticide residues /
- cowpea /
- mango
-
豇豆是南方省份大宗豆类蔬菜之一,也是冬季重要的反季节豆类蔬菜,作为连续采收作物,病虫害爆发几率更高[1]。芒果作为热带重要的经济作物,其农药残留问题也日益严重[2]。新烟碱类杀虫剂是一类神经活性杀虫剂总称,其活性是基于活性位点与昆虫的烟碱乙酰胆碱受体的高度选择性相互作用[3],其选择性强和高效的特点被广泛应用于农作物的保护和各类病虫害的防治[4]。Zhang等[5]从浙江省采集了1588份蔬菜样本,对啶虫脒、吡虫啉和噻虫嗪三种新烟碱类农药进行分析,其中豇豆中的吡虫啉均值最高,达到0.655 mg/kg;马晨等[2]采集海南主产区芒果样品178份,其中甲氧基丙烯酸酯类和新烟碱类农药检出率超过80%。我国规定的新烟碱类农药在豇豆和芒果中的最大残留限量(MRLs)为0.01~2 mg/kg,欧盟限量标准普遍更低,在0.01~0.6 mg/kg范围内,面对越来越低的限量标准,开发高灵敏的新烟碱类杀虫剂检测方法有重要的现实意义。
除此以外,一些农药在动植物体内降解产生一系列代谢物,部分代谢物表现出比母体化合物更高的持久性和毒性[6],例如倍硫磷代谢生成倍硫磷砜和倍硫磷亚砜,这些代谢产物毒性均强于母体[7]。目前国内外更多关注农产品中农药残留问题,但对于代谢产物的研究则较少。
在农残检测整个分析过程中,前处理时间约占整个检测周期的60%以上,因此快速高效的前处理方法显得尤为重要。关于蔬菜水果中农药残留检测的常用前处理方法包括固相萃取[8]、固相微萃取[9−10]、磁固相萃取[11]、分散液液微萃取[12−13]。这些方法虽然具有重现性好、富集倍数高等优点,但普遍操作复杂,材料成本高。近几年QuEChERS技术被逐渐改进,以提高方法的便利性和可操作性。张翠芳等[14]基于手动QuEChERS结合UPLC-MS/MS建立了同时检测黄瓜和土壤中氰霜唑及其代谢物CCIM的方法,LOQ均为10 μg/kg;朱正伟等[15]同样采用QuEChERS方法建立蔬菜和水果中毒死蜱及降解产物的检测方法,定量限在1~30 μg/kg,回收率在66.1%~113.6%之间。一步式QuEChERS方法可以涡旋振荡与离心步骤同时进行,样品制备管集成了外管和内管,以实现手动QuEChERS方法中所需的样品提取管和分散固相萃取管的功能[16]。本方法通过简化QuEChERS程序进而提高样品制备的效率,降低人为因素的影响。
色谱-质谱技术是分析植物源、动物源性食品中农药残留的重要工具,近20年来已被人们广泛接受[17−21]。UPLC-MS/MS由于其灵敏度高、特异性强、稳定性高而被广泛用于农药多残留分析。为充分利用前处理自动化带来的优势,本研究基于UPLC-MS/MS结合快速自动化的一步式QuEChERS样品前处理技术,以期建立豇豆和芒果中问题发现率较高的9种新烟碱类农药以及代谢物毒性较强的克百威及其代谢物、毒死蜱及其代谢物、氰霜唑及其代谢物、乐果及其代谢物、马拉硫磷及其代谢物的准确高灵敏定量检测方法,提高检测效率。
1. 材料与方法
1.1 材料与仪器
农药标准品 22种农残标品,纯度≥98%,天津阿尔塔科技有限公司;甲酸、甲酸铵 质谱纯,美国Agilent公司;乙腈、甲醇 色谱纯,美国Thermo Fisher公司;乙酸、氯化钠、无水硫酸镁、柠檬酸三钠、柠檬酸二钠 分析纯,国药集团化学试剂有限公司;石墨化炭黑(GCB)、十八烷基硅胶(C18)、N-丙基乙二胺(PSA) 上海安谱实验科技股份有限公司;本研究豇豆和芒果实际样品 采购自海南省各地区农贸市场。
Waters ACQUITY超高效液相色谱仪配有Xevo TQ-S cronos三重四极杆质谱仪 美国Waters公司;SiO-6512 QuEChERS自动样品制备系统 北京本立科技有限公司;N-EVAP112氮吹浓缩仪 美国Organomation Associates公司;PL602-L电子天平 瑞士Mettler-Toledo公司。
1.2 实验方法
1.2.1 混合标准溶液的配制
分别移取一定量的22种农药标准溶液于10 mL容量瓶,甲醇定容至刻度,得到浓度为10.0 mg/L混合标准溶液,于4 ℃避光保存;根据需要,移取适量储备液,用甲醇稀释,配制所需浓度的标准工作液,于4 ℃避光保存。
1.2.2 样品前处理
本实验样品前处理步骤根据先前研究方法进行优化[22],具体如下:称取10 g试样(精确至0.01 g),于自动QuEChERS离心套管中,加入16 mL 1%乙酸酸化乙腈,加入锆珠5颗,加入4 g硫酸镁、1 g氯化钠、1 g柠檬酸三钠、0.5 g柠檬酸二钠,盖上内管(含无水硫酸镁900 mg、C18 100 mg、GCB 20 mg),放入自动QuEChERS样品制备系统,设置参数为:振荡转速1000 r/min,5 min,离心转速4000 r/min,5 min,重复两次。取上清液2 mL氮吹至近干,1 mL液相定容液(乙腈:水=3:2,v/v)超声复溶,过0.22 μm微孔滤膜,用于液相色谱-串联质谱测定;使用外标法用于目标化合物的定量检测。
1.2.3 色谱条件
ACQUITY UPLC BEH C18色谱柱(2.1 mm×50 mm,1.7 μm),柱温:40 ℃,进样体积:2 μL。流动相:A相为水(含2 mmol/L甲酸铵和0.01%甲酸),B相为甲醇(含0.01%甲酸)。梯度洗脱程序:初始3% B;1 min,3% B;1.5 min,15% B;2.5 min,50% B;16 min,70% B;19 min,98% B;21 min,98% B;21.1 min,3% B;23 min,3% B,液相流速:0.3 mL/min。
1.2.4 质谱条件
电喷雾电离正模式(electrospray ionization,ESI+);检测模式:多重反应监测(multiple reaction monitoring,MRM)模式;离子源温度:150 ℃;电喷雾电压:2.0 kV;脱溶剂温度:550 ℃;脱溶剂流量:800 L/h;锥孔气流量:50 L/h。使用MS Scan对农药标准溶液进行一级质谱全扫,确定各化合物的分子离子,对分子离子峰进行子离子扫描,通过优化碰撞能选择响应最高的离子对作为定量离子对,次之的作为定性离子对,各化合物详细质谱信息见表1。
表 1 22种农药的质谱参数Table 1. Mass spectrometry parameters of 22 pesticides化合物名称 保留时间(min) 母离子(m/z) 产物离子(m/z) 锥孔电压(V) 碰撞能(V) 分子式 Acetamiprid
啶虫脒3.8 223.1 126.0*、56.1 34 20、20 C10H11ClN4 Acetamiprid-N-desmethyl
N-去甲基啶虫脒3.8 209.0 98.9*、126.0 30 40、14 C9H9ClN4 Carbofuran
克百威4.6 222.1 165.1*、123.0 30 16、16 C12H15NO3 Carbofuran-3-hydroxy
三羟基克百威3.8 238.1 181.0*、107.0 34 12、30 C12H15NO4 CCIM 7.7 218.0 138.9*、183.0 30 22、20 C11H8ClN3 Chlorpyrifos
毒死蜱16.5 350.1 97.0*、197.9 30 30、25 C9H11Cl3NO3PS Chlorpyrifos-oxon
氧毒死蜱9.4 334.0 278.0*、306.0 30 15、10 C12H14ClN2O3PS Clothianidin
噻虫胺3.7 250.0 169.0*、132.0 25 14、18 C6H8ClN5O2S Cyazofamid
氰霜唑9.3 325.0 107.9*、261.0 25 15、10 C13H13ClN4O2S Dimethoate
乐果3.8 230.0 199.0*、125.0 24 10、20 C5H12NO3PS2 Dinotefuran
呋虫胺3.0 203.1 129.0*、157.0 15 20、10 C7H14N4O3 Fenthion
倍硫磷10.4 279.0 104.9*、168.9 25 25、15 C10H15O3PS2 Fenthion-sulfone
倍硫磷砜5.0 311.0 109.0*、125.0 20 25、20 C10H15O5PS2 Fenthion-sulfoxide
倍硫磷亚砜4.8 295.0 109.0*、280.0 45 30、20 C10H15O4PS2 Imidacloprid
吡虫啉3.7 256.1 209.1*、175.0 30 16、20 C9H10ClN5O2 Malaoxon
马拉氧磷4.7 315.1 127.0*、99.0 24 12、24 C10H19O7PS Malathion
马拉硫磷7.6 331.1 127.0*、285.0 20 14、10 C10H19O6PS2 Nitenpyram
烯啶虫胺3.3 271.1 126.0*、99.0 30 20、22 C11H15ClN4O2 Omethoate
氧乐果2.9 214.0 183.0*、125.0 26 11、22 C5H12NO4PS Sulfoxaflor
氟啶虫胺腈3.9 278.0 153.9*、173.9 25 30、10 C10H10F3N3OS Thiacloprid
噻虫啉4.0 253.0 126.0*、186.0 32 20、20 C10H9ClN4S Thiamethoxam
噻虫嗪3.4 292.0 211.1*、132.0 30 18、20 C8H10ClN5O3S 注:*表示定量离子。 1.3 数据处理
数据采用Waters自带MassLynx软件分析,通过Excel 2018对前处理及方法学验证数据进行统计分析与作图。
2. 结果与分析
2.1 萃取溶剂的选择
本研究的目标农药化合物极性相差较大,因此需要选择合适的萃取溶剂使全部目标农药的回收率满足农残检测要求。农残检测常用的萃取溶剂有甲醇、乙腈、丙酮和乙酸乙酯等,黄丁宁等[23]使用改进的QuEChERS技术同时测定水果蔬菜中12种新烟碱类农药,对比乙腈、丙酮和乙酸乙酯的提取效率,结果表明乙腈的提取效率最好,平均回收率均能达到85%以上。Mol等[24]对一系列萃取溶剂进行了测试,发现甲醇通常会从基质中萃取出过多的化合物,需要进一步的基质去除步骤,乙腈在脂肪中的溶解度低,从复杂基质中提取时基质效应低。因此,本研究采用乙腈作为萃取溶剂,同时对比了乙腈、1%乙酸酸化乙腈和5%乙酸酸化乙腈对22种目标农药回收率(REC)的影响,结果如图1所示。当萃取溶剂不添加乙酸时,吡虫啉、噻虫啉的回收率分别为61.2%和64.4%;当萃取溶剂为5%乙酸酸化乙腈时,三羟基克百威、倍硫磷砜和氟啶虫胺腈的回收率均超过120%;当选取1%乙酸酸化乙腈时,目标农药回收率均在70%~120%范围内,且RSD在20%以内,满足农药残留回收率要求。同时,研究发现随着萃取溶液酸度的提高,新烟碱类农药出峰响应值逐渐降低,其它几种农药响应影响较小,因此最终选择1%酸化乙腈作为提取液。
2.2 萃取盐的选择
由于果蔬样品水分含量高,乙腈微溶于水,当水分过高时影响目标化合物在有机相的分配比,从而影响萃取效率,因此本研究对比了传统QuEChERS盐(4 g无水硫酸镁+1 g氯化钠)、EN盐组合(4 g无水硫酸镁+1 g氯化钠+1 g柠檬酸三钠+0.5 g柠檬酸二钠)、AOAC盐组合(6 g无水硫酸镁+1.5 g乙酸钠)三种萃取盐对目标农药回收率的影响,如图2所示,结果表明,EN盐组合回收率范围在72.1%~115.5%,RSD在11.0%以内,其余两种萃取盐组合可能由于硫酸镁水合作用大量放热,导致溶剂挥发[25],使得三羟基克百威和氟啶虫胺腈在平行性方面较差,RSD大于20%,引入柠檬酸盐后进一步提高缓冲作用,从而提高目标化合物的提取稳定性,因此最终选择EN盐为萃取盐。
2.3 净化填料的选择
根据所选基质中干扰杂质的种类来优化净化填料的种类及用量,可以有效降低基质干扰,从而提高目标农药化合物的回收率,目前常用的净化填料有PSA、C18、GCB等,其中PSA可以有效去除基质中有机酸、脂肪酸等极性杂质的影响[26],C18是一种反相吸附材料,可以有效去除脂质等亲脂化合物的影响[22],GCB可以通过负离子交换及疏水相互作用去除基质中多酚类、色素类杂质[27],但对于正六元环结构及相似结构的农药化合物有较强的吸附效果[28]。鉴于本次研究的豇豆、芒果样品含大量色素,首先比较GCB不同用量(0、20、40 mg)对回收率及RSD的影响,如图3所示,随着GCB用量的增加,多数农药的回收率逐渐增大,当GCB用量为20 mg时符合回收率要求(70%≤REC≤120%)的农药个数最多,增大GCB用量至40 mg时,吡虫啉和氟啶虫胺腈的RSD均超过20%,因此最终GCB用量确定为20 mg。固定GCB用量后比较不同PSA用量(0、100、200 mg)对回收率及RSD的影响,如图4所示,啶虫脒、毒死蜱等部分农药随着PSA用量增大,回收率逐渐增加,但烯啶虫胺、氟啶虫胺腈和噻虫啉在PSA用量为0时回收率才满足70%~120%要求,综合考虑,本次试验不使用PSA作为净化填料。除此以外,本研究还比较不同C18用量(50、100、200 mg)对目标农药的影响,如图5所示,当用量选择100 mg时回收率满足70%~120%要求,且RSD小于20%的农药个数最多,因此,最终分别选取20 mg GCB和100 mg C18为净化填料的最优用量。
2.4 基质效应
基质效应(ME)是由于共萃取物对目标化合物的电离作用引起的,根据各类化合物基质效应的研究表明,基质抑制或增强常常伴随着分析方法的精密度显著下降[29],如果不采取抵消措施,基质效应将会影响方法的准确性。评估基质效应可按如下方法:
基质效应(%)=(基质标准曲线斜率溶剂标准曲线斜率−1)×100 当目标化合物在基质中的响应低于在纯溶剂中的响应时表现为基质抑制效应,此时ME的值会小于0,反之则表现为基质增强效应。同时当|ME|≤20%时表现为弱基质效应,当20%<|ME|≤50%时表现为中等基质效应,当|ME|>50%时表现为强基质效应[30]。本研究针对豇豆和芒果基质考察了22种农药的基质效应,如表2所示,芒果中有68.2%的农药表现为基质抑制效应,4种农药表现为弱基质效应,7种农药为中等基质效应;豇豆中有50%的农药表现为基质抑制效应,3种农药为弱基质效应,11种农药为中等基质效应,乐果、氟啶虫胺腈、噻虫胺、吡虫啉、噻虫嗪在两种基质中均表现出较强的基质抑制。本研究采用基质匹配曲线以补偿基质效应对目标化合物的干扰,以提高检测方法的准确性。
表 2 豇豆和芒果中22种农药的LOD、LOQ、线性方程、线性范围、决定系数(R2)和基质效应Table 2. LOD, LOQ, regression equation, linear range, coefficient of determination (R2), matrix effect of 22 pesticides in cowpea and mango化合物名称 检出限LOD
(µg/kg)定量限LOQ
(µg/kg)线性方程 线性范围(μg/L) 决定系数R2 基质效应
(%)豇豆 Acetamiprid 啶虫脒 0.2 0.5 Y=5456.2X+283.24 0.06~25.00 0.9989 −47.8 Acetamiprid-N-desmethyl N-去甲基啶虫脒 0.2 0.5 Y=4983.8X−1759.3 0.06~25.00 0.9987 −49.7 Carbofuran 克百威 0.1 0.2 Y=25413X+52577 0.02~25.00 0.9977 11.9 Carbofuran-3-hydroxy 三羟基克百威 0.5 2 Y=679.16X−806.33 0.25~25.00 0.9964 −68.2 CCIM 0.4 1 Y=2077X+2115.4 0.12~25.00 0.9995 45.2 Chlorpyrifos 毒死蜱 0.05 0.1 Y=6683.5X+3357.3 0.01~25.00 0.9999 49.7 Chlorpyrifos-oxon 氧毒死蜱 2 5 Y=19291X+9396.4 0.62~25.00 0.9999 33.8 Clothianidin 噻虫胺 2 5 Y=830.65X−1872.2 0.62~25.00 0.9979 −79.5 Cyazofamid 氰霜唑 0.05 0.1 Y=57736X+63205 0.01~25.00 0.9994 44.4 Dimethoate 乐果 0.4 1 Y=4101.8X−1493.4 0.12~25.00 0.9993 −82.4 Dinotefuran 呋虫胺 2 5 Y=1149.1X−1896.9 0.62~25.00 0.9972 −48.4 Fenthion 倍硫磷 0.1 0.2 Y=6552.1X+9925.2 0.02~25.00 0.9993 43.3 Fenthion-sulfone 倍硫磷砜 0.5 2 Y=2532.3X+8205.8 0.25~25.00 0.9983 41.7 Fenthion-sulfoxide 倍硫磷亚砜 0.2 0.5 Y=9196.4X+7752.8 0.06~25.00 0.9996 21.8 Imidacloprid 吡虫啉 0.05 0.1 Y=1114X−1087.1 0.01~25.00 0.9978 −79.2 Malaoxon 马拉氧磷 0.05 0.1 Y=71690X+68921 0.01~25.00 0.9994 16.6 Malathion 马拉硫磷 0.05 0.1 Y=56009X+45070 0.01~25.00 0.9996 63.7 Nitenpyram 烯啶虫胺 0.4 1 Y=1122.5X−2208.9 0.12~25.00 0.9965 −49.2 Omethoate 氧乐果 0.05 0.1 Y=6988.3X−3683 0.01~25.00 0.9996 19.4 Sulfoxaflor 氟啶虫胺腈 2 5 Y=302.82X−946.46 0.62~25.00 0.9988 −81.1 Thiacloprid 噻虫啉 0.2 0.5 Y=9015.9X−18018 0.06~25.00 0.9941 −62.4 Thiamethoxam 0.4 1 Y=1612.6X−1597.9 0.12~25.00 0.9991 −69.5 芒果 Acetamiprid 啶虫脒 0.5 2 Y=2732.9X+2299.6 0.25~25.00 0.9979 −86.0 Acetamiprid-N-desmethyl N-去甲基啶虫脒 0.5 2 Y=5609.4X+2260.8 0.25~25.00 0.9995 −73.9 Carbofuran 克百威 0.1 0.2 Y=16178X+6799.8 0.02~25.00 0.9999 −44.2 Carbofuran-3-hydroxy 三羟基克百威 0.5 2 Y=424.9X+402.31 0.25~25.00 0.9995 −75.7 CCIM 0.2 0.5 Y=38906X+5980.7 0.06~25.00 0.9995 30.0 Chlorpyrifos 毒死蜱 0.05 0.1 Y=3376.7X−7026 0.01~25.00 0.9997 25.6 Chlorpyrifos-oxon 氧毒死蜱 0.5 2 Y=926.51X−1832.3 0.25~25.00 0.9998 30.2 Clothianidin 噻虫胺 0.4 1 Y=590.65X−1626.2 0.12~25.00 0.9973 −89.5 Cyazofamid 氰霜唑 0.4 1 Y=51891X+50119 0.12~25.00 0.9999 2.4 Dimethoate 乐果 0.5 2 Y=44688X+28912 0.25~25.00 0.9984 −85.5 Dinotefuran 呋虫胺 0.5 2 Y=591.93X−2474.3 0.25~25.00 0.9991 −64.7 Fenthion 倍硫磷 0.2 0.5 Y=6303.1X+1896.9 0.06~25.00 0.9994 25.1 Fenthion-sulfone 倍硫磷砜 0.4 1 Y=234.21X+553.62 0.12~25.00 0.9983 −3.8 Fenthion-sulfoxide 倍硫磷亚砜 0.2 0.5 Y=5441.6X−1095.3 0.06~25.00 0.9987 −24.9 Imidacloprid 吡虫啉 0.5 2 Y=520.09X+1337.8 0.25~25.00 0.9941 −89.0 Malaoxon 马拉氧磷 0.05 0.1 Y=12663X+6501 0.01~25.00 0.9996 −15.6 Malathion 马拉硫磷 0.05 0.1 Y=518.52X+5.7959 0.01~25.00 0.9997 30.6 Nitenpyram 烯啶虫胺 0.5 2 Y=1718.6X+1546.6 0.25~25.00 0.9980 −74.4 Omethoate 氧乐果 0.05 0.1 Y=5670X+2352 0.01~25.00 0.9994 7.7 Sulfoxaflor 氟啶虫胺腈 0.2 0.5 Y=2590.1X−456.27 0.06~25.00 0.9992 −85.4 Thiacloprid 噻虫啉 0.4 1 Y=1859.6X+1498.8 0.12~25.00 0.9999 −77.3 Thiamethoxam 噻虫嗪 0.2 0.5 Y=5346.8X−1360 0.06~25.00 0.9985 −90.2 2.5 线性范围、检出限和定量限
在最优前处理条件下对方法学参数进行验证,向空白基质中添加浓度为0.01、0.02、0.06、0.12、0.25、0.62、1.25、2.50、6.25、12.50、25.00 µg/L一系列混合标准溶液,采用基质匹配标准曲线法定量检测,以峰面积为纵坐标,相应浓度为横坐标得出各化合物线性方程,如表2所示,22种农药在两种基质中R2均大于0.994,表明该方法线性关系良好。以3倍信噪比(S/N)确定各化合物的检出限(LOD),10倍信噪比(S/N)确定各化合物的定量限(LOQ),豇豆中18种农药的LOD在0.05~0.5 µg/kg范围,其余4种农药LOD为2 µg/kg,有16种农药的LOQ在0.1~1 µg/kg范围,其余6种农药LOQ在2~5 µg/kg之间;芒果中所有农药LOD均在0.05~0.5 µg/kg范围,有14种农药的LOQ在0.1~1 µg/kg范围,其余8种农药LOQ均为2 µg/kg,详细信息见表2。
2.6 方法的准确度与精密度
为评价方法的准确度与精密度,取豇豆和芒果空白基质,按各农药的1倍LOQ、2倍LOQ和10倍LOQ三个添加水平加入农药混标进行添加回收试验,每个水平重复6次,计算各水平的平均回收率和相对标准偏差(RSD)。结果如表3所示,豇豆中三个添加水平的平均回收率分别为70.9%~116.6%(1倍LOQ)、71.9%~118.3%(2倍LOQ)、73.7%~113.7%(10倍LOQ);芒果中三个添加水平的平均回收率分别为70.2%~114.6%(1倍LOQ)、71.2%~113.7%(2倍LOQ)、74.3%~118.5%(10倍LOQ),两种基质的RSD均在20%以下,本方法有较高的准确度与精密度,可满足农残检测的要求。
表 3 豇豆和芒果中22种农药的回收率和精密度Table 3. Recovery and precision of 22 pesticides in cowpea and mango化合物名称 添加水平 1×LOQ 2×LOQ 10×LOQ REC(%) RSD(%) REC(%) RSD(%) REC(%) RSD(%) 豇豆 Acetamiprid 啶虫脒 81.9 17.6 76.7 18.1 99.7 19.0 Acetamiprid-N-desmethyl N-去甲基啶虫脒 96.2 15.6 111.0 11.2 77.8 16.5 Carbofuran 克百威 116.6 16.5 80.4 9.2 97.8 9.3 Carbofuran-3-hydroxy 三羟基克百威 105.2 17.9 76.6 14.3 77.4 7.5 CCIM 72.2 7.3 84.1 5.5 93.7 1.8 Chlorpyrifos 毒死蜱 74.8 2.4 98.9 4.3 100.5 1.4 Chlorpyrifos-oxon 氧毒死蜱 70.9 9.1 71.9 5.6 73.7 7.8 Clothianidin 噻虫胺 101.3 15.6 118.3 12.8 91.2 18.0 Cyazofamid 氰霜唑 80.7 1.6 81.7 5.0 91.6 2.1 Dimethoate 乐果 72.5 19.7 114.8 18.2 87.4 19.4 Dinotefuran 呋虫胺 84.2 18.2 88.0 18.0 103.7 16.3 Fenthion 倍硫磷 114.6 14.3 114.7 10.4 83.9 4.8 Fenthion-sulfone 倍硫磷砜 91.2 14.4 105.3 11.6 94.6 14.0 Fenthion-sulfoxide 倍硫磷亚砜 85.2 17.3 104.2 15.4 113.7 15.0 Imidacloprid 吡虫啉 116.1 16.3 79.5 4.4 105.4 18.4 Malaoxon 马拉氧磷 79.5 0.7 90.2 2.6 98.0 1.4 Malathion 马拉硫磷 96.8 7.7 99.6 4.6 99.9 1.9 Nitenpyram 烯啶虫胺 100.7 17.3 91.5 18.3 75.8 19.2 Omethoate 氧乐果 72.7 3.8 86.6 6.0 92.4 5.3 Sulfoxaflor 氟啶虫胺腈 85.2 11.2 109.4 17.8 83.9 19.8 Thiacloprid 噻虫啉 97.1 15.5 98.3 13.4 95.3 14.0 Thiamethoxam 噻虫嗪 82.8 20.0 94.5 16.7 89.6 18.7 芒果 Acetamiprid 啶虫脒 74.6 16.2 71.2 19.8 85.5 16.6 Acetamiprid-N-desmethyl N-去甲基啶虫脒 113.7 19.8 72.8 15.7 93.8 15.1 Carbofuran 克百威 82.2 18.2 89.7 15.9 81.1 11.2 Carbofuran-3-hydroxy 三羟基克百威 113.3 19.3 86.3 12.9 105.3 12.0 CCIM 99.9 4.9 111.8 6.3 112.6 1.2 Chlorpyrifos 毒死蜱 70.2 3.0 72.9 4.6 85.9 6.8 Chlorpyrifos-oxon 氧毒死蜱 72.0 4.9 83.2 3.4 104.5 3.7 Clothianidin 噻虫胺 114.5 19.8 98.7 18.7 79.5 14.2 Cyazofamid 氰霜唑 98.9 17.2 95.7 11.3 74.3 13.7 Dimethoate 乐果 87.8 8.9 79.6 16.8 103.0 18.0 Dinotefuran 呋虫胺 114.6 13.1 113.7 18.7 103.4 16.9 Fenthion 倍硫磷 87.0 17.4 91.6 13.4 87.1 3.4 Fenthion-sulfone倍硫磷砜 72.4 17.4 77.8 18.9 95.3 15.7 Fenthion-sulfoxide 倍硫磷亚砜 76.9 18.1 89.7 17.8 81.6 13.2 Imidacloprid 吡虫啉 102.0 17.5 93.7 12.5 118.5 19.8 Malaoxon 马拉氧磷 81.9 1.8 95.5 3.2 107.5 5.2 Malathion 马拉硫磷 72.8 4.7 86.8 4.6 103.3 4.2 Nitenpyram 烯啶虫胺 101.3 19.0 103.2 18.0 109.1 14.3 Omethoate 氧乐果 72.1 6.4 82.8 6.2 94.5 3.1 Sulfoxaflor 氟啶虫胺腈 108.9 18.3 89.8 18.9 99.6 14.0 Thiacloprid 噻虫啉 98.4 16.5 71.5 15.9 103.9 7.5 Thiamethoxam 噻虫嗪 98.9 5.0 106.8 3.9 92.8 14.4 2.7 实际样品检测
应用本研究建立的方法,使用基质匹配外标法对30批次豇豆和12批次芒果样品进行定量分析,结果如表4所示。豇豆样品中有23批检出农药残留,农药检出率为76.7%,共检出农药30项次,其中倍硫磷和噻虫嗪检出项次最高,均占总检出项次26.7%,检出浓度分别在6~44 μg/kg和11~96 μg/kg范围内;芒果样品中有10批次检出农药残留,农药检出率为83.3%,共检出农药残留17项次,其中吡虫啉检出项次最高,占总检出项次35.3%,检出浓度在6~78 μg/kg范围内。检测结果表明,本次检测实际样品中涉及到的农药残留均未超出GB 2763-2021标准中规定的最大残留限量值(MRL)。
表 4 豇豆和芒果实际样品中22种农药的检测结果Table 4. Detection results of 22 pesticides in actual samples of cowpea and mango豇豆检出农药 检出项次 浓度范围(μg/kg) MRL(μg/kg) 芒果检出农药 检出项次 浓度范围(μg/kg) MRL(μg/kg) 倍硫磷 8 6~44 50 吡虫啉 6 6~78 200 倍硫磷砜 2 2~8 − 毒死蜱 5 2~10 − 吡虫啉 3 8~76 2000 噻虫胺 4 3~32 40 啶虫脒 4 1~115 400 噻虫嗪 1 4 200 克百威 3 5~11 20 氧乐果 1 3 20 噻虫胺 1 9 10 噻虫啉 1 30 − 噻虫嗪 8 11~96 300 3. 结论
本研究采用一步式QuEChERS方法对豇豆、芒果样品进行前处理,基于UPLC-MS/MS对果蔬中22种新烟碱类农药、易降解农药及其代谢物实现同时检测,采用1%乙酸-乙腈作为提取液,EN盐为除水剂,C18和GCB净化填料净化后进行检测。结果表明22种农药及代谢物在相应范围内线性关系良好,决定系数R2均大于0.994,在1倍LOQ、2倍LOQ和10倍LOQ添加水平下,豇豆平均回收率在70.9%~118.3%,芒果平均回收率在70.2%~118.5%范围内,方法的检出限在0.05~2 µg/kg之间,定量限在0.1~5 µg/kg之间,该方法检测灵敏,操作自动化程度高,适用于豇豆和芒果中多种农药残留检测。
-
表 1 22种农药的质谱参数
Table 1 Mass spectrometry parameters of 22 pesticides
化合物名称 保留时间(min) 母离子(m/z) 产物离子(m/z) 锥孔电压(V) 碰撞能(V) 分子式 Acetamiprid
啶虫脒3.8 223.1 126.0*、56.1 34 20、20 C10H11ClN4 Acetamiprid-N-desmethyl
N-去甲基啶虫脒3.8 209.0 98.9*、126.0 30 40、14 C9H9ClN4 Carbofuran
克百威4.6 222.1 165.1*、123.0 30 16、16 C12H15NO3 Carbofuran-3-hydroxy
三羟基克百威3.8 238.1 181.0*、107.0 34 12、30 C12H15NO4 CCIM 7.7 218.0 138.9*、183.0 30 22、20 C11H8ClN3 Chlorpyrifos
毒死蜱16.5 350.1 97.0*、197.9 30 30、25 C9H11Cl3NO3PS Chlorpyrifos-oxon
氧毒死蜱9.4 334.0 278.0*、306.0 30 15、10 C12H14ClN2O3PS Clothianidin
噻虫胺3.7 250.0 169.0*、132.0 25 14、18 C6H8ClN5O2S Cyazofamid
氰霜唑9.3 325.0 107.9*、261.0 25 15、10 C13H13ClN4O2S Dimethoate
乐果3.8 230.0 199.0*、125.0 24 10、20 C5H12NO3PS2 Dinotefuran
呋虫胺3.0 203.1 129.0*、157.0 15 20、10 C7H14N4O3 Fenthion
倍硫磷10.4 279.0 104.9*、168.9 25 25、15 C10H15O3PS2 Fenthion-sulfone
倍硫磷砜5.0 311.0 109.0*、125.0 20 25、20 C10H15O5PS2 Fenthion-sulfoxide
倍硫磷亚砜4.8 295.0 109.0*、280.0 45 30、20 C10H15O4PS2 Imidacloprid
吡虫啉3.7 256.1 209.1*、175.0 30 16、20 C9H10ClN5O2 Malaoxon
马拉氧磷4.7 315.1 127.0*、99.0 24 12、24 C10H19O7PS Malathion
马拉硫磷7.6 331.1 127.0*、285.0 20 14、10 C10H19O6PS2 Nitenpyram
烯啶虫胺3.3 271.1 126.0*、99.0 30 20、22 C11H15ClN4O2 Omethoate
氧乐果2.9 214.0 183.0*、125.0 26 11、22 C5H12NO4PS Sulfoxaflor
氟啶虫胺腈3.9 278.0 153.9*、173.9 25 30、10 C10H10F3N3OS Thiacloprid
噻虫啉4.0 253.0 126.0*、186.0 32 20、20 C10H9ClN4S Thiamethoxam
噻虫嗪3.4 292.0 211.1*、132.0 30 18、20 C8H10ClN5O3S 注:*表示定量离子。 表 2 豇豆和芒果中22种农药的LOD、LOQ、线性方程、线性范围、决定系数(R2)和基质效应
Table 2 LOD, LOQ, regression equation, linear range, coefficient of determination (R2), matrix effect of 22 pesticides in cowpea and mango
化合物名称 检出限LOD
(µg/kg)定量限LOQ
(µg/kg)线性方程 线性范围(μg/L) 决定系数R2 基质效应
(%)豇豆 Acetamiprid 啶虫脒 0.2 0.5 Y=5456.2X+283.24 0.06~25.00 0.9989 −47.8 Acetamiprid-N-desmethyl N-去甲基啶虫脒 0.2 0.5 Y=4983.8X−1759.3 0.06~25.00 0.9987 −49.7 Carbofuran 克百威 0.1 0.2 Y=25413X+52577 0.02~25.00 0.9977 11.9 Carbofuran-3-hydroxy 三羟基克百威 0.5 2 Y=679.16X−806.33 0.25~25.00 0.9964 −68.2 CCIM 0.4 1 Y=2077X+2115.4 0.12~25.00 0.9995 45.2 Chlorpyrifos 毒死蜱 0.05 0.1 Y=6683.5X+3357.3 0.01~25.00 0.9999 49.7 Chlorpyrifos-oxon 氧毒死蜱 2 5 Y=19291X+9396.4 0.62~25.00 0.9999 33.8 Clothianidin 噻虫胺 2 5 Y=830.65X−1872.2 0.62~25.00 0.9979 −79.5 Cyazofamid 氰霜唑 0.05 0.1 Y=57736X+63205 0.01~25.00 0.9994 44.4 Dimethoate 乐果 0.4 1 Y=4101.8X−1493.4 0.12~25.00 0.9993 −82.4 Dinotefuran 呋虫胺 2 5 Y=1149.1X−1896.9 0.62~25.00 0.9972 −48.4 Fenthion 倍硫磷 0.1 0.2 Y=6552.1X+9925.2 0.02~25.00 0.9993 43.3 Fenthion-sulfone 倍硫磷砜 0.5 2 Y=2532.3X+8205.8 0.25~25.00 0.9983 41.7 Fenthion-sulfoxide 倍硫磷亚砜 0.2 0.5 Y=9196.4X+7752.8 0.06~25.00 0.9996 21.8 Imidacloprid 吡虫啉 0.05 0.1 Y=1114X−1087.1 0.01~25.00 0.9978 −79.2 Malaoxon 马拉氧磷 0.05 0.1 Y=71690X+68921 0.01~25.00 0.9994 16.6 Malathion 马拉硫磷 0.05 0.1 Y=56009X+45070 0.01~25.00 0.9996 63.7 Nitenpyram 烯啶虫胺 0.4 1 Y=1122.5X−2208.9 0.12~25.00 0.9965 −49.2 Omethoate 氧乐果 0.05 0.1 Y=6988.3X−3683 0.01~25.00 0.9996 19.4 Sulfoxaflor 氟啶虫胺腈 2 5 Y=302.82X−946.46 0.62~25.00 0.9988 −81.1 Thiacloprid 噻虫啉 0.2 0.5 Y=9015.9X−18018 0.06~25.00 0.9941 −62.4 Thiamethoxam 0.4 1 Y=1612.6X−1597.9 0.12~25.00 0.9991 −69.5 芒果 Acetamiprid 啶虫脒 0.5 2 Y=2732.9X+2299.6 0.25~25.00 0.9979 −86.0 Acetamiprid-N-desmethyl N-去甲基啶虫脒 0.5 2 Y=5609.4X+2260.8 0.25~25.00 0.9995 −73.9 Carbofuran 克百威 0.1 0.2 Y=16178X+6799.8 0.02~25.00 0.9999 −44.2 Carbofuran-3-hydroxy 三羟基克百威 0.5 2 Y=424.9X+402.31 0.25~25.00 0.9995 −75.7 CCIM 0.2 0.5 Y=38906X+5980.7 0.06~25.00 0.9995 30.0 Chlorpyrifos 毒死蜱 0.05 0.1 Y=3376.7X−7026 0.01~25.00 0.9997 25.6 Chlorpyrifos-oxon 氧毒死蜱 0.5 2 Y=926.51X−1832.3 0.25~25.00 0.9998 30.2 Clothianidin 噻虫胺 0.4 1 Y=590.65X−1626.2 0.12~25.00 0.9973 −89.5 Cyazofamid 氰霜唑 0.4 1 Y=51891X+50119 0.12~25.00 0.9999 2.4 Dimethoate 乐果 0.5 2 Y=44688X+28912 0.25~25.00 0.9984 −85.5 Dinotefuran 呋虫胺 0.5 2 Y=591.93X−2474.3 0.25~25.00 0.9991 −64.7 Fenthion 倍硫磷 0.2 0.5 Y=6303.1X+1896.9 0.06~25.00 0.9994 25.1 Fenthion-sulfone 倍硫磷砜 0.4 1 Y=234.21X+553.62 0.12~25.00 0.9983 −3.8 Fenthion-sulfoxide 倍硫磷亚砜 0.2 0.5 Y=5441.6X−1095.3 0.06~25.00 0.9987 −24.9 Imidacloprid 吡虫啉 0.5 2 Y=520.09X+1337.8 0.25~25.00 0.9941 −89.0 Malaoxon 马拉氧磷 0.05 0.1 Y=12663X+6501 0.01~25.00 0.9996 −15.6 Malathion 马拉硫磷 0.05 0.1 Y=518.52X+5.7959 0.01~25.00 0.9997 30.6 Nitenpyram 烯啶虫胺 0.5 2 Y=1718.6X+1546.6 0.25~25.00 0.9980 −74.4 Omethoate 氧乐果 0.05 0.1 Y=5670X+2352 0.01~25.00 0.9994 7.7 Sulfoxaflor 氟啶虫胺腈 0.2 0.5 Y=2590.1X−456.27 0.06~25.00 0.9992 −85.4 Thiacloprid 噻虫啉 0.4 1 Y=1859.6X+1498.8 0.12~25.00 0.9999 −77.3 Thiamethoxam 噻虫嗪 0.2 0.5 Y=5346.8X−1360 0.06~25.00 0.9985 −90.2 表 3 豇豆和芒果中22种农药的回收率和精密度
Table 3 Recovery and precision of 22 pesticides in cowpea and mango
化合物名称 添加水平 1×LOQ 2×LOQ 10×LOQ REC(%) RSD(%) REC(%) RSD(%) REC(%) RSD(%) 豇豆 Acetamiprid 啶虫脒 81.9 17.6 76.7 18.1 99.7 19.0 Acetamiprid-N-desmethyl N-去甲基啶虫脒 96.2 15.6 111.0 11.2 77.8 16.5 Carbofuran 克百威 116.6 16.5 80.4 9.2 97.8 9.3 Carbofuran-3-hydroxy 三羟基克百威 105.2 17.9 76.6 14.3 77.4 7.5 CCIM 72.2 7.3 84.1 5.5 93.7 1.8 Chlorpyrifos 毒死蜱 74.8 2.4 98.9 4.3 100.5 1.4 Chlorpyrifos-oxon 氧毒死蜱 70.9 9.1 71.9 5.6 73.7 7.8 Clothianidin 噻虫胺 101.3 15.6 118.3 12.8 91.2 18.0 Cyazofamid 氰霜唑 80.7 1.6 81.7 5.0 91.6 2.1 Dimethoate 乐果 72.5 19.7 114.8 18.2 87.4 19.4 Dinotefuran 呋虫胺 84.2 18.2 88.0 18.0 103.7 16.3 Fenthion 倍硫磷 114.6 14.3 114.7 10.4 83.9 4.8 Fenthion-sulfone 倍硫磷砜 91.2 14.4 105.3 11.6 94.6 14.0 Fenthion-sulfoxide 倍硫磷亚砜 85.2 17.3 104.2 15.4 113.7 15.0 Imidacloprid 吡虫啉 116.1 16.3 79.5 4.4 105.4 18.4 Malaoxon 马拉氧磷 79.5 0.7 90.2 2.6 98.0 1.4 Malathion 马拉硫磷 96.8 7.7 99.6 4.6 99.9 1.9 Nitenpyram 烯啶虫胺 100.7 17.3 91.5 18.3 75.8 19.2 Omethoate 氧乐果 72.7 3.8 86.6 6.0 92.4 5.3 Sulfoxaflor 氟啶虫胺腈 85.2 11.2 109.4 17.8 83.9 19.8 Thiacloprid 噻虫啉 97.1 15.5 98.3 13.4 95.3 14.0 Thiamethoxam 噻虫嗪 82.8 20.0 94.5 16.7 89.6 18.7 芒果 Acetamiprid 啶虫脒 74.6 16.2 71.2 19.8 85.5 16.6 Acetamiprid-N-desmethyl N-去甲基啶虫脒 113.7 19.8 72.8 15.7 93.8 15.1 Carbofuran 克百威 82.2 18.2 89.7 15.9 81.1 11.2 Carbofuran-3-hydroxy 三羟基克百威 113.3 19.3 86.3 12.9 105.3 12.0 CCIM 99.9 4.9 111.8 6.3 112.6 1.2 Chlorpyrifos 毒死蜱 70.2 3.0 72.9 4.6 85.9 6.8 Chlorpyrifos-oxon 氧毒死蜱 72.0 4.9 83.2 3.4 104.5 3.7 Clothianidin 噻虫胺 114.5 19.8 98.7 18.7 79.5 14.2 Cyazofamid 氰霜唑 98.9 17.2 95.7 11.3 74.3 13.7 Dimethoate 乐果 87.8 8.9 79.6 16.8 103.0 18.0 Dinotefuran 呋虫胺 114.6 13.1 113.7 18.7 103.4 16.9 Fenthion 倍硫磷 87.0 17.4 91.6 13.4 87.1 3.4 Fenthion-sulfone倍硫磷砜 72.4 17.4 77.8 18.9 95.3 15.7 Fenthion-sulfoxide 倍硫磷亚砜 76.9 18.1 89.7 17.8 81.6 13.2 Imidacloprid 吡虫啉 102.0 17.5 93.7 12.5 118.5 19.8 Malaoxon 马拉氧磷 81.9 1.8 95.5 3.2 107.5 5.2 Malathion 马拉硫磷 72.8 4.7 86.8 4.6 103.3 4.2 Nitenpyram 烯啶虫胺 101.3 19.0 103.2 18.0 109.1 14.3 Omethoate 氧乐果 72.1 6.4 82.8 6.2 94.5 3.1 Sulfoxaflor 氟啶虫胺腈 108.9 18.3 89.8 18.9 99.6 14.0 Thiacloprid 噻虫啉 98.4 16.5 71.5 15.9 103.9 7.5 Thiamethoxam 噻虫嗪 98.9 5.0 106.8 3.9 92.8 14.4 表 4 豇豆和芒果实际样品中22种农药的检测结果
Table 4 Detection results of 22 pesticides in actual samples of cowpea and mango
豇豆检出农药 检出项次 浓度范围(μg/kg) MRL(μg/kg) 芒果检出农药 检出项次 浓度范围(μg/kg) MRL(μg/kg) 倍硫磷 8 6~44 50 吡虫啉 6 6~78 200 倍硫磷砜 2 2~8 − 毒死蜱 5 2~10 − 吡虫啉 3 8~76 2000 噻虫胺 4 3~32 40 啶虫脒 4 1~115 400 噻虫嗪 1 4 200 克百威 3 5~11 20 氧乐果 1 3 20 噻虫胺 1 9 10 噻虫啉 1 30 − 噻虫嗪 8 11~96 300 -
[1] 张群, 段云, 马晨, 等. 豇豆中5种农药及其代谢物残留检测与膳食风险评估[J]. 中国蔬菜,2022(10):86−96. [ZHANG Q, DUAN Y, MA C, et al. Determination of residual quantity from five pesticides and their metabolites in cowpea and dietary risk assessment[J]. China Vegetables,2022(10):86−96.] ZHANG Q, DUAN Y, MA C, et al. Determination of residual quantity from five pesticides and their metabolites in cowpea and dietary risk assessment[J]. China Vegetables, 2022(10): 86−96.
[2] 马晨, 张群, 刘春华, 等. 海南芒果中农药多残留分析[J]. 农药学学报,2021,23(3):552−560. [MA C, ZHANG Q, LIU C H, et al. Analysis of multiple pesticide residues in mango of Hainan Province[J]. Chinese Journal of Pesticide Science,2021,23(3):552−560.] MA C, ZHANG Q, LIU C H, et al. Analysis of multiple pesticide residues in mango of Hainan Province[J]. Chinese Journal of Pesticide Science, 2021, 23(3): 552−560.
[3] YANG B X, MA W, WANG S, et al. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2022,387:132935. doi: 10.1016/j.foodchem.2022.132935
[4] BASS C, DENHOLM I, WILLIAMSON M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology,2015,121:78−87. doi: 10.1016/j.pestbp.2015.04.004
[5] ZHANG Q, XU Y, YING Z, et al. Integrated exposure assessment and potential risks of neonicotinoids in vegetables from three different sources in Zhejiang, China (2018–2020)[J]. Environmental Science and Pollution Research,2023,30(9):22941−22949.
[6] LI R J, LIU T J, CUI S H, et al. Residue behaviors and dietary risk assessment of dinotefuran and its metabolites in Oryza sativa by a new HPLC-MS/MS method[J]. Food Chemistry,2017,235:188−193. doi: 10.1016/j.foodchem.2017.04.181
[7] LEE J, KIM J H. Simultaneous analysis of fenthion and its five metabolites in produce using ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Molecules (Basel, Switzerland),2020,25(8):1938. doi: 10.3390/molecules25081938
[8] PÉREZ-MAYÁN L, RAMIL M, CELA R, et al. Determination of pesticide residues in wine by solid-phase extraction on-line combined with liquid chromatography tandem mass spectrometry[J]. Journal of Food Composition and Analysis,2021,104:104184. doi: 10.1016/j.jfca.2021.104184
[9] CHEN T, XU H. In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry[J]. Analytica Chimica Acta,2019,1090:72−81. doi: 10.1016/j.aca.2019.09.011
[10] SAPAHIN H A, MAKAHLEH A, SAAD B. Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector[J]. Arabian Journal of Chemistry,2019,12(8):1934−1944. doi: 10.1016/j.arabjc.2014.12.001
[11] FERNANDES V C, FREITAS M, PACHECO J P G, et al. Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries[J]. Journal of Chromatography. A,2018,1566:1−12. doi: 10.1016/j.chroma.2018.06.045
[12] MOKHTARI S, KHOSROWSHAHI E M, FARAJZADEH M A, et al. Combination of nano-onion-based dispersive solid phase extraction combined with deep eutectic solvent-based dispersive liquid–liquid microextraction for trace analysis of pesticides[J]. Microchemical Journal,2022,183:107983. doi: 10.1016/j.microc.2022.107983
[13] MIYARDAN F N, AFSHAR MOGADDAM M R, FARAJZADEH M A, et al. Combining modified graphene oxide-based dispersive micro solid phase extraction with dispersive liquid–liquid microextraction in the extraction of some pesticides from zucchini samples[J]. Microchemical Journal,2022,182:107884. doi: 10.1016/j.microc.2022.107884
[14] 张翠芳, 陈兆杰, 宋世明, 等. QuEChERS-超高效液相色谱-串联质谱分析氰霜唑及代谢物CCIM在黄瓜和土壤中的残留[J]. 农药学学报,2018,20(2):204−210. [ZHANG C F, CHEN Z J, SONG S M, et al. Determination of cyazofamid and its metabolite CCIM residue in cucumber and soil with a modified QuEChERS method by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science,2018,20(2):204−210.] ZHANG C F, CHEN Z J, SONG S M, et al. Determination of cyazofamid and its metabolite CCIM residue in cucumber and soil with a modified QuEChERS method by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science, 2018, 20(2): 204−210.
[15] 朱正伟, 吴婉琴, 朱松松, 等. 高效液相色谱-串联质谱联用技术快速分析水果和蔬菜中毒死蜱及其降解产物[J]. 中国食品卫生杂志,2023,35(1):20−26. [ZHU Z W, WU W Q, ZHU S S, et al. Rapid analysis of chlorpyrifos and its degradation products in fruits and vegetables by HPLC-MS/MS[J]. Chinese Journal of Food Hygiene,2023,35(1):20−26.] ZHU Z W, WU W Q, ZHU S S, et al. Rapid analysis of chlorpyrifos and its degradation products in fruits and vegetables by HPLC-MS/MS[J]. Chinese Journal of Food Hygiene, 2023, 35(1): 20−26.
[16] WANG J, HE Z, WANG L, et al. Automatic single-step quick, easy, cheap, effective, rugged and safe sample preparation devices for analysis of pesticide residues in foods[J]. Journal of Chromatography. A,2017,1521:10−18. doi: 10.1016/j.chroma.2017.09.027
[17] TANKIEWICZ M. Determination of selected priority pesticides in high water fruits and vegetables by modified QuEChERS and GC-ECD with GC-MS/MS confirmation[J]. Molecules (Basel, Switzerland),2019,24(3):417. doi: 10.3390/molecules24030417
[18] 王雅晶, 陈毅, 边姿名, 等. 新型MOFs磁固相萃取-高效液相色谱法测定草莓中2种新烟碱类农药[J]. 中国卫生检验杂志,2023,33(14):1693−1696. [WANG Y J, CHEN Y, BIAN Z M, et al. Determination of two neonicotinoid pesticides in strawberry by novel MOFs magnetic–solid phase extraction–high performance liquid chromatography[J]. Chin J Health Lab Tec,2023,33(14):1693−1696.] WANG Y J, CHEN Y, BIAN Z M, et al. Determination of two neonicotinoid pesticides in strawberry by novel MOFs magnetic–solid phase extraction–high performance liquid chromatography[J]. Chin J Health Lab Tec, 2023, 33(14): 1693−1696.
[19] ANĐELKOVIĆ D, BRANKOVIĆ M, KOCIĆ G, et al. Sorbent-excluding sample preparation method for GC-MS pesticide analysis in apple peel[J]. Biomedical Chromatography:BMC,2020,34(1):e4720. doi: 10.1002/bmc.4720
[20] HARISCHANDRA N R, PALLAVI M S, BHEEMANNA M, et al. Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS[J]. Food Chemistry,2021,347:128986. doi: 10.1016/j.foodchem.2020.128986
[21] YANG B, WANG S, MA W, et al. Simultaneous determination of neonicotinoid and carbamate pesticides in freeze-dried cabbage by modified QuEChERS and ultra-performance liquid chromatography-tandem mass spectrometry[J]. Foods (Basel, Switzerland),2023,12(4):699.
[22] 门雪, 吴兴强, 仝凯旋, 等. 改进的QuEChERS法结合液相色谱-高分辨质谱筛查热带水果中33种新烟碱类杀虫剂及杀菌剂[J]. 分析测试学报,2022,41(6):820−826. [MEN X, WU X Q, TONG K X, et al. Screening of 33 neonicotinoid insecticides and fungicides in tropical fruits by liquid chromatography-high resolution mass spectrometry with a modified QuEChERS method[J]. Journal of Instrumental Analysis,2022,41(6):820−826.] MEN X, WU X Q, TONG K X, et al. Screening of 33 neonicotinoid insecticides and fungicides in tropical fruits by liquid chromatography-high resolution mass spectrometry with a modified QuEChERS method[J]. Journal of Instrumental Analysis, 2022, 41(6): 820−826.
[23] 黄丁宁, 缪丹旎, 赵巧灵, 等. QuEChERS结合超高效液相色谱-串联质谱法同时测定果蔬中12种新烟碱类农药残留[J]. 食品安全质量检测学报,2023,14(9):186−194. [HUANG D N, MIAO D N, ZHAO Q L, et al. Simultaneous determination of 12 kinds of neonicotinoid pesticides in fruits and vegetables by QuEChERS combined with ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2023,14(9):186−194.] HUANG D N, MIAO D N, ZHAO Q L, et al. Simultaneous determination of 12 kinds of neonicotinoid pesticides in fruits and vegetables by QuEChERS combined with ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2023, 14(9): 186−194.
[24] MOL H G J, PLAZA-BOLANOS P, ZOMER P, et al. Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes[J]. Anal Chem,2008,80:9450−9459. doi: 10.1021/ac801557f
[25] SHU X, CHU N M, ZHANG X M, et al. Rapid analysis of residues of 186 pesticides in Hawk tea using modified QuEChERS coupled with gas chromatography tandem mass spectrometry[J]. Int J Environ Res Pub Health,2022,19(19):12639. doi: 10.3390/ijerph191912639
[26] LIU T, ZHOU J G, HE L, et al. Determination of polychlorinated biphenyls and organochlorine pesticides in Chinese mitten crabs (Eriocheir sinensis) using modified QuEChERS followed by GC-MS[J]. Anal Method,2020,12(18):2398−2406. doi: 10.1039/D0AY00519C
[27] LI P P, DUAN Y, GE H L, et al. Multiresidue analysis of 113 pesticides in different maturity levels of mangoes using an optimized QuEChERS method with GC-MS/MS and UHPLC-MS/MS[J]. Food Anal Method,2018,11(10):2742−2757. doi: 10.1007/s12161-018-1263-5
[28] 马智玲, 赵文, 李凌云, 等. 气相色谱-三重四极杆串联质谱法快速测定蔬菜水果中 129 种农药的残留量[J]. 色谱,2013,31(3):228−239. [MA Z L, ZHAO W, LI L Y, et al. Rapid determination of 129 pesticide residues in vegetables and fruits by gas chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography,2013,31(3):228−239.] doi: 10.3724/SP.J.1123.2012.10029 MA Z L, ZHAO W, LI L Y, et al. Rapid determination of 129 pesticide residues in vegetables and fruits by gas chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2013, 31(3): 228−239. doi: 10.3724/SP.J.1123.2012.10029
[29] CHEN D M, YU J, TAO Y F, et al. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2016,1017:82−88.
[30] FERRER C, LOZANO A, ANA A, et al. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables[J]. Journal of Chromatography A,2011,1218(42):7634−7639. doi: 10.1016/j.chroma.2011.07.033
-
期刊类型引用(5)
1. 胡平国,李霞雪,杨巧慧,曹璐,陈志民,陈亚,曾艳. 甜樱桃中多菌灵等6种农药的残留检测方法建立及残留消解动态研究. 农产品质量与安全. 2025(01): 86-91 . 百度学术
2. 黄敏君,黄靓,黄亚,朱小芳,关培培,王静. LC-MS/MS法检测棉花7种杀虫剂残留研究进展. 纺织报告. 2024(09): 17-19+33 . 百度学术
3. 罗雪燕,陈宝欣,黄柳霞,林洁娜,贝荣廷. 研究不同前处理方法对蔬菜中21种农药残留量的影响. 中外食品工业. 2024(14): 46-50 . 百度学术
4. 邓航,朱礼,张可欣,袁列江,李政,吴海智,上官佳,陈瑶,薛敏敏,王秀,李格,孙逸清. QuEChERS净化结合高效液相色谱串联质谱法快速测定果蔬中四唑虫酰胺残留. 农药. 2024(12): 904-910+924 . 百度学术
5. 李艳霞,皮大能. QuEChERS-气相色谱-三重四级杆串联质谱法同时测定青贮玉米中24种农药残留. 中国饲料. 2024(23): 315-322 . 百度学术
其他类型引用(1)