• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
温启华,陆逸昊,杨露芳,等. 硒化天麻多糖的制备、结构表征及其抗氧化活性评价[J]. 食品工业科技,2024,45(3):18−30. doi: 10.13386/j.issn1002-0306.2023060290.
引用本文: 温启华,陆逸昊,杨露芳,等. 硒化天麻多糖的制备、结构表征及其抗氧化活性评价[J]. 食品工业科技,2024,45(3):18−30. doi: 10.13386/j.issn1002-0306.2023060290.
WEN Qihua, LU Yihao, YANG Lufang, et al. Preparation, Structure Characterization and Antioxidant Activity Evaluation of Selenized Gastrodia elata Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(3): 18−30. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060290.
Citation: WEN Qihua, LU Yihao, YANG Lufang, et al. Preparation, Structure Characterization and Antioxidant Activity Evaluation of Selenized Gastrodia elata Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(3): 18−30. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060290.

硒化天麻多糖的制备、结构表征及其抗氧化活性评价

Preparation, Structure Characterization and Antioxidant Activity Evaluation of Selenized Gastrodia elata Polysaccharides

  • 摘要: 本文以天麻多糖(Gastrodia elata Blume polysaccharides,GEP)和亚硒酸钠为原料,以硒含量为指标,利用单因素实验和响应面试验优化硝酸-亚硒酸钠(HNO3-Na2SeO3)法制备硒化天麻多糖(Selenated Gastrodia elata polysaccharides,SeGEP)的工艺。采用紫外光谱、红外光谱、核磁共振、粒径和Zeta电位、刚果红试验、碘-碘化钾试验、扫描电镜等对GEP和SeGEP进行结构表征分析;并采用体外抗氧化活性试验研究硒化修饰对天麻多糖的活性影响。结果表明,硒化天麻多糖最佳制备工艺条件为:反应温度74 ℃、硝酸浓度0.041%、反应时间8.4 h,在此条件下SeGEP的硒含量为3891.05±10.86 μg/g;结构表征结果显示天麻多糖被成功硒化修饰,硒化修饰后可使GEP粒径降低、Zeta电位的绝对值变大、多糖溶液的稳定性改善,同时发现GEP和SeGEP可能具备三股螺旋结构,且含有较长的侧链和支链结构;扫描电镜分析显示硒化修饰可改变GEP的微观形态。体外抗氧化活性实验表明,在浓度为10 mg/mL时,SeGEP对DPPH自由基清除率为98%±1.52%、最大铁还原力为0.99±0.24,在浓度为1 mg/mL时SeGEP对ABTS+自由基清除率为97.49%±1.16%,均比天麻多糖高,表明硒化修饰可提高天麻多糖抗氧化能力。本研究可为硒化天麻多糖相关的补硒制剂、功能食品开发提供理论基础。

     

    Abstract: In this paper, the preparation of Selenized Gastrodia elata polysaccharides (SeGEP) was conducted through HNO3-Na2SeO3 method using GEP and sodium nitrite as the raw materials, and the modification conditions were optimized by single factor experiment combined with response surface method using selenium content as the index. Ultraviolet spectrum (UV), infrared spectrum (IR), nuclear magnetic resonance (NMR), particle size test, zeta potential test, Congo red test, iodine-potassium iodide test, and scanning electron microscope (SEM) techniques were carried out to explore the structure of GEP and SeGEP. Antioxidant tests were conducted to evaluate the effect of selenylation modification on GEP in vitro. The results showed that the optimum selenylation parameters were as follows: Reaction temperature 74 ℃, nitric acid concentration 0.041%, reaction time 8.4 h, and under the optimum conditions, the selenium content could be reached to 3891.05±10.86 μg/g. Structural characterization analysis showed that SeGEP had been successfully accomplished, and SeGEP had reduced the particle size, increased the absolute value of Zeta potential and improved the stability in solution by comparing with GEP. It was also found that both GEP and SeGEP might possess triple helix with long side branched chain structures, whereas selenylation modification could change the micromorphology of GEP. The in vitro antioxidant results showed that the DPPH radical scavenging rate of SeGEP at 10 mg/mL was 98%±1.52% and the maximum iron reducing power was 0.99±0.24, and the ABTS+ radical scavenging rate of SeGEP at 1 mg/mL was 97.49%±1.16%, respectively. SeGEP exhibited higher antioxidant activities than that of GEP, indicating that selenylation modification could improve the antioxidant ability of GEP. This study provided a theoretical basis for the development of selenium supplement and functional food related to selenized Gastrodia elata polysaccharides.

     

/

返回文章
返回