Protective Effect of Total Favonoids of Perilla frutescens on APAP-Induced Acute Liver Injury
-
摘要: 目的:本文主要研究紫苏叶总黄酮(Perilla flavone,PF)纯化的最佳方法,以及其对对乙酰氨基酚(Paracetamol,APAP)诱导的急性肝损伤的保护作用及可能的作用机制。方法:采用单因素实验确定大孔树脂纯化紫苏叶总黄酮的最佳条件。将BALB/c雄性小鼠随机分为6组,空白对照组(CON)、模型组(MOD)、联苯双酯组(DDB)、PF低剂量组(L-PF,12.5 mg/kg)、PF中剂量组(M-PF,25 mg/kg)、PF高剂量组(H-PF,50 mg/kg),连续灌胃给药15 d。末次给药1 h后,除CON组外,每组腹腔注射APAP建立肝损伤模型。测定小鼠血清中谷草转氨酶(AST)、谷丙转氨酶(ALT)水平;测定小鼠肝脏中丙二醛(MDA)、超氧化物歧物酶(SOD)、还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GSH-PX)的水平;对小鼠肝脏进行HE染色观察病理学变化;Western Blot法检测小鼠肝脏中Nrf2、Keap1和HO-1蛋白表达。结果:最佳纯化条件:D101树脂10 g,上样溶液浓度为2.0 mg/mL,上样体积为30 mL,50 mL的80%乙醇溶液洗脱,纯化后黄酮含量为70.32%±1.49%。与CON组比较,MOD组小鼠血清中AST、ALT表达显著升高(P<0.01),说明肝损伤造模成功。与MOD组比较,给予PF组小鼠肝脏指数、AST、ALT、MDA、GSH水平和Keap 1蛋白表达显著降低25%~60%(P<0.01或P<0.05),SOD、GSH-PX水平和Nrf2、HO-1蛋白表达水平显著升高15%~35%(P<0.01或P<0.05)。HE染色结果显示PF可有效改善APAP引起的肝损伤。结论:紫苏叶总黄酮对APAP诱导的急性肝损伤有一定的保护作用,其机制与调控氧化应激的Nrf2/HO-1信号通路相关。Abstract: Objective: To study the best purification method of Perilla flavone (PF), and to investigate its protective effect and potential mechanism on Paracetamol (APAP) - induced acute liver injury. Methods: Single factor experiments were used to determine the optimal conditions for the purification of PF by macroporous resin. BALB/c male mice were randomly divided into 6 groups, blank control group (CON), model group (MOD), diphenylene dibenzoate group (DDB), low dose group of PF (L-PF, 12.5 mg/kg), middle dose group of PF (M-PF, 25 mg/kg), and high dose group of PF (H-PF, 50 mg/kg). DDB and PF were given by continuous intragastric administration for 15 days according to the dosage. After the last administration for 1 h, APAP was injected intraperitoneally to establish liver injury model in each group except CON group. The serum levels of AST and ALT of mice were determined, and the levels of MDA, SOD, GSH, and GSH-PX in the liver of mice were tested. HE staining of the livers was performed to observe pathological changes. The expressions of Nrf2, Keap1 and HO-1 proteins in the livers were detected by Western Blot. Results: The optimal purification conditions were as follows: 10 g of D101 resin, 2.0 mg/mL of up-sampling solution, up-sampling volume of 30 mL, 50 mL of 80% ethanol solution elution. After purification, the flavonoid content was 70.32%±1.49%. Compared with CON group, the expressions of AST and ALT in the serum were significantly higher in MOD group (P<0.01), indicating successful modeling of liver injury. Compared with MOD group, the liver index, AST, ALT, MDA, GSH levels and Keap 1 protein expression in PF-given groups were significantly reduced by 25%~60% (P<0.01 or P<0.05), the concentrations of SOD, GSH-PX, and the expression levels of Nrf2 and HO-1 protein were significantly increased by 15%~35% (P<0.01 or P<0.05). HE staining results showed that PF could significantly improve APAP-induced liver injury. Conclusion: The PF can protect APAP-induced acute liver injury, and its mechanism is related to the Nrf2/HO-1 signaling pathway which regulates oxidative stress.
-
Keywords:
- Perilla /
- flavonoids /
- acetaminophen /
- liver injury
-
肝脏是人体内主要的代谢器官,一些内源的和外源的有害物质在体内进行循环后,最终都会在肝脏内进行生物转化,使肝脏容易被有毒物质损害[1]。各类化学药物或其代谢产物也会引起不同程度的肝损伤,严重的可致急性肝功能衰竭[2]。目前被收录的可引起肝损伤的药物达一千多种[3],机体易受药物影响引起体内氧化还原反应失衡从而加重炎症[4],最终导致肝脏细胞凋亡[5]。近年来,随着新药品种不断增加、联合用药情况增多和乱用药物等诸多问题的影响,药物性肝损伤的发病率逐年升高[6]。中国Hepa Tox网站收录的与肝损伤相关的药物有400多种,因急性肝炎住院的患者中约10%是由药物引起的[7]。目前,对于肝损伤的治疗没有特殊有效的方法,且治疗药物也相对匮乏,因此,研发安全性高、副作用小的天然保肝药物至关重要。
紫苏(Perilla frutescens L.),又名香苏、赤芍,是唇形科紫苏属一年生草本植物,主产于我国长江流域,有近2000年的栽培历史[8]。紫苏是我国卫生部首批颁布的药食同源的中药之一,具有食用和药用的双重价值,味辛性温,归肺、脾经,具解表散寒、行气和胃的功效[9]。有相关研究证明紫苏具有抗菌[10]、抗炎[11]、降血糖[12]、抗氧化[13]等多种药理作用,具有极高的科研价值和经济价值。黄酮类化合物是一类天然的次生代谢产物,目前广泛应用于临床中,对心血管疾病、肿瘤、炎症、高血压等均有良好的治疗效果[14],对肝细胞的损伤和凋亡也具有一定保护作用[15−16]。紫苏具有良好的抗氧化能力,且紫苏叶中黄酮含量丰富,但目前关于紫苏叶总黄酮对肝脏保护的研究却罕有报道。因此,本研究对紫苏叶总黄酮进行了提取纯化,采用对乙酰氨基酚(Paracetamol,APAP)诱导小鼠急性肝损伤模型,探究紫苏叶总黄酮(Perilla flavone,PF)对其保护作用及可能的作用机制。本研究将为开发以紫苏叶总黄酮为活性成分的保肝食品及天然药物提供科学依据。
1. 材料与方法
1.1 材料与仪器
新鲜紫苏叶 采于吉林省吉林市,经北华大学药学院李凤丽教授鉴定为唇形科塔花族紫苏(Perilla frutescens (L) Britt);SPF级BALB/c雄性小鼠 体重20.0±2.0 g,48只,实验动物许可证编号为SCXK(吉)-2020-0002,长春市亿斯实验动物技术有限责任公司;无水乙醇 天津市大茂化学试剂厂;二甲苯 辽宁泉瑞试剂有限公司;亚硝酸钠 天津市永大化学试剂有限公司;氢氧化钠、硝酸铝 天津市北联精细化学品开发有限公司;4-乙酰氨基酚 上海瑞永生物科技有限公司;D101大孔吸附树脂 天津市光复精细化工研究所;联苯双酯滴丸 北京协和药厂;谷草转氨酶(AST)试剂盒、谷丙转氨酶(ALT)试剂盒、丙二醛(MDA)试剂盒、总超氧化物歧化酶(T-SOD)试剂盒、还原型谷胱甘肽(GSH)试剂盒、谷胱甘肽过氧化物酶(GSH-PX)试剂盒 南京建成生物工程研究所;苏木素伊红(HE)染色试剂盒 雷根生物技术有限公司;β-actin抗体、Nrf2单克隆抗体、Keap-1单克隆抗体、HO-1单克隆抗体 武汉ABclonal有限公司。
AL-204电子天平 梅特勒-托利多有限公司;RE-52A旋转蒸发仪 上海亚荣生化仪器厂;UV2550型紫外可见分光光度计 岛津国际贸易有限公司;GZX-9140ME数显鼓风干燥箱 上海博迅实业有限公司;THZ-C恒温振荡器 太仓市实验设备厂;5424型台式低温高速离心机 Eppendorf公司;IfiniteM200型酶标仪 TECAN公司;Acradia H&C石蜡包理机、EG1150C冷台、RM2245半自动轮转式切片机 Leica公司;BA400显微镜 麦克奥迪实业集团有限公司;PowerPac Basic电泳仪 Biorad公司;ChampChemi Professional全自动多色凝胶及化学发光凝胶成像系统 北京赛制创业科技有限公司。
1.2 实验方法
1.2.1 紫苏叶总黄酮粗提物的制备
紫苏叶剪为约2 cm2碎片并在恒温干燥箱烘干,按料液比1:14加入60%乙醇回流提取4 h[17]。提取结束后对提取液进行抽滤并浓缩滤液,将浓缩液烘干至恒重,获得紫苏叶总黄酮粗提物。
1.2.2 紫苏叶总黄酮纯化工艺优化
1.2.2.1 总黄酮含量的测定方法
精密称取4.0 mg芦丁加入70%乙醇溶解后定容至10 mL,配制成质量浓度为0.4 mg/mL的芦丁标准品溶液。利用NaNO2-Al(NO3)3-NaOH显色法显色后在510 nm处测定吸光度[18],制作标准曲线,根据线性回归方程(y=0.0116x−0.0084,R2=0.9995)计算黄酮含量。
1.2.2.2 大孔吸附树脂的筛选
大孔树脂的预处理:95%乙醇浸泡大孔树脂24 h,使其充分溶胀后抽滤,用95%乙醇冲洗,直至洗出溶液无白色浑浊,再用蒸馏水洗至无醇味备用[19]。
分别称取2.0 g预处理好的D101、XAD2、HP-20、AB-8大孔吸附树脂置于具塞锥形瓶中,分别加入浓度为1 mg/mL的上样溶液30 mL,置于恒温振荡器中25 ℃,120 r/min振荡24 h,过滤,得到吸附液。适量蒸馏水冲洗后加入95%乙醇30 mL,恒温振荡器中25 ℃,120 r/min振荡24 h,过滤,得到洗脱液。分别测定吸附液和洗脱液的黄酮浓度,计算吸附量、吸附率及解吸量、解吸率。
吸附量(mg/g)=(C0−C1)×Vm 吸附率(%)=(C0−C1)C0×100 解吸量(mg/g)=C2×V2m 解吸率(%)=C2(C0−C1)×100 注:C0为初始溶液黄酮浓度(mg/mL);C1为吸附后溶液黄酮浓度(mg/mL);V为供试品溶液体积(mL);m为树脂重量(g);C2为解吸液黄酮浓度(mg/mL);V2为洗脱溶液体积(mL)。
1.2.2.3 泄露曲线的绘制
预处理好的大孔树脂10.0 g,湿法装柱,1.0 mg/mL上样溶液160 mL,流速1.0 mL/min,每10 mL收集一份流出液,测定黄酮浓度并绘制泄露曲线。
1.2.2.4 上样溶液浓度的筛选
精准称取5份预处理好的大孔树脂,每份10.0 g,分别加入浓度为0.5、1.0、1.5、2.0、2.5 mg/mL的上样溶液20 mL,流速1.0 mL/min,计算吸附率。
1.2.2.5 洗脱溶液的筛选
取5份饱和吸附后的大孔树脂,每份2.0 g,参考王雪等[20]的方法分别加入30%、50%、70%、80%、95%的乙醇30 mL,恒温振荡24 h后测定洗脱液黄酮浓度。
1.2.2.6 洗脱溶液体积的筛选
取饱和吸附后的大孔树脂10 g,30 mL蒸馏水洗去水溶性杂质,90 mL洗脱溶液进行洗脱,每5 mL收集一份洗脱液,测定其黄酮浓度。
1.2.3 动物试验
1.2.3.1 动物分组及给药
将48只雄性BALB/c小鼠适应性喂养一周后随机分为6组,每组8只,分别为:空白对照组(CON)、模型组(MOD)、联苯双酯组(DDB,200 mg/kg)、紫苏总黄酮低(L-PF,12.5 mg/kg)、中(M-PF,25 mg/kg)、高(H-PF,50 mg/kg)剂量组。各组小鼠按以上给药方案均每日灌胃给药,对照组及模型组均给等体积的蒸馏水(0.1 mL/10 g)[21],连续灌胃15 d。末次给药1 h后,除对照组小鼠外,其余组别小鼠均腹腔注射APAP(400 mg/kg,溶于温生理盐水中)制造急性肝损伤模型[22]。禁食不禁水12 h后,每只小鼠眼球取血,小鼠血液室温静置1 h后离心分离血清(4 ℃,4000 r/min,10 min);分离小鼠肝脏,取肝左叶浸泡在10%福尔马林溶液中固定,其余组织−80 ℃冻存备用。
1.2.3.2 肝脏指数测定
摘取小鼠肝脏,0.9%氯化钠溶液冲洗后滤纸吸干多余水分称重,计算小鼠肝脏指数。
肝脏指数(%)=肝质量(g)体质量(g)×100 1.2.3.3 生化指标检测
通过试剂盒检测小鼠血清中ALT、AST的水平,实验操作严格按照试剂盒说明书执行。取小鼠肝组织制备10%肝组织匀浆,取上清液,根据各试剂盒的说明书对小鼠肝组织匀浆中SOD、MDA、GSH、GSH-PX水平进行测定。
1.2.3.4 肝脏病理学检查
小鼠肝左叶在10%福尔马林溶液中固定48 h后,对其进行脱水、透明、浸蜡处理,并用石蜡包埋,均匀切片(4 μm),HE染色法进行染色,置于光学显微镜下观察其病理学变化。
1.2.3.5 Western Blot检测相关蛋白因子表达
肝组织剪碎加入RIPA裂解液,冰上匀浆裂解1 h后离心(4 ℃,12000 r/min,20 min),取上清液,BCA法测定其蛋白含量,配制样本,Western Blot法分别检测Nrf2、Keap 1、HO-1蛋白的表达[23],以β-Actin为内参,使用Image J分析各条带灰度值。
1.3 数据处理
实验数据采用SPSS 17.0软件进行统计学分析,用GraphPad Prism 8.0软件进行作图。数据以平均值±标准差(ˉx±s)表示,P<0.05认为有显著差异,P<0.01认为有极显著差异。
2. 结果与分析
2.1 紫苏叶总黄酮的分离纯化
2.1.1 大孔吸附树脂的选择
本研究选择了4种不同型号的大孔树脂通过静态吸附和静态解吸附试验进行比较。由表1可见,吸附率由大到小分别为D101>HP-20>AB-8>XAD2,解吸率由大到小分别是XAD2>D101>AB-8>HP-20,虽然XAD2解吸率比D101大,但其吸附率较小,因此综合选择D101作为纯化紫苏叶总黄酮的最佳树脂型号。
表 1 大孔吸附树脂筛选结果Table 1. Results of screening of macroporous adsorbent resins型号 吸附量(mg/g) 吸附率(%) 解吸量(mg/g) 解吸率(%) D101 0.4088±0.0019 82.07±0.01 0.3949±0.0001 96.59±0.01 XAD2 0.1986±0.0007 67.36±0.01 0.3277±0.0001 97.64±0.01 HP-20 0.2374±0.0020 75.15±0.01 0.3350±0.0004 89.48±0.01 AB-8 0.2357±0.0032 74.80±0.01 0.3557±0.0003 95.45±0.01 2.1.2 泄露曲线
当流出液中总黄酮浓度达到上样溶液中总黄酮浓度的十分之一时可认为达到泄漏点,即最佳上样体积[24]。在流出液达到20 mL后吸光度急剧增加,达到泄露点,在流出液达到30 mL时树脂对总黄酮的吸附基本平衡(图1),因此选择最佳上样体积为30 mL。
2.1.3 上样溶液浓度的选择
由表2可见,上样溶液浓度为2.0 mg/mL时,大孔树脂的吸附率最大,随着上样溶液浓度增加,吸附率逐渐增加,当上样溶液浓度大于2.0 mg/mL后大孔树脂吸附率开始下降,出现此结果的原因可能是浓度在2.0 mg/mL时树脂对黄酮吸附已经饱和,继续提高上样液浓度会导致吸附的杂质增加[25],因此选择最佳上样溶液浓度为2.0 mg/mL。
表 2 上样溶液浓度筛选结果Table 2. Results of loading solution concentration screening上样溶液浓度(mg/mL) 吸附率(%) 0.5 80.39±0.30 1.0 83.43±0.16 1.5 82.10±0.39 2.0 83.46±0.15 2.5 82.33±0.23 2.1.4 洗脱溶液的选择
如图2所示,洗脱液中黄酮浓度随着乙醇浓度增大而增加,乙醇浓度为80%时洗脱出的黄酮浓度最大,继续增大乙醇浓度易导致杂质被一同洗脱[26],因此综合考虑选择80%乙醇溶液作为最佳洗脱溶剂。
2.1.5 洗脱溶液体积的选择
如图3所示,当乙醇流出15 mL时,黄酮浓度急剧升高,此时大量黄酮被洗脱,乙醇流出25 mL后,黄酮浓度逐渐降低,乙醇流出50 mL时,黄酮浓度降至8.05 μg/mL,且流出60 mL后黄酮浓度趋近于0,黄酮基本洗脱完全。洗脱液用量过少会导致洗脱不完全,用量过多易将杂质洗脱且造成浪费[25],因此选择最佳洗脱溶液体积为50 mL。
2.1.6 最佳工艺验证
D101树脂10 g,上样溶液浓度为2.0 mg/mL,上样体积为30 mL,蒸馏水除杂后用50 mL的80%乙醇溶液洗脱,反复进行3次平行试验,浓缩洗脱液烘干至恒重,通过所得线性方程(y=0.0116x-0.0084,R2=0.9995)计算出紫苏叶总黄酮纯度为70.32%±1.49%。本研究通过单因素分析得到了一种较为简单、纯化结果较好的黄酮纯化方法。
2.2 PF对小鼠肝脏指数的影响
脏器的重量和脏器指数可以反映动物脏器的功能状态,脏器指数的变化说明脏器可能发生萎缩或水肿等病变[27]。由表3可见,MOD组小鼠肝脏质量和肝脏指数极显著高于CON组(P<0.01),说明腹腔注射APAP引起小鼠肝脏发生肿大。DDB组小鼠肝脏质量及肝脏指数与MOD组相比显著降低(P<0.05);给予PF的各组与MOD组相比,L-PF和M-PF组小鼠体质量显著升高(P<0.05),肝脏质量无显著差异,肝脏指数显著降低(P<0.05),H-PF组体质量无显著差异,肝脏质量显著降低(P<0.05),肝脏指数极显著降低(P<0.01),由此可见,虽然小鼠体重略有差异,但与MOD组相比,给予PF组的小鼠肝脏指数整体降低,肝脏肿大现象有所改善,说明紫苏叶总黄酮对APAP引起的肝脏肿大具有一定抑制作用。
表 3 对小鼠肝脏指数的影响(n=8)Table 3. Effect on liver index of mice (n=8)组别 体质量(g) 肝脏质量(g) 肝脏指数(%) CON 18.01±0.85 0.80±0.07 4.46±0.20 MOD 18.69±0.80 1.00±0.09## 5.35±0.42## DDB 18.63±0.88 0.90±0.06* 4.82±0.31* L-PF 20.79±1.11* 1.03±0.06 4.94±0.17* M-PF 20.50±1.49* 0.96±0.09 4.69±0.41** H-PF 19.00±0.93 0.89±0.09* 4.69±0.25** 注:与CON比较,#P<0.05,##P<0.01;与MOD比较,*P<0.05,**P<0.01。 2.3 PF对小鼠血清中ALT、AST的影响
ALT和AST是肝细胞损伤重要指标,当肝细胞发生了病变,ALT和AST活性会明显升高[28],所以可以通过AST和ALT水平来反映肝脏损伤情况。如图4所示,与CON组相比MOD组小鼠血清中ALT、AST水平极显著升高(P<0.01),说明小鼠肝脏细胞受损,APAP诱导小鼠肝损伤模型成功。与MOD组相比,DDB组及PF组小鼠血清中ALT、AST水平均极显著降低(P<0.01),且DDB组效果优于L-PF、M-PF组。说明紫苏叶总黄酮可有效降低肝损伤小鼠血清中ALT和AST水平,且随着给药剂量增加效果增强。
2.4 PF对小鼠肝脏中SOD、MDA、GSH、GSH-PX的影响
发生氧化应激时体内氧化与抗氧化作用失衡,产生大量自由基,造成细胞严重损伤,导致大量细胞凋亡[29]。SOD可清除超氧阴离子自由基,保护细胞免受氧化损伤,其活力的高低反映了机体清除自由基的能力[30],MDA是脂质过氧化的产物,过量MDA的生成会引起细胞损伤[31]。GSH-PX可特异性催化GSH的还原反应,起到保护细胞膜结构和功能完整的作用[32]。如图5所示,与CON组相比,MOD组小鼠肝脏中SOD、GSH-PX水平极显著降低(P<0.01),MDA和GSH水平极显著升高(P<0.01),说明APAP抑制了小鼠肝脏中SOD和GSH-PX活性,导致GSH反应速度降低,MDA在肝脏内大量堆积造成细胞损伤。与MOD组相比,给药PF各组小鼠肝脏中SOD水平极显著升高(P<0.01),GSH水平极显著降低(P<0.01),L-PF和M-PF组小鼠肝脏中MDA水平显著降低(P<0.05),H-PF组MDA水平极显著降低(P<0.01),L-PF组小鼠肝脏中GSH-PX水平显著升高(P<0.05),M-PF和H-PF组小鼠肝脏中GSH-PX水平极显著升高(P<0.01)。崔明宇等[31]研究发现从蓬子菜中提取的总黄酮可以调节过氧化损伤大鼠体内SOD、MDA和GSH-Px水平从而提高大鼠的抗氧化能力,而本研究结果发现紫苏叶总黄酮可以有效调节小鼠SOD、MDA、GSH、GSH-PX水平,说明紫苏总黄酮可以促进肝脏内抗氧化酶发挥作用,提高了小鼠的抗氧化能力,维持肝脏氧化还原稳态。
2.5 肝脏病理学观察
如图6所示,CON组小鼠肝细胞排列整齐,肝索呈放射状,形态结构正常;MOD组小鼠肝索排列极紊乱,肝窦狭窄,肝细胞之间已无明显界限,可见大量炎性细胞浸润;DDB组小鼠肝小叶结构比较清晰可辨,未见明显炎性细胞,损伤改善;L-PF组小鼠肝细胞边界模糊不清,M-PF及H-PF组有少量炎细胞,整体损伤减轻,细胞核形态完整,细胞间界限清晰,说明PF可以改善APAP对肝细胞造成的损伤。
2.6 PF对小鼠肝脏中相关蛋白因子的影响
Nrf2/HO-1是细胞内最重要的抗氧化应激机制之一,Nrf2/HO-1途径能保护组织器官免受氧化损伤[33]。Keap 1是Nrf2的抑制蛋白,而Nrf2是细胞抗氧化关键介导因子,能够维持细胞内氧化还原动态平衡,Nrf2还可诱导HO-1高效表达,从而保护机体免受氧化损伤[34]。有研究显示Nrf2/HO-1信号通路在抗氧化应激方面发挥重要作用,其中Nrf2是降低氧化应激的理想靶点[35]。Western Blot实验结果如图7所示,与CON组小鼠相比,MOD组小鼠肝脏中Nrf2、HO-1蛋白表达水平极显著降低(P<0.01),Keap 1蛋白表达水平显著升高(P<0.05)。与MOD组相比,DDB和PF给药组小鼠肝脏中Nrf2蛋白表达水平均显著升高(P<0.05),HO-1蛋白表达水平极显著升高(P<0.01),Keap 1蛋白表达水平极显著降低(P<0.01),说明APAP抑制了Nrf2蛋白正常表达,而PF可降低Keap 1的表达,促进Nrf2蛋白的表达,从而进一步诱导通路下游HO-1蛋白表达,调节氧化应激反应的发生。上述结果表明,紫苏叶总黄酮可通过Nrf2/HO-1通路调节机体内氧化应激反应平衡,改善肝损伤。
3. 结论
本研究得到紫苏叶总黄酮纯化的最佳条件为:D101树脂10 g,2.0 mg/mL上样溶液30 mL,50 mL的80%乙醇溶液洗脱。并通过腹腔注射APAP建立小鼠肝损伤模型,发现紫苏叶总黄酮可以调节机体内抗氧化酶活性,减少氧化代谢产物生成,并通过调节Nrf2/HO-1信号通路来维持体内氧化应激平衡状态,对APAP诱导的肝脏损伤具有良好的保护作用。
-
表 1 大孔吸附树脂筛选结果
Table 1 Results of screening of macroporous adsorbent resins
型号 吸附量(mg/g) 吸附率(%) 解吸量(mg/g) 解吸率(%) D101 0.4088±0.0019 82.07±0.01 0.3949±0.0001 96.59±0.01 XAD2 0.1986±0.0007 67.36±0.01 0.3277±0.0001 97.64±0.01 HP-20 0.2374±0.0020 75.15±0.01 0.3350±0.0004 89.48±0.01 AB-8 0.2357±0.0032 74.80±0.01 0.3557±0.0003 95.45±0.01 表 2 上样溶液浓度筛选结果
Table 2 Results of loading solution concentration screening
上样溶液浓度(mg/mL) 吸附率(%) 0.5 80.39±0.30 1.0 83.43±0.16 1.5 82.10±0.39 2.0 83.46±0.15 2.5 82.33±0.23 表 3 对小鼠肝脏指数的影响(n=8)
Table 3 Effect on liver index of mice (n=8)
组别 体质量(g) 肝脏质量(g) 肝脏指数(%) CON 18.01±0.85 0.80±0.07 4.46±0.20 MOD 18.69±0.80 1.00±0.09## 5.35±0.42## DDB 18.63±0.88 0.90±0.06* 4.82±0.31* L-PF 20.79±1.11* 1.03±0.06 4.94±0.17* M-PF 20.50±1.49* 0.96±0.09 4.69±0.41** H-PF 19.00±0.93 0.89±0.09* 4.69±0.25** 注:与CON比较,#P<0.05,##P<0.01;与MOD比较,*P<0.05,**P<0.01。 -
[1] LI X X, JIANG Z H, ZHOU B, et al. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice[J]. Journal of Physiology and Biochemistry,2019,75:29−37. doi: 10.1007/s13105-018-0647-8
[2] 刘茹佳, 辛小娟. 药物性肝损伤发生机制、危险因素、监测以及再用药的研究进展[J]. 临床肝胆病杂志,2023,39(4):968−973. [LIU R J, XIN X J. Research advances in pathogenesis, risk factors, monitoring, and retreatment of drug-induced liver injury[J]. Journal of Clinical Hepatology,2023,39(4):968−973.] doi: 10.3969/j.issn.1001-5256.2023.04.034 LIU R J, XIN X J. Research advances in pathogenesis, risk factors, monitoring, and retreatment of drug-induced liver injury[J]. Journal of Clinical Hepatology, 2023, 39(4): 968−973. doi: 10.3969/j.issn.1001-5256.2023.04.034
[3] 彭辉, 张丽, 何俊, 等. 药物性肝损伤有害结局路径研究进展[J]. 中国药理学与毒理学杂志,2021,35(11):868−876. [PENG H, ZHANG L, HE J, et al. Research progress in adverse outcome pathway related to drug-induced liver injury[J]. Chinese Journal of Pharmacology and Toxicology,2021,35(11):868−876.] doi: 10.3867/j.issn.1000-3002.2021.11.009 PENG H, ZHANG L, HE J, et al. Research progress in adverse outcome pathway related to drug-induced liver injury[J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(11): 868−876. doi: 10.3867/j.issn.1000-3002.2021.11.009
[4] DING W X, YANG L. Alcohol and drug-induced liver injury:Metabolism, mechanisms, pathogenesis and potential therapies[J]. Liver Res,2019,3(3-4):129−131. doi: 10.1016/j.livres.2019.11.006
[5] FU S, WU D, JIANG W, et al. Molecular biomarkers in druginduced liver injury:Challenges and future perspectives[J]. Front Pharmacol,2020,10:1667. doi: 10.3389/fphar.2019.01667
[6] 于乐成, 陈成伟. 药物性肝损伤的发生机制:当前认识和未来需求[J]. 临床肝胆病杂志,2021,37(11):2515−2524. [YU Y C, CHEN C W. Pathogenesis of drug-induced liver injury:Current understanding and future needs[J]. Journal of Clinical Hepatology,2021,37(11):2515−2524.] doi: 10.3969/j.issn.1001-5256.2021.11.003 YU Y C, CHEN C W. Pathogenesis of drug-induced liver injury: Current understanding and future needs[J]. Journal of Clinical Hepatology, 2021, 37(11): 2515−2524. doi: 10.3969/j.issn.1001-5256.2021.11.003
[7] SHEN T, LIU Y, SHANG J, et al. Incidence and etiology of drug-induced liver injury in mainland China[J]. Gastroenterology,2019,156(8):2230−2241. doi: 10.1053/j.gastro.2019.02.002
[8] 钱锦秀, 孟武威, 刘晖晖, 等. 经典名方中紫苏类药材的本草考证[J]. 中国实验方剂学杂志,2022,28(10):55−67. [QIAN J X, MENG W W, LIU H H, et al. Textual research on perillae in famous classical formulas[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(10):55−67.] QIAN J X, MENG W W, LIU H H, et al. Textual research on perillae in famous classical formulas[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(10): 55−67.
[9] 国家药典委员会. 中华人民共和国药典[M]. 北京:中国医药科技出版社, 2020. [National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing:China Pharmaceutical Science and Technology Press, 2020.] National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Pharmaceutical Science and Technology Press, 2020.
[10] LI H Z, REN Z Q, REDDY N V, et al. In silico evaluation of antimicrobial, antihyaluronidase and bioavailability parameters of rosmarinic acid in Perilla frutescens leaf extracts[J]. SN Applied Sciences,2020,2(9):1547. doi: 10.1007/s42452-020-03323-8
[11] 王宇宁, 樊晖, 梁克利. 紫苏叶化学成分及其体外抗炎活性[J]. 中成药,2021,43(6):1500−1503. [WANG Y N, FAN H, LIANG K L. Chemical constituents from the leaves of Perilla frutescens and their anti-inflammatory activities in vitro[J]. Chinese Traditional Patent Medicine,2021,43(6):1500−1503.] doi: 10.3969/j.issn.1001-1528.2021.06.020 WANG Y N, FAN H, LIANG K L. Chemical constituents from the leaves of Perilla frutescens and their anti-inflammatory activities in vitro[J]. Chinese Traditional Patent Medicine, 2021, 43(6): 1500−1503. doi: 10.3969/j.issn.1001-1528.2021.06.020
[12] WANG Z X, TU Z C, XIE X, et al. Perilla frutescens leaf extract and fractions:polyphenol composition, antioxidant, enzymes (α-Glucosidase, acetylcholinesterase, and tyrosinase) inhibitory, anticancer, and antidiabetic activities[J]. Foods,2021,10(2):315. doi: 10.3390/foods10020315
[13] 马嘉洁, 赵端端, 全世航, 等. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较[J]. 食品工业科技,2023,44(12):344−352. [MA J J, ZHAO D D, QUAN S H, et al. Optimization of extraction process of flavonoids and polyphenols from Perilla frutescens (L.) Britt leaves and comparison of antioxidant activities of different varieties[J]. Science and Technology of Food Industry,2023,44(12):344−352.] MA J J, ZHAO D D, QUAN S H, et al. Optimization of extraction process of flavonoids and polyphenols from Perilla frutescens (L.) Britt leaves and comparison of antioxidant activities of different varieties[J]. Science and Technology of Food Industry, 2023, 44(12): 344−352.
[14] CAO Y, XIE L, LIU K, et al. The antihypertensive potential of flavonoids from Chinese herbal medicine:A review[J]. Pharmacol Res,2021,12(174):105919.
[15] 欧阳香, 程虹毓, 胡伟琼, 等. 黄酮类化合物抗酒精性肝损伤作用及机制研究进展[J]. 中国药理学通报,2020,36(9):1200−1205. [OUYANG X, CHENG H Y, HU W Q, et al. Research progress on anti-alcoholic liver injury effects and mechanism of flavonoids[J]. Chinese Pharmacological Bulletin,2020,36(9):1200−1205.] doi: 10.3969/j.issn.1001-1978.2020.09.004 OUYANG X, CHENG H Y, HU W Q, et al. Research progress on anti-alcoholic liver injury effects and mechanism of flavonoids[J]. Chinese Pharmacological Bulletin, 2020, 36(9): 1200−1205. doi: 10.3969/j.issn.1001-1978.2020.09.004
[16] LIN W, JIANG J G. Protective effects of plant-derived flavonoids on hepatic injury[J]. Journal of Functional Foods,2018,44:283−291. doi: 10.1016/j.jff.2018.03.015
[17] 胡晓彤. 紫苏软膏剂的制备及抗炎活性研究[D]. 吉林:北华大学, 2020. [HU X T. Study on Perilla frutescens ointment preparation and its anti-inflammatory activity[D]. Jilin:Beihua University, 2020.] HU X T. Study on Perilla frutescens ointment preparation and its anti-inflammatory activity[D]. Jilin: Beihua University, 2020.
[18] 钟优艳, 陈连国, 王琼. 中药苏叶与苏梗中黄酮含量测定[J]. 安徽农业科学,2016,44(31):112−113. [ZHONG Y Y, CHEN L G, WANG Q. Determination on flavone content in traditional Chinese medicine folium perillae and caulis perllae[J]. Journal of Anhui Agricultural Sciences,2016,44(31):112−113.] doi: 10.3969/j.issn.0517-6611.2016.31.040 ZHONG Y Y, CHEN L G, WANG Q. Determination on flavone content in traditional Chinese medicine folium perillae and caulis perllae[J]. Journal of Anhui Agricultural Sciences, 2016, 44(31): 112−113. doi: 10.3969/j.issn.0517-6611.2016.31.040
[19] 杨茹, 刘聪燕, 许婷, 等. 5种大孔吸附树脂对淫羊藿总黄酮的吸附特性考察[J]. 中国实验方剂学杂志,2020,26(6):113−120. [YANG R, LIU C Y, XU T, et al. Investigation of adsorption properties of five macroporous resins for total flavonoids in epimedii folium[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(6):113−120.] YANG R, LIU C Y, XU T, et al. Investigation of adsorption properties of five macroporous resins for total flavonoids in epimedii folium[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(6): 113−120.
[20] 王雪, 夏顺利, 刘景楠, 等. 白花蛇舌草总黄酮大孔树脂纯化工艺及其体内抑瘤作用的研究[J]. 中医药信息,2021,38(3):16−21. [WANG X, XIA S L, LIU J N, et al. Study on purification process of total flavonoids from Oldenlandia diffusa by macroporous resin and its tumor inhibition in vivo[J]. Information on Traditional Chinese Medicine,2021,38(3):16−21.] WANG X, XIA S L, LIU J N, et al. Study on purification process of total flavonoids from Oldenlandia diffusa by macroporous resin and its tumor inhibition in vivo[J]. Information on Traditional Chinese Medicine, 2021, 38(3): 16−21.
[21] 潘广涛, 刘宇寒, 周方园, 等. 大黄素通过减轻氧化应激和肝细胞凋亡对脂多糖诱导急性肝损伤的保护机制研究[J]. 世界科学技术-中医药现代化,2021,23(7):2294−2301. [PAN G T, LIU Y H, ZHOU F Y, et al. Protective mechanism of emodin on lipopolysaccharide-induced cute liver injury by reducing oxidative stress and hepatocyte apoptosis[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2021,23(7):2294−2301.] PAN G T, LIU Y H, ZHOU F Y, et al. Protective mechanism of emodin on lipopolysaccharide-induced cute liver injury by reducing oxidative stress and hepatocyte apoptosis[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(7): 2294−2301.
[22] 李大伟, 陆天飞, 华相伟, 等. 对乙酰氨基酚诱导的小鼠药物性肝损伤的模型研究[J]. 中国细胞生物学学报,2014,36(6):805−809. [LI D W, LU T F, HUA X W, et al. The model of acute liver injury induced by acetaminophen in mice[J]. Chinese Journal of Cell Biology,2014,36(6):805−809.] doi: 10.11844/cjcb.2014.06.0435 LI D W, LU T F, HUA X W, et al. The model of acute liver injury induced by acetaminophen in mice[J]. Chinese Journal of Cell Biology, 2014, 36(6): 805−809. doi: 10.11844/cjcb.2014.06.0435
[23] LIM D W, KIM H, LEE S J, et al. Jwa Kum Whan attenuates nonalcoholic fatty liver disease by modulating glucose metabolism and the insulin signaling pathway[J]. Evid Based Complement Alternat Med,2019(10):4589810.
[24] 李园园, 李洪娟, 侯桂革, 等. 大孔吸附树脂纯化紫菀总黄酮工艺[J]. 中成药,2019,41(3):501−505. [LI Y Y, LI H J, HOU G G, et al. Purification process for total flavonoids in Asteris radix et Rhizoma with macroporous absorption resin[J]. Chinese Traditional Patent Medicine,2019,41(3):501−505.] doi: 10.3969/j.issn.1001-1528.2019.03.004 LI Y Y, LI H J, HOU G G, et al. Purification process for total flavonoids in Asteris radix et Rhizoma with macroporous absorption resin[J]. Chinese Traditional Patent Medicine, 2019, 41(3): 501−505. doi: 10.3969/j.issn.1001-1528.2019.03.004
[25] 赵明慧. 沙棘黄酮的提取纯化工艺优化及应用研究[D]. 石河子:石河子大学, 2023. [ZHAO M H. Study on extraction and purification process optimization and application of sea buckthorn flavonoids[D]. Shihezi:Shihezi University, 2023.] ZHAO M H. Study on extraction and purification process optimization and application of sea buckthorn flavonoids[D]. Shihezi: Shihezi University, 2023.
[26] 刘杰, 梁亚蓝, 李浩楠, 等. 玉米须中总黄酮的大孔树脂纯化工艺优化[J]. 粮食与油脂,2022,35(3):76−80. [LIU J, LIANG Y L, LI H N, et al. Optimization of macroporous resin purification process for total flavonoids in corn[J]. Cereals & Oils,2022,35(3):76−80.] doi: 10.3969/j.issn.1008-9578.2022.03.018 LIU J, LIANG Y L, LI H N, et al. Optimization of macroporous resin purification process for total flavonoids in corn[J]. Cereals & Oils, 2022, 35(3): 76−80. doi: 10.3969/j.issn.1008-9578.2022.03.018
[27] 何云山, 惠华英, 喻嵘, 等. 芦笋对高脂饮食小鼠脏器指数及血生化的影响[J]. 中国微生态学杂志,2018,30(11):1261−1265. [HE Y S, HUI H Y, YU R, et al. Effects of asparagus on organ indexes and blood biochemistry in high-fat diet mice[J]. Chinese Journal of Microecology,2018,30(11):1261−1265.] HE Y S, HUI H Y, YU R, et al. Effects of asparagus on organ indexes and blood biochemistry in high-fat diet mice[J]. Chinese Journal of Microecology, 2018, 30(11): 1261−1265.
[28] AMERNI B, MOOSAVY S H, BANOOKH F, et al. FIB-4, APRI, and AST/ALT ratio compared to Fibro Scan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran[J]. BMC Gastroenterol, 2021, 21(1):453.
[29] 廖月, 何毅怀, 罗亚文. 氧化应激在急性肝损伤中的作用[J]. 临床肝胆病杂志,2022,38(10):2402−2407. [LIAO Y, HE Y H, LUO Y W. Role of oxidative stress in acute liver injury[J]. Journal of Clinical Hepatology,2022,38(10):2402−2407.] doi: 10.3969/j.issn.1001-5256.2022.10.039 LIAO Y, HE Y H, LUO Y W. Role of oxidative stress in acute liver injury[J]. Journal of Clinical Hepatology, 2022, 38(10): 2402−2407. doi: 10.3969/j.issn.1001-5256.2022.10.039
[30] HE Y, WANG F, YAO N, et al. Serum superoxide dismutase level is a potential biomarker of disease prognosis in patients with HEV-induced liver failure[J]. BMC Gastroenterol, 2022, 22(1):14.
[31] 崔明宇, 尹义凤, 朱凤梅, 等. 蓬子菜总黄酮对D-半乳糖致过氧化损伤大鼠SOD、MDA和GSH-Px水平的影响[J]. 中医药学报,2021,49(12):47−51. [CUI M Y, YIN Y F, ZHU F M, et al. Effects of FVGL on levels of SOD, MDA and GSH-Px in rats with oxidative damage induced by D-Galactose[J]. Acta Chinese Medicine and Pharmacology,2021,49(12):47−51.] CUI M Y, YIN Y F, ZHU F M, et al. Effects of FVGL on levels of SOD, MDA and GSH-Px in rats with oxidative damage induced by D-Galactose[J]. Acta Chinese Medicine and Pharmacology, 2021, 49(12): 47−51.
[32] 陈丰, 刘殿娜, 陈绍红, 等. 枳葛解酒保肝方对酒精性肝损伤大鼠SOD、MDA、GSH的影响[J]. 北京中医药大学学报,2018,41(4):306−309. [CHEN F, LIU D N, CHEN S H, et al. Effects of Zhige Jiejiu Baogan Fang on SOD, MDA and GSH IN rats with alcoholic liver injury[J]. Journal of Beijing University of Traditional Chinese Medicine,2018,41(4):306−309.] doi: 10.3969/j.issn.1006-2157.2018.04.008 CHEN F, LIU D N, CHEN S H, et al. Effects of Zhige Jiejiu Baogan Fang on SOD, MDA and GSH IN rats with alcoholic liver injury[J]. Journal of Beijing University of Traditional Chinese Medicine, 2018, 41(4): 306−309. doi: 10.3969/j.issn.1006-2157.2018.04.008
[33] 乔丽杰, 王延让, 张明. Nrf2/HO-1通路在氧化损伤保护机制中研究进展[J]. 中国职业医学,2013,40(1):82−84. [QIAO L J, WANG Y R, ZHANG M. Research progress of Nrf2/HO-1 pathway in mechanism of oxidative damage and protection[J]. China Occupational Medicine,2013,40(1):82−84.] QIAO L J, WANG Y R, ZHANG M. Research progress of Nrf2/HO-1 pathway in mechanism of oxidative damage and protection[J]. China Occupational Medicine, 2013, 40(1): 82−84.
[34] JI AE LEE, YOUNG-WON KWON, HYE RI KIM, et al. A novel pyrazolo[3, 4-d]pyrimidine induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects[J]. Mol Cells,2022,45:134−147. doi: 10.14348/molcells.2021.0074
[35] 王治博, 宋顺宗, 张子波. 黑米花色苷通过激活Nrf2/HO-1信号通路保护四氯化碳所致急性肝损伤的机制[J]. 时珍国医国药,2019,30(5):1097−1100. [WANG Z B, SONG S Z, ZHANG Z B. AEBR protects against carbon tetrachloride -induced liver injury via Nrf2/HO-1 activation[J]. Lishizhen Medicine and Materia Medica Research,2019,30(5):1097−1100.] WANG Z B, SONG S Z, ZHANG Z B. AEBR protects against carbon tetrachloride -induced liver injury via Nrf2/HO-1 activation[J]. Lishizhen Medicine and Materia Medica Research, 2019, 30(5): 1097−1100.