Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

复合酶法提取槐花多糖的工艺优化及其抗氧化活性

任晓莉, 杨璐, 乔鹏, 缪奕锴, 杨懿昂, 代秋红, 张贤德

任晓莉,杨璐,乔鹏,等. 复合酶法提取槐花多糖的工艺优化及其抗氧化活性[J]. 食品工业科技,2024,45(7):8−14. doi: 10.13386/j.issn1002-0306.2023070216.
引用本文: 任晓莉,杨璐,乔鹏,等. 复合酶法提取槐花多糖的工艺优化及其抗氧化活性[J]. 食品工业科技,2024,45(7):8−14. doi: 10.13386/j.issn1002-0306.2023070216.
REN Xiaoli, YANG Lu, QIAO Peng, et al. Optimization of Extraction Process of Polysaccharide from Sophora japonica by Compound Enzyme Method and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(7): 8−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070216.
Citation: REN Xiaoli, YANG Lu, QIAO Peng, et al. Optimization of Extraction Process of Polysaccharide from Sophora japonica by Compound Enzyme Method and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(7): 8−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070216.

复合酶法提取槐花多糖的工艺优化及其抗氧化活性

基金项目: 大学生创新创业项目(GK2022131,202314101022)。
详细信息
    作者简介:

    任晓莉(1974−),女,博士,教授,研究方向:生化提取,E-mail:xlren66@126.com

    通讯作者:

    任晓莉(1974−),女,博士,教授,研究方向:生化提取,E-mail:xlren66@126.com

  • 中图分类号: TS201.2

Optimization of Extraction Process of Polysaccharide from Sophora japonica by Compound Enzyme Method and Its Antioxidant Activity

  • 摘要: 目的:采用复合酶法提取槐花多糖,对提取工艺进行优化,并评价其体外抗氧化活性。方法:通过单因素实验考察复合酶添加量、pH、复合酶比例和酶解时间对得率的影响,在单因素实验基础上,采用响应面法确定槐花多糖的最佳提取参数,并以VC为对照,通过测定槐花多糖对DPPH·和ABTS+·的清除率及总还原力,考察所提取的槐花多糖的抗氧化活性。结果:复合酶法提取槐花多糖的最佳提取参数为:复合酶添加量23.8 mg/g,pH4.8,果胶酶与纤维素酶比例0.912:1,该工艺下槐花多糖得率为10.71%,所提取的槐花多糖对DPPH·和ABTS+·均表现出较好的清除能力,当槐花多糖溶液浓度为2.8 mg/mL时,对DPPH·和ABTS+·的清除率分别达到同浓度下VC的94.19%和99.79%,总还原力达到VC的75.99%。结论:采用复合酶法能够有效提取槐花多糖,提高其抗氧化活性,为槐花多糖功能食品的开发提供了理论参考。
    Abstract: Objective: Sophora japonica polysaccharides were extracted by compound enzyme method, and the extraction process was optimized. The antioxidant activity in vitro was evaluated. Methods: The effects of addition amount of compound enzyme, pH, proportion of compound enzyme and enzymatic hydrolysis time on the extraction yield were investigated by single factor experiment. On the basic of single factor experiment, response surface method was used to determine the optimal extraction parameters of Sophora japonica polysaccharide. Compared with VC, the antioxidant activity of Sophora japonica polysaccharides was investigated by measuring the scavenging rate of DPPH· and ABTS+· and the total reducing power. Results: The optimal extraction parameters of Sophora japonica polysaccharides were as follows: The addition amount of compound enzyme was 23.8 mg/g, pH4.8, and the ratio of pectinase to cellulase was 0.912:1. Under this process, the yield of Sophora japonica polysaccharides was 10.71%, and the extracted polysaccharide showed good scavenging ability for DPPH· and ABTS+·. When the concentration of the polysaccharide solution was 2.8 mg/mL, the scavenging rate of DPPH· and ABTS+· reached 94.19% and 99.79% of VC at the same concentration, respectively, and the total reducing power reached 75.99% of VC. Conclution: Sophora japonica polysaccharide could be effectively extracted by compound enzymatic method and its antioxidant activity could be improved, which provided a theoretical reference for the development of functional food of Sophora japonica polysaccharide .
  • 槐花多糖是从槐花中提取的由10个以上单糖通过糖苷键结合而成的高分子聚合物[1],具有抗氧化[2]、降血糖[3]、抗肿瘤[4]、抗病毒[5]、免疫增强活性[67]等多种生理学功能,因其独特的功效,引起了现代医学和食品功能化学研究人员共同的关注。常见的槐花多糖的提取方法为水提醇沉法,包括酶辅助提取和超声辅助提取等。张玉梅等[8]采用水提醇沉法,从天津药店中的干燥槐花中提取多糖,提取得率为3.94%。胡喜兰等[9]采用水提法从新疆伊犁槐花中提取多糖,提取得率为6.26%。杨申明等[10]采用超声辅助提取法,从云南楚雄槐花中提取多糖,提取得率为15.89%。王红庆等[11]采用水提法从信阳贤山的槐花中提取多糖,提取得率为3.10%。徐建国等[12]采用水提法,从山西师范大学校园内的槐花中提取多糖,得率为3.16%。王丽华等[13]采用水提法,从西安市藻露堂大药房的槐花中提取多糖,提取得率为3.40%。由上述文献可以看出,不同产地不同提取方法槐花多糖得率不同。在多糖的提取中,由于酶法提取具有反应条件温和、降低提取成本,加快多糖释放等优点,赵庆友[14]采用纤维素酶法提取泰山槐花多糖,提取得率为4.93%,曹小燕等[15]采用纤维素酶法提取秦巴山区野生槐花多糖,提取得率达到17.1%,上述酶法提取均采用纤维素酶提取。尽管复合酶法提取槐花多糖鲜有报道,但是应用复合酶法提取其他植物多糖却很普遍,如复合酶法提取昆布多糖[16]、菊苣多糖[17]、莪术多糖[18]、香菇多糖[19]和荷叶多糖[20]等。借鉴前人的研究成果,考虑到国槐花富含果胶和纤维素,为了使多糖得以充分释放,本研究以太原工业学院校园内的国槐花为实验材料,采用果胶酶和纤维素酶复合酶解法提取槐花多糖,并研究了复合酶提取槐花多糖的最优条件;由于抗氧化活性是评价多糖重要指标,近年来国内外已将抗氧化活性用于功能性食品的评价。因此,本研究测定了所制备的槐花多糖的抗氧化活性,以期为槐花多糖功能食品的开发提供理论参考。

    国槐花 太原工业学院校园,7月采摘,干燥通风下自然晾干(含水率约8.62%),去除枝梗等杂质,密封保存待用;果胶酶(30000 U/g)、纤维素酶(100000 U/g) 山东隆科特酶制剂有限公司;无水乙醇 山西同杰化学试剂有限公司;蒽酮试剂 五联化工有限公司;无水葡萄糖、维生素C、氯化钠、柠檬酸、柠檬酸钠、三氯乙酸、氯化钾 国药集团化学试剂有限公司;浓硫酸、过硫酸钾 西陇科学股份有限公司;DPPH、ABTS 合肥巴斯夫生物科技有限公司;磷酸氢二钠、磷酸二氢钠、三氯化铁 天津市申泰化学试剂有限公司;铁氰化钾 天津市北辰方正试剂厂;以上药品和试剂均为分析纯。

    SENCO真空旋转蒸发仪 上海申生科技有限公司;752N紫外可见分光光度计 上海元析仪器有限公司;ZK-82真空干燥箱 上海实验仪器厂有限公司;FZ102植物粉碎机 天津市泰斯特仪器有限公司;SHZ-D(III)循环水式真空泵 巩义市予华仪器有限责任公司;HH-3A数显恒温水浴锅 金坛市城西腾辉实验仪器厂;FA1004电子天平 上海舜宇恒平科学仪器有限公司;美的EG823MF3-NW微波炉 美的集团有限公司;QHG-100A双层恒温气浴振荡器 常州市普天仪器制造有限公司。

    槐花多糖提取工艺流程见图1

    图  1  槐花多糖提取工艺流程
    Figure  1.  Extraction process of Sophora japonica polysaccharides

    槐花多糖含量采用蒽酮比色法[21]进行测定,得率η采用公式(1)进行计算:

    η(%)=MM×100
    (1)

    式中:M多糖为槐花多糖的质量(g);M槐花为槐花粉的质量(g)。

    分别称取2 g的槐花粉置于锥形瓶中,以得率为指标,采用柠檬酸-柠檬酸钠缓冲溶液进行提取,酶解结束后微波辅助提取功率400 W,时间30 s。

    选取复合酶添加量(5、10、15、20、25 mg/g),提取液pH4.8,果胶酶与纤维素酶比例为1:1,酶解时间60 min,酶解温度45 ℃,液固比25:1,微波功率400 W,确定最佳复合酶添加量。

    选取pH(3.6、4.0、4.4、4.8、5.2),酶添加量15 mg/g,果胶酶与纤维素酶比例为1:1,酶解时间60 min,酶解温度45 ℃,液固比25:1,微波功率400 W,确定最佳pH。

    选取果胶酶和纤维素酶比例(1:3、1:2、1:1、2:1、3:1),提取液pH4.8,酶添加量为7.5 mg/g,酶解时间60 min,酶解温度45 ℃,液固比25:1,微波功率400 W,确定最佳复合酶比例。

    选取酶解时间(30、60、90、120、150 min),提取液pH4.8,酶添加量15 mg/g,纤维素酶与果胶酶比例为1:1,酶解温度45 ℃,液固比25:1,微波功率400 W,确定最佳酶解时间。

    在单因素实验基础上,以得率为响应值,以A:酶添加量、B:pH、C:酶比例为考察因素,根据Box-Behnken设计原理设计响应面试验,确定槐花多糖最佳提取参数。设计因素和水平见表1

    表  1  响应面试验设计因素和水平
    Table  1.  Factors and levels of response surface experiment
    因素 水平
    −1 0 +1
    A酶添加量(mg/g) 15 20 25
    B pH 4.4 4.8 5.2
    C酶比例 0.33 0.50 0.67
    下载: 导出CSV 
    | 显示表格

    配制一系列浓度(0.1、0.2、0.4、0.8、1.2、1.6、2.0、2.4、2.8 mg/mL)的槐花多糖溶液,分别测定其对DPPH·和ABTS+·的清除率和总还原力,并与VC对照分析。

    分别配制一系列不同浓度的VC和槐花多糖溶液,参照文献[22-23]的方法进行测定,根据公式(2)计算溶液对DPPH·的清除率。

    (%)=(1AA1A0)×100
    (2)

    式中:A为槐花多糖/VC溶液吸光值;A1为对照组吸光值;A0为空白组吸光值。

    配制7.6 mmol/L的ABTS储备液,稀释到在734 nm吸光值为0.700±0.020,作为工作液,参照文献[24-26]的方法进行测定,ABTS+·的清除率计算参照公式(2)。

    参照文献[27-29]的测定方法。

    所有实验均重复3次,实验数据使用平均数±标准差表示,单因素实验和抗氧化性实验数据均采用Microsoft Office Excel 2019软件进行数据分析和绘图。响应面试验数据采用Design expert 12软件进行响应面作图和ANOVA分析。

    图2所示,复合酶添加量从5 mg/g升高到15 mg/g时,多糖得率从5.95%增加到9.59%,提高了3.64%;当复合酶添加量达到20 mg/g,即果胶酶和纤维素酶各10 mg/g,多糖得率趋于稳定,达到9.73%,这说明当酶添加量较低时,复合酶量相对于底物不足;达到20 mg/g 时,底物几乎已经全部酶解,再增加复合酶量,意义不大且不利于后续提取分离。综上所述,认为最佳复合酶添加量为20 mg/g,选取15、20、25 mg/g进行响应面试验。文献[1415]中采用纤维素酶提取槐花多糖,最佳纤维素酶添加量均与本文一致。

    图  2  复合酶添加量对槐花多糖得率的影响
    Figure  2.  Effect of addition amount of compound enzyme on the yield of Sophora japonica polysaccharides

    图3所示,pH从3.6升高到4.8时,多糖得率呈现增加的趋势,pH4.8时,得率达到最大值9.76%,之后得率开始降低,分析原因可能是pH4.8时,复合酶的活性较高,有利于槐花中的果胶和纤维素进行酶解,增加多糖的溶出率。因此,分别选取pH为4.4、4.8、5.2进行响应面试验。

    图  3  pH对槐花多糖得率的影响
    Figure  3.  Effect of pH on the yield of Sophora japonica polysaccharides

    图4所示,果胶酶和纤维素酶能促进细胞壁纤维素和果胶的分解,促进破壁后释放细胞壁内的多糖成分,提高槐花多糖的溶出性,同时利于提取液和残渣的分离,本文中当果胶酶与纤维素酶比例为1:1时,对于槐花多糖提取是最有利的,此时多糖得率为9.77%,达到最高。因此,选取果胶酶和纤维素酶比例1:2、1:1、2:1进行响应面试验,为了方便响应面数据处理和分析,酶比例改为采用果胶酶占复合酶质量比的形式,即0.33、0.50和0.67。

    图  4  酶比例对槐花多糖得率的影响
    Figure  4.  Effect of enzyme ratio on the yield of Sophora japonica polysaccharides

    图5所示,当酶解时间从30 min增加到60 min时,槐花多糖得率从6.65%迅速提高到9.77%,此后再增加酶解时间,得率上升不明显,当120 min时,得率为10.21%;150 min时,得率为10.31%,基本趋于稳定。这可能是因为酶解时间过短,受酶解速率和传质的影响,多糖无法全部溶出,本文认为150 min酶解比较完全。因此固定酶解时间为150 min。

    图  5  酶解时间对槐花多糖得率的影响
    Figure  5.  Effect of enzymatic hydrolysis time on the yield of Sophora japonica polysaccharides

    根据单因素实验结果,选取了响应面试验的三因素三水平,分别为pH(4.4、4.8、5.2)、酶添加量(15、20、25 mg/g)和酶比例(0.33、0.50、0.67),酶解时间选择150 min,试验结果见表2,回归模型方差分析结果见表3

    表  2  响应面试验结果
    Table  2.  Results of response surface experiment
    试验号A酶添加量(mg/g)B pHC酶比例得率(%)
    1204.80.5010.38
    2254.80.339.52
    3204.80.5010.17
    4204.40.338.43
    5205.20.677.07
    6204.80.5010.57
    7204.80.5010.26
    8154.40.508.41
    9255.20.509.68
    10205.20.337.73
    11204.40.677.47
    12155.20.507.00
    13204.80.5010.47
    14154.80.677.07
    15254.40.509.53
    16254.80.678.57
    17154.80.338.54
    下载: 导出CSV 
    | 显示表格
    表  3  回归模型方差分析
    Table  3.  Regression model analysis of variance
    方程来源 平方和 自由度 均方 F P
    模型 26.30 9 2.92 50.74 <0.0001
    A 4.93 1 4.93 85.59 <0.0001
    B 0.6962 1 0.6962 12.09 0.0103
    C 2.04 1 2.04 35.42 0.0006
    AB 0.6084 1 0.6084 10.56 0.0141
    AC 0.0676 1 0.0676 1.17 0.3146
    BC 0.0225 1 0.0225 0.3906 0.5518
    0.9802 1 0.9802 17.02 0.0044
    6.40 1 6.40 111.04 <0.0001
    9.01 1 9.01 156.35 <0.0001
    残差 0.4032 7 0.0576
    失拟项 0.3010 3 0.1003 3.93 0.1097
    纯误差 0.1022 4 0.0256
    总和 26.71 16
    R² 0.9849 调整R² 0.9655 预测R² 0.8137
    下载: 导出CSV 
    | 显示表格

    模型P<0.01表明在0.01的水平上回归显著,A、B、C、AB、A2、B2、C2是显著的模型参数(P<0.05),AC和BC是不显著的模型参数(P>0.05),由F值可知,对槐花多糖得率影响大小依次为A酶添加量、C酶比例、B pH。失拟项P=0.1097>0.05,说明失拟不显著,模型的选择是正确的。回归方程为:Y=−162.70-0.08347A+68.76B+39.28C+0.195AB+0.1529AC+1.1029BC−0.0193A2−7.7B2−50.61C2

    模型的R²为0.9849,说明实测值与预测值之间具有较好的拟合度,该模型可用于预测槐花多糖提取。调整R²为0.9655,表明得率96.55%的变异分布在方程的一次项、二次项、交互项的因子中,其总变异中仅有3.45%不能由该模型来解释。预测R²为0.8137,和调整R²之差为0.1518,小于0.2,说明模型预测是可信的。

    复合酶法提取槐花多糖的3D响应面图如图6所示。

    图  6  复合酶法提取槐花多糖的3D响应面图
    Figure  6.  3D surface of Sophora japonica polysaccharides by enzymatic extraction

    图6中随着酶添加量的改变,响应面图的陡峭程度变化较为显著,对应的等高线图的变化也较为明显,说明酶添加量对得率有较为显著的影响,根据等高线形状的变化,可以看出酶添加量和pH间的交互作用最为显著,结果与表3中响应面的方差分析结果一致。

    模型预测的最佳提取参数为:酶添加量23.8 mg/g,pH4.8,果胶酶:纤维素酶为0.912:1。在模型预测的最佳提取条件下进行验证实验,重复5次,取平均值,测得槐花多糖得率10.71%,与模型推测的理论值10.72%十分接近。

    图7中槐花多糖和VC对DPPH·均具有较好的清除能力,并随着槐花多糖溶液浓度的增加而增加。当溶液浓度为0.4 mg/mL时,VC对DPPH·清除率达到85%,槐花多糖达到80%,当溶液浓度为2.8 mg/mL时,VC对DPPH·清除率达到94%,槐花多糖达到88%,说明此浓度下槐花多糖溶液中的还原性组分对DPPH·清除效果明显。经计算,槐花多糖清除DPPH·的IC50值为0.053 mg/mL。文献[8]中槐花多糖浓度为5 mg/mL时对DPPH·清除率为89.24%,清除DPPH·的IC50值为1.09 mg/mL。

    图  7  槐花多糖和VC对DPPH·清除能力
    Figure  7.  DPPH scavenging ability of Sophora japonica polysaccharides and VC

    图8中槐花多糖对ABTS+·清除能力随着浓度的增加而增大,在较低的浓度0.1 mg/mL下,槐花多糖对ABTS+·的清除率仅为53.9%,随着浓度的增加,对ABTS+·清除率迅速增加,当达到1.6 mg/mL时,ABTS+·清除率达到96.5%,与0.1 mg/mL的VC溶液对ABTS+·清除率96.91%比较接近,当达到2.8 mg/mL时,槐花多糖和VC对ABTS+·清除率分别为99.38%和99.59%,十分接近,证明本实验采用复合酶法提取的槐花多糖对ABTS+·具有较强的清除能力。经计算,槐花多糖清除ABTS+·的IC50值为0.101 mg/mL。文献[8]中槐花多糖浓度为5 mg/mL时,对ABTS+·清除率为98.5%,清除ABTS+·的IC50值为1.39 mg/mL。

    图  8  槐花多糖和VC对ABTS+·清除能力
    Figure  8.  ABTS+· scavenging ability of Sophora japonica polysaccharides and VC

    图9中当槐花多糖浓度从0.1 mg/mL上升到2.8 mg/mL时,总还原力从0.236到0.693,提高了193.64%,VC的总还原力从0.523到0.912,提高了74.38%。当浓度为2.8 mg/mL时,槐花多糖的总还原力为VC的75.99%,达到了较高的水平。文献[8]中槐花多糖浓度为5 mg/mL时,总还原力为0.57。

    图  9  槐花多糖和VC的总还原力
    Figure  9.  Total reducing power of Sophora japonica polysaccharides and VC

    本文采用果胶酶和纤维素酶复合酶法从槐花中提取槐花多糖,提取液采用柠檬酸-柠檬酸钠缓冲液,单因素实验结果表明,最适的酶添加量为20 mg/g,pH为4.8,果胶酶与纤维素酶比例1:1,酶解时间150 min。响应面试验结果表明对槐花多糖得率影响最大的提取参数为酶添加量,其次是酶比例,酶添加量和pH之间交互作用比较明显,最佳的提取条件为:酶添加量23.8 mg/g,pH4.8,果胶酶:纤维素酶为0.912:1,在此条件下,得率为10.71%。通过与VC对照分析槐花多糖对DPPH·和ABTS+·清除能力和总还原力,表明复合酶法提取的槐花多糖具有较好的抗氧化性。

  • 图  1   槐花多糖提取工艺流程

    Figure  1.   Extraction process of Sophora japonica polysaccharides

    图  2   复合酶添加量对槐花多糖得率的影响

    Figure  2.   Effect of addition amount of compound enzyme on the yield of Sophora japonica polysaccharides

    图  3   pH对槐花多糖得率的影响

    Figure  3.   Effect of pH on the yield of Sophora japonica polysaccharides

    图  4   酶比例对槐花多糖得率的影响

    Figure  4.   Effect of enzyme ratio on the yield of Sophora japonica polysaccharides

    图  5   酶解时间对槐花多糖得率的影响

    Figure  5.   Effect of enzymatic hydrolysis time on the yield of Sophora japonica polysaccharides

    图  6   复合酶法提取槐花多糖的3D响应面图

    Figure  6.   3D surface of Sophora japonica polysaccharides by enzymatic extraction

    图  7   槐花多糖和VC对DPPH·清除能力

    Figure  7.   DPPH scavenging ability of Sophora japonica polysaccharides and VC

    图  8   槐花多糖和VC对ABTS+·清除能力

    Figure  8.   ABTS+· scavenging ability of Sophora japonica polysaccharides and VC

    图  9   槐花多糖和VC的总还原力

    Figure  9.   Total reducing power of Sophora japonica polysaccharides and VC

    表  1   响应面试验设计因素和水平

    Table  1   Factors and levels of response surface experiment

    因素 水平
    −1 0 +1
    A酶添加量(mg/g) 15 20 25
    B pH 4.4 4.8 5.2
    C酶比例 0.33 0.50 0.67
    下载: 导出CSV

    表  2   响应面试验结果

    Table  2   Results of response surface experiment

    试验号A酶添加量(mg/g)B pHC酶比例得率(%)
    1204.80.5010.38
    2254.80.339.52
    3204.80.5010.17
    4204.40.338.43
    5205.20.677.07
    6204.80.5010.57
    7204.80.5010.26
    8154.40.508.41
    9255.20.509.68
    10205.20.337.73
    11204.40.677.47
    12155.20.507.00
    13204.80.5010.47
    14154.80.677.07
    15254.40.509.53
    16254.80.678.57
    17154.80.338.54
    下载: 导出CSV

    表  3   回归模型方差分析

    Table  3   Regression model analysis of variance

    方程来源 平方和 自由度 均方 F P
    模型 26.30 9 2.92 50.74 <0.0001
    A 4.93 1 4.93 85.59 <0.0001
    B 0.6962 1 0.6962 12.09 0.0103
    C 2.04 1 2.04 35.42 0.0006
    AB 0.6084 1 0.6084 10.56 0.0141
    AC 0.0676 1 0.0676 1.17 0.3146
    BC 0.0225 1 0.0225 0.3906 0.5518
    0.9802 1 0.9802 17.02 0.0044
    6.40 1 6.40 111.04 <0.0001
    9.01 1 9.01 156.35 <0.0001
    残差 0.4032 7 0.0576
    失拟项 0.3010 3 0.1003 3.93 0.1097
    纯误差 0.1022 4 0.0256
    总和 26.71 16
    R² 0.9849 调整R² 0.9655 预测R² 0.8137
    下载: 导出CSV
  • [1]

    ZHOU Y, CHEN X X, CHEN T T, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science & Technology,2022,123:264−280.

    [2]

    ZHU Y Y, LYU J M, GU Y, et al. Polysaccharides of Chinese bayberry pomace wine:Structural characteristics, antioxidant activity and influence on the bayberry wine[J]. Food Bioscience,2022,50:102025. doi: 10.1016/j.fbio.2022.102025

    [3]

    CHEN J X, ZHOU M, LIU M, et al. Physicochemical, rheological properties and in vitro hypoglycemic activities of polysaccharide fractions from peach gum[J]. Carbohydrate Polymers,2022,296:119954. doi: 10.1016/j.carbpol.2022.119954

    [4]

    GHARIBZAHEDI S M T, MARTI-QUIJAL F J, BARBA F J, et al. Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods[J]. International Journal of Biological Macromolecules,2022,202:494−507. doi: 10.1016/j.ijbiomac.2022.01.088

    [5]

    LU W J, YANG Z F, CHEN J, et al. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides[J]. Carbohydrate Polymers,2021,272:118526. doi: 10.1016/j.carbpol.2021.118526

    [6] 李荣乔, 贾东升, 温春秀, 等. 槐花多糖对免疫抑制小鼠免疫功能的影响研究[J]. 食品研究与开发,2016,37(24):155−159. [LI R Q, JIA D S, WEN C X, et al. Investigation on the influence of polysaccharide from Sophora japonica flower polysaccharides on immunological function of mice[J]. Food Research and Development,2016,37(24):155−159.] doi: 10.3969/j.issn.1005-6521.2016.24.037

    LI R Q, JIA D S, WEN C X, et al. Investigation on the influence of polysaccharide from Sophora japonica flower polysaccharides on immunological function of mice[J]. Food Research and Development, 2016, 3724): 155159. doi: 10.3969/j.issn.1005-6521.2016.24.037

    [7] 李卓悦, 冯玉祥, 张洪影, 等. 国槐花活性多糖抗氧化和免疫增强作用的研究[J]. 山东畜牧兽医,2018,39(6):1−3. [LI Z Y, FENG Y X, ZHANG H Y, et al. Study on the antioxidant and immune enhancement effects of active polysaccharides from Sophora japonica flower[J]. Shandong Animal Husbandry and Veterinary Medicine,2018,39(6):1−3.]

    LI Z Y, FENG Y X, ZHANG H Y, et al. Study on the antioxidant and immune enhancement effects of active polysaccharides from Sophora japonica flower[J]. Shandong Animal Husbandry and Veterinary Medicine, 2018, 396): 13.

    [8] 张玉梅, 邢慧珍, 刘会平, 等. 槐花多糖的提取、纯化和抗氧化活性分析[J]. 食品工业科技,2023,44(24):207−215. [ZHANG Y M, XING H Z, LIU H P, et al. Extraction, purification, and antioxidant activity of polysaccharides from Sophora flower[J]. Science and Technology of Food Industry,2023,44(24):207−215.]

    ZHANG Y M, XING H Z, LIU H P, et al. Extraction, purification, and antioxidant activity of polysaccharides from Sophora flower[J]. Science and Technology of Food Industry, 2023, 4424): 207215.

    [9] 胡喜兰, 姜琴, 尹福军, 等. 正交实验优选槐花多糖的最佳提取工艺及抑菌活性研究[J]. 食品科技,2012,37(4):164−167. [HU X L, JIANG Q, YIN F J, et al. Optimization technology for extraction of polysaccharides from Sophora japonica by orthogonal test and antibacterial study[J]. Food Science and Technology,2012,37(4):164−167.]

    HU X L, JIANG Q, YIN F J, et al. Optimization technology for extraction of polysaccharides from Sophora japonica by orthogonal test and antibacterial study[J]. Food Science and Technology, 2012, 374): 164167.

    [10] 杨申明, 张伦, 陈文, 等. 刺槐花多糖的提取工艺及其抗氧化特性研究[J]. 粮食与油脂,2018,31(12):98−101. [YANG S M, ZHANG L, CHEN W, et al. Study on extraction technology of polysaccharides from Robinia phseudoacacia and its antioxidant effects[J]. Cereals & Oils,2018,31(12):98−101.] doi: 10.3969/j.issn.1008-9578.2018.12.027

    YANG S M, ZHANG L, CHEN W, et al. Study on extraction technology of polysaccharides from Robinia phseudoacacia and its antioxidant effects[J]. Cereals & Oils, 2018, 3112): 98101. doi: 10.3969/j.issn.1008-9578.2018.12.027

    [11] 王红庆, 赵丽平, 朱晓明. 槐花多糖提取工艺的研究[J]. 湖北农业科学,2011,50(13):2733−2735. [WANG H Q, ZHAO L P, ZHU X M. Research on the extraction technology of polysaccharides from Sophora japonica flower[J]. Hubei Agricultural Sciencience,2011,50(13):2733−2735.] doi: 10.3969/j.issn.0439-8114.2011.13.043

    WANG H Q, ZHAO L P, ZHU X M. Research on the extraction technology of polysaccharides from Sophora japonica flower[J]. Hubei Agricultural Sciencience, 2011, 5013): 27332735. doi: 10.3969/j.issn.0439-8114.2011.13.043

    [12] 徐建国, 田呈瑞, 胡青平, 等. 响应面法优化槐花水溶性多糖的超声波辅助提取工艺[J]. 食品科学,2011,32(4):112−116. [XU J G, TIAN C R, HU Q P, et al. Optimizing ultrasonic-assisted extraction process for water-soluble polysaccharides from Sophora japonica[J]. Food Science,2011,32(4):112−116.]

    XU J G, TIAN C R, HU Q P, et al. Optimizing ultrasonic-assisted extraction process for water-soluble polysaccharides from Sophora japonica[J]. Food Science, 2011, 324): 112116.

    [13] 王丽华, 段玉峰, 马艳丽, 等. 槐花多糖的提取工艺及抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版),2008(8):213−217,228. [WANG L H, DUAN Y F, MA Y L, et al. Studies on extraction and antioxidant function of polysaccharides from Sophora japonica[J]. Journal of Northwest A& F University (Natural Science Edition),2008(8):213−217,228.]

    WANG L H, DUAN Y F, MA Y L, et al. Studies on extraction and antioxidant function of polysaccharides from Sophora japonica[J]. Journal of Northwest A& F University (Natural Science Edition), 20088): 213217,228.

    [14] 赵庆友. 泰山槐花多糖的提取及对鸡兔免疫增强作用的研究[D]. 泰安:山东农业大学, 2012. [ZHAO Q Y. Extraction of Taishan Robinia pseudoacacia polysaccharides and its immune enhancement on chickens and rabbits[D]. Taian:Shandong Agricultural University, 2012.]

    ZHAO Q Y. Extraction of Taishan Robinia pseudoacacia polysaccharides and its immune enhancement on chickens and rabbits[D]. Taian: Shandong Agricultural University, 2012.

    [15] 曹小燕, 杨海涛. 槐花多糖提取工艺优化及自由基清除活性研究[J]. 北方园艺,2016(13):141−146. [CAO X Y, YANG H T. Study on enzymatic ultrasonic assisted extraction of polysaccharides from Sophora japonica Linn and free radical scavenging activity[J]. Northern Horticulture,2016(13):141−146.]

    CAO X Y, YANG H T. Study on enzymatic ultrasonic assisted extraction of polysaccharides from Sophora japonica Linn and free radical scavenging activity[J]. Northern Horticulture, 201613): 141146.

    [16] 张涵, 殷澳, 张会佳, 等. 昆布多糖的复合酶法提取工艺优化及其对 α-葡萄糖苷酶的抑制活性[J]. 食品工业科技,2024,45(3):197−206. [ZHANG H, YIN A, ZHANG H J, et al. Optimization of multi-enzyme-assisted Laminarin extraction and evaluation of laminarin inhibitory effect on α-glucosidase activity[J]. Science and Technology of Food Industry,2024,45(3):197−206.]

    ZHANG H, YIN A, ZHANG H J, et al. Optimization of multi-enzyme-assisted Laminarin extraction and evaluation of laminarin inhibitory effect on α-glucosidase activity[J]. Science and Technology of Food Industry, 2024, 453): 197206.

    [17] 徐苑馨. 复合酶-超声法提取菊苣多糖的工艺优化及其发酵乳品质特性研究[D]. 沈阳:辽宁大学, 2023. [XU Y X. Study on the optimization of extraction technology of polysaccharide from Cichorium chicory by complex enzyme-ultrasonic method and the quality characteristics of fermented milk[D]. Shenyang:Liaoning University, 2023.]

    XU Y X. Study on the optimization of extraction technology of polysaccharide from Cichorium chicory by complex enzyme-ultrasonic method and the quality characteristics of fermented milk[D]. Shenyang: Liaoning University, 2023.

    [18] 蒋德旗, 程媛媛, 覃丽媛, 等. 响应面法优化复合酶提取莪术多糖工艺及其抗氧化活性研究[J]. 中国食品添加剂,2023,34(7):43−49. [JIANG D Q, CHENG Y Y, QIN L Y, et al. Optimization of compound enzyme extraction process of polysaccharides from Curcuma zedoary by response surface methodology and its antioxidant activity[J]. China Food Additives,2023,34(7):43−49.]

    JIANG D Q, CHENG Y Y, QIN L Y, et al. Optimization of compound enzyme extraction process of polysaccharides from Curcuma zedoary by response surface methodology and its antioxidant activity[J]. China Food Additives, 2023, 347): 4349.

    [19] 唐坤, 龙欢, 尚校兰. 胶体磨复合酶法浸提香菇多糖的工艺优化[J]. 食品工业,2023,44(3):86−90. [TANG K, LONG H, SHANG X L. Optimization of extraction technology of lentinan by colloid mill combined with enzyme[J]. The Food Industry,2023,44(3):86−90.]

    TANG K, LONG H, SHANG X L. Optimization of extraction technology of lentinan by colloid mill combined with enzyme[J]. The Food Industry, 2023, 443): 8690.

    [20] 余捷. 荷叶多糖的提取优化、结构表征及其体外抗炎抗氧化活性研究[D]. 荆州:长江大学, 2023. [YU J. Extraction optimization, structural characterization and invitro anti-inflammatory and antioxidant activity of polysaccharides from Lotus leaf[D]. Jingzhou:Yangtze University, 2023.]

    YU J. Extraction optimization, structural characterization and invitro anti-inflammatory and antioxidant activity of polysaccharides from Lotus leaf[D]. Jingzhou: Yangtze University, 2023.

    [21] 余蒙, 杨美森, 杨通广, 等. 大叶黄精多糖相对分子质量分布及其单糖组成的研究[J]. 中国中药杂志,2022,47(13):3439−3446. [YU M, YANG M S, YANG T G, et al. Relative molecular mass distribution and monosaccharide composition of Polygonatum kingianum var. grandifolium[J]. China Journal of Chinese Materia Medica,2022,47(13):3439−3446.]

    YU M, YANG M S, YANG T G, et al. Relative molecular mass distribution and monosaccharide composition of Polygonatum kingianum var. grandifolium[J]. China Journal of Chinese Materia Medica, 2022, 4713): 34393446.

    [22]

    GONG G P, DANG T T, DENG Y N, et al. Physicochemical properties and biological activities of polysaccha rides from Lycium barbarum prepared by fractional precipitation[J]. International Journal of Biological Macromolecules,2018,109:611−618. doi: 10.1016/j.ijbiomac.2017.12.017

    [23]

    SHEN S G, JIA S R, WU Y K, et al. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme[J]. Carbohydrate Polymers,2018,198:426−433. doi: 10.1016/j.carbpol.2018.06.111

    [24]

    YANG X H, HUANG M J, QIN C Q, et al. Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea[J]. International Journal of Biological Macromolecules,2017,101:768−775. doi: 10.1016/j.ijbiomac.2017.03.189

    [25] 王杰, 刘瑞珍, 刘东超, 等. 槐角多糖抗氧化活性研究[J]. 食品研究与开发,2020,41(1):25−29. [WANG J, LIU R Z, LIU D C, et al. Antioxidant activity of sophorae fructus polysaccharides[J]. Food Research and Development,2020,41(1):25−29.]

    WANG J, LIU R Z, LIU D C, et al. Antioxidant activity of sophorae fructus polysaccharides[J]. Food Research and Development, 2020, 411): 2529.

    [26]

    FIMBRES O D, CARVALJAL M E, LOPEZ E J A, et al. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp[J]. Food Hydrocolloids,2018,75:229−236. doi: 10.1016/j.foodhyd.2017.08.002

    [27]

    ZHOU S Y, HUANG G L, HUANG H L. Extraction, derivatization and antioxidant activities of onion polysaccharide[J]. Food Chemistry,2022,388:133000. doi: 10.1016/j.foodchem.2022.133000

    [28] 刘宇, 戴沅霖, 马越, 等. 金银花粗多糖提取工艺优化及其抗氧化活性评价[J]. 食品工业科技,2023,44(7):188−196. [LIU Y, DAI Y L, MA Y, et al. Extraction process optimization and antioxidant activity evaluation of crude polysaccharides from Lonicera japonica[J]. Science and Technology of Food Industry,2023,44(7):188−196.]

    LIU Y, DAI Y L, MA Y, et al. Extraction process optimization and antioxidant activity evaluation of crude polysaccharides from Lonicera japonica[J]. Science and Technology of Food Industry, 2023, 447): 188196.

    [29] 周春晖, 唐璐, 范瑞, 等. 灵芝多糖功能饮料的研发及体外抗氧化活性分析[J]. 保鲜与加工,2021,21(11):64−71. [ZHOU C H, TANG L, FAN R, et al. Development and in vitro antioxidant activity analysis of Ganoderma lucidum polysaccharide functional beverage[J]. Storage and Process,2021,21(11):64−71.]

    ZHOU C H, TANG L, FAN R, et al. Development and in vitro antioxidant activity analysis of Ganoderma lucidum polysaccharide functional beverage[J]. Storage and Process, 2021, 2111): 6471.

  • 期刊类型引用(4)

    1. 张倩颖,杨双红,蔡文,耿宗泽,李东亮,丁重阳. 冬虫夏草菌株发酵槐花香料的制备及其卷烟加香应用研究. 轻工学报. 2024(03): 46-53 . 百度学术
    2. 刘浩文,王川林,李佳莹,刘平怀. 栅藻多糖的复合酶法提取工艺、化学组成及其抗氧化活性研究. 中国调味品. 2024(07): 176-183 . 百度学术
    3. 赵永雷,杨付锐,牛俊华,郑岚,马耀宏,孟庆军,王丙莲,杨艳. 三种玫瑰多糖的结构特征及美容相关活性的比较研究. 食品工业科技. 2024(19): 325-336 . 本站查看
    4. 赵钜阳,刘静,杨斐然,王婷,刘轲晗,刘珈成,顾丽雅. 槐花提取物对东北肉糜肠贮藏品质的影响及其货架期预测. 肉类研究. 2024(10): 52-58 . 百度学术

    其他类型引用(4)

  • 其他相关附件

图(9)  /  表(3)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  20
  • PDF下载量:  23
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-07-23
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回
x 关闭 永久关闭