Research Progress on Antagonistic Antimicrobial Prevention and Control of Grape Postharvest Diseases
-
摘要: 在葡萄采摘后的贮存和运输过程中,病害普遍发生,主要包括灰霉病、葡萄曲霉腐烂病、根霉腐烂病、青霉病等,严重影响其生产和商品价值。目前葡萄采后病害控制仍依靠化学防治,化学杀菌剂的长期施用可导致农药残留、环境污染、损害人体健康,并增强病原菌的抗药性。采用拮抗菌控制葡萄采后病害是替代化学杀菌剂的一种绿色、环保且安全的防治方法,本文主要介绍了葡萄采后侵染性病害及症状、拮抗菌的来源及应用现状、作用机制及联合其他方法结合使用增强生防效果等内容,并对拮抗菌防治葡萄采后病害进行了展望。Abstract: During the storage and transportation of grapes after picking, diseases occurs generally, including gray mold, aspergillus rot, rhizopus rot, penicillium rot, etc., which seriously affect its production and commodity value. At present, the control of postharvest diseases of grape still depends on chemical control. Long-term application of chemical fungicides can lead to pesticide residues, environmental pollution, harm to human health, and enhance the drug resistance of pathogenic fungal. Using antagonistic bacteria to control postharvest diseases of grape is a green, environmental and safe method instead of chemical fungicides. In this paper, the postharvest infection diseases and symptoms of grape, the source, application effect and their mechanism of action of antagonistic bacteria, the combination of antagonists with other methods to enhance the biocontrol effect are introduced. The prospect of controlling postharvest diseases of grape by antagonistic bacteria is also discussed.
-
Keywords:
- antagonistic bacteria /
- biological control /
- grape /
- postharvest diseases
-
葡萄是一种木质藤本植物、隶属于葡萄科,具有非常高的营养价值,其富含氨基酸、糖、有机酸、维生素等多种营养元素,受到广大消费者的青睐[1]。中国是全球最大的鲜食葡萄产区,也是大多数地方农业经济中的支柱产业[2−3]。在采摘、储藏和出售过程中,因葡萄水分多、皮薄肉软,含糖量高,极易受到损伤,为病原菌侵染打开通道[4−5],导致灰霉病、青腐病、葡萄曲霉腐烂病等病害发生[6−7],造成葡萄采后减产39%左右,经济价值损失约30%[8]。因此,研究人员开展了大量葡萄采后病害防治的研究,也取得了较好的效果。目前,国内外葡萄贮藏中应用最广泛的化学杀菌剂以二氧化硫及含硫化合物为主[9]。我国从20世纪90年代开始大范围使用熏硫技术[10]。王凤超[11]采用200 μL/L的二氧化硫熏蒸处理无核白葡萄30 min,葡萄未出现漂白损害,且能有效降低果实腐烂率,并能有效控制二氧化硫残留。但熏硫处理也存在极大的隐患,过剩的二氧化硫气体挥发到空气中会引发酸雨、硫酸雾、土壤酸化等环境问题[12],且食用残留亚硫化合物的葡萄更会危害人体健康。因此,葡萄采后保鲜急需更环保安全的方法。近年来,生物防治已成为一项绿色的采后水果保鲜技术,它可以有效地抑制病原菌,不会对环境造成污染[13−14]。由此,本文对葡萄采后侵染性病害及症状、拮抗菌的来源及应用现状、作用机制及联合其他方法结合使用增强生防效果等内容进行综述,阐述了拮抗菌在应用方面存在的问题并提出未来研究中应该考虑的解决措施,以期为拮抗菌在葡萄采后病害控制中的进一步开发与应用提供借鉴。
1. 葡萄采后侵染病害种类及发病症状
近年来,葡萄采后侵染性病害的常见病原菌种类繁多,其中包括数十种,如灰葡萄孢菌、黑曲霉、青霉菌、根霉、链格孢霉、拟茎点霉等(表1)。低温条件下优势菌为灰葡萄孢(重要的低温致病菌)、青霉;而常温条件下优势菌为黑曲霉和根霉[15];灰葡萄孢、链格孢和拟茎点霉能引起各种葡萄发生病害,黑曲霉和青霉常见于巨峰和马奶子葡萄[16],根霉腐烂病常见于早中熟葡萄的贮藏。大多数病害初期症状表现为葡萄表皮生长白色菌丝,并伴有水渍状[17−19],一旦发现此症状,提示我们需要采取措施进行控制,如气调、预冷后转入低温环境等。
表 1 葡萄采后主要侵染性病害及其症状Table 1. Main postharvest infectious diseases and symptoms of grapes病害种类 致病菌 发病症状 参考文献 灰霉病 灰葡萄孢 染病早期出现直径2~3 mm的圆形凹陷病斑,白色霉层;后期鼠灰色,局部脱落;果梗染病后变成褐黑色,在病部出现褐色块状菌核 [16,18] 葡萄曲霉腐烂病 黑曲霉 染病初期表皮滋生白色的菌块,染病后期呈黑粉状或紫黑粉状;腐烂果穗上有尘埃状粉末,褐色、淡黄色或绿色的霉菌 [19−20] 青霉病 青霉 染病初期果实表面有水渍状,白色霉层和菌丝生长,孢子形成后变为青绿色并增厚;染病后期产生褐色病斑,感染组织有浓烈霉烂气味 [21−22] 根霉腐烂病 根霉属 染病初期呈褐色水渍状斑块;发病后期,果粒上布满白色菌丝及黑色点状物、孢子囊密集成灰色或黑色团 [23] 葡萄链格胞腐烂病 链格孢霉 发病时产生局部的淡褐色或棕色的腐败病斑,组织裂缝中长出绒毛状灰色真菌菌丝伴随分生孢子和分生孢子梗 [20,24] 葡萄拟茎点霉腐烂病 拟茎点霉 发病初期果实上产生直径约1 mm的淡褐色斑点,呈水渍状;后期病斑直径约10~20 mm [25] 2. 拮抗菌的来源
2.1 拮抗酵母菌
葡萄采后病害拮抗酵母菌大多来自葡萄果实和葡萄园土壤(表2),其中以葡萄果实表面来源居多,葡萄表皮的环境适宜酵母菌生长,一些酵母菌对病原菌具有较好的抑菌能力[26]。从葡萄表面分离得到的解脂亚罗酵母Y-2对根霉腐烂病有显著抑制作用,腐烂直径比对照降低了23.8%[27]。葡萄园土壤中含有丰富的营养元素,从而为有益微生物提供了良好的繁殖条件,毕赤酵母属是葡萄园土壤中的优势酵母,也是拮抗酵母中的优势菌属[28],对葡萄青霉病有较好的抑菌作用[29]。此外,从其他水果上也筛选到了拮抗酵母,对葡萄采后病害具有明显的拮抗效果,从苹果表面筛到的罗伦隐球酵母能有效抑制葡萄采后灰霉病的自然发病率,抑制率高达90%[30]。
表 2 防治葡萄果实采后病害主要的拮抗酵母菌Table 2. Main antagonistic yeast for the prevention and control of postharvest diseases of grape fruits2.2 拮抗细菌
目前文献中对葡萄灰霉病的拮抗细菌研究较多,来源相对广泛[37],葡萄果实以及与葡萄相关的葡萄植株、叶片及葡萄园土壤环境均有所涉及(表3)。葡萄果皮和叶面附生微生物区系中含有大量的微生物,其中细菌的种类和数量在不同生育期均高于真菌和酵母菌数量[38],而筛选到的拮抗细菌大多数为芽孢杆菌,从葡萄果穗中筛选到了两株拮抗芽孢杆菌B5和B12,对葡萄灰霉病的防治效果均达到了50%以上[39]。葡萄园根际土壤中芽孢杆菌属(Bacillus spp.)是优势细菌属[36],从新疆的葡萄园土壤中分离出了暹罗芽孢杆菌,能有效防治葡萄曲霉腐烂病[40]。此外,从其他植株根系也筛选到了拮抗细菌,在橄榄树根系中分离得到的贝式芽孢杆菌Bvel1对葡萄灰霉病具有显著的抑制作用,发病率比对照降低了64.77%[41]。
表 3 防治葡萄果实采后病害主要的拮抗细菌Table 3. Main antagonist bacteria for the prevention and control of postharvest diseases of grape fruits3. 拮抗菌在葡萄病害防治中的应用效果
3.1 拮抗酵母菌在葡萄病害防治中的应用效果
3.1.1 单一拮抗酵母菌在葡萄病害防治中的应用效果
拮抗酵母在葡萄主要病害防治中应用越来越多(表4),研究表明拮抗酵母对不同品种葡萄的拮抗效果不同,使用浓度为1×108 cells/mL的解脂亚罗酵母Y-2分别接种处理夏黑、巨峰和红提葡萄,与对照相比,三种葡萄的病斑直径分别降低了28.7%,19.7%和18.5%[27]。对夏黑的自然发病率防治效果更好,夏黑葡萄属于早熟葡萄,说明解脂亚罗酵母Y-2更适合早熟品种葡萄的采后病害防治。一般来说,酵母浓度越大,生防效果越好。以1×108 cells/mL浓度的拮抗酵母菌YT-2处理红提葡萄,与对照相比,其对黑曲霉的抑制率高达100%[32],但拟粉红锁掷孢酵母Y16在不同浓度(1×108 cells/mL和1×109 cells/mL)下分别处理鲜食葡萄,1×108 cells/mL浓度下果实腐烂率更低(P<0.05),生防效果更好[46]。可能是浓度越大,酵母所占空间越多,反而不利于酵母的生长。现有文献中拮抗酵母的浓度大多采用1×108 cells/mL,因此该浓度是拮抗酵母在葡萄体内防治实验的推荐浓度。
表 4 单一拮抗酵母菌在葡萄病害防治中的应用效果Table 4. Application effect of single antagonistic yeast in grape disease control拮抗酵母菌名称 葡萄品种 病害种类 浓度 效果 参考文献 解脂亚罗酵母 红提葡萄 青霉病 1×109 cells/mL 腐烂率降低了66.7%,病斑直径缩小了7.72 mm [34] 解脂亚罗酵母Y-2 红提葡萄 根霉腐烂病 1×108 cells/mL 病斑直径降低了23.8%,伤口处赭曲霉毒素降低了44.05 ng/伤口 [27] 拮抗酵母菌YT-2 红提葡萄 曲霉腐烂病 1.0×108 CFU/mL 病斑直径缩小了19.87 mm,对黑曲霉的抑制率高达100% [32] 美极梅奇酵母T-2 闪亮马斯喀特葡萄 灰霉病 1×108 cells/mL 灰霉病发病率降低了34%,病斑直径缩小了15 mm [35] 季也蒙毕赤酵母 巨峰葡萄 灰霉病 1.0×108 CFU/mL 灰霉病发病率降低了48%(P<0.05) [15] 晋宁斯塔莫酵母 G17515和卡利比克迈耶氏酵母G31887 无核白葡萄 灰霉病 1×105 CFU/mL 灰霉病的发病率分别降低了21.79%和34.61%,其生防效果分别为48.56%和77.13% [47] 拟粉红锁掷孢酵母Y16 鲜食葡萄 曲霉腐烂病 1×108 cells/mL 和1×109 cells/mL 采后曲霉腐烂病的病斑直径相较于对照均缩小了
2.6 mm,果实腐烂率分别降低了20.63%和16%[46] 酿酒酵母 夏黑葡萄 曲霉腐烂病 1×108 CFU/mL 葡萄曲霉腐烂病发病率降低了84.4%(P<0.05) [48] 灰霉病是在低温环境下更容易产生的病害,低温下经卡利比克迈耶氏酵母G31887处理的葡萄灰霉病腐烂率比常温时降低了24%,表明卡利比克迈耶氏酵母G31887可以应用于低温环境下葡萄的保鲜[15]。但是单独使用拮抗酵母的生物防治效果不稳定,且无法达到与化学杀菌剂相当的水平。与使用0.1%的富马酸二甲酯相比,单独使用1×108 CFU/mL浓度的季也蒙毕赤酵母菌处理葡萄,自然腐败率提高了40%左右(P<0.05),化学防腐剂对酵母和病原菌均有较大抑制作用,拮抗酵母的防腐效力没有得到发挥[15]。研究人员在评估酵母的拮抗效果时,需要将拮抗酵母的浓度、葡萄的品种、贮藏条件等因素设计于实验中,考虑到目前鲜食葡萄采用的技术为冷链低温贮运,为了保证酵母在低温条件下发挥抑菌效果,一方面可以从低温环境中筛选酵母,另一方面可以采用与助剂复配组成制剂的方法提高其生防效力,延长葡萄采后保鲜的贮藏期。
3.1.2 拮抗酵母菌与其他方法联合在葡萄病害防治中的应用效果
单一使用拮抗酵母菌防治葡萄采后腐烂效果通常有限,而化学杀菌剂作为葡萄保鲜最主要的方式,长期使用多菌灵、嘧霉胺、唑菌胺酯+啶酰菌胺等又会使灰葡萄孢产生不同程度的抗性[49]。因此,在寻找新的高效拮抗酵母菌株之际,可以使用组合的方式增强拮抗酵母的生物防治效果[50]。
目前文献中使用化学物质诱导拮抗酵母来提高其抑菌效果的研究较多。使用4 mg/mL的γ-氨基丁酸(GABA)诱导拟粉红锁掷孢酵母Y16(Sporidiobolus pararoseus Y16)24 h后,对葡萄果实进行处理,曲霉腐烂病发病率比对照降低了36.11%,病斑直径缩小了1.49 mm;采后葡萄在20 ℃贮藏9 d后,GABA诱导培养的S. pararoseus Y16的葡萄自然腐烂率为5.56%,显著低于单一酵母处理组的12.5%[31]。说明经GABA诱导培养的S. pararoseus Y16不仅可以防治曲霉腐烂病也可以防治葡萄采后其他病害。Esa等[51]研究表明当用1%壳聚糖预处理24 h后,与对照组相比,葡萄青霉病的发病率降低了10%、病斑直径缩小了3.4 mm;在低温和常温下贮藏9 d后,均能够显著提高异常毕赤酵母对于葡萄青霉病的生物防治效果。但有些化学物质却不宜与拮抗酵母配合使用,如添加焦亚硫酸钠和甲基托布津会抑制酵母的生长,抑制率接近100%[15]。因此拮抗酵母只有与它本身不产生有毒作用或者影响较小的物质结合使用,才能达到增效的目的。
3.2 拮抗细菌在葡萄病害防治中的应用效果
3.2.1 单一拮抗细菌在葡萄病害防治中的应用效果
目前文献中拮抗细菌对葡萄采后灰霉病的研究较多,葡萄品种以红地球葡萄和玫瑰香葡萄居多(表5)。假单胞杆菌BHG13菌株对红地球葡萄采后灰霉病的防治效果最好,高达68.59%[52]。而伯克霍尔德氏菌B-1和洋葱霍尔德氏菌则对玫瑰香葡萄采后灰霉病的抑制效果最好,果梗和果肉的腐烂率分别都下降了69.58%和63.93%[42,54]。同时红地球葡萄和玫瑰香葡萄都属于果皮较厚的品种,表明大多拮抗细菌更适合厚皮葡萄的采后病害防治。当贝式芽孢杆菌Bvel1的使用浓度为1×108 CFU/mL时,对红地球葡萄采后灰霉病的防治率为64.77%[41],比使用浓度为1×106 CFU/mL高出9%(P<0.05)。随着拮抗细菌浓度的升高,防治效果也随之增强。
表 5 单一拮抗细菌在葡萄病害防治中的应用效果Table 5. Application effect of single antagonistic bacteria in grape disease control拮抗细菌名称 葡萄品种 病害种类 浓度 效果 参考文献 洋葱霍尔德氏菌 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗的腐烂率下降了69.58%,果肉腐烂指数下降了63.93% [54] 伯克霍尔德氏菌B-1 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗和果肉的腐烂率分别降低了69.58%和63.93% [42] 枯草芽孢杆菌K1 野葡萄果实 灰霉病 1×108 CFU/mL 果实腐烂率下降了60%、病斑直径缩小了22 mm [43] 淀粉芽孢杆菌NCPSJ7 红地球葡萄 灰霉病 1×107 CFU/mL 灰霉病发病率降低了26.7%、病斑直径缩小了0.3 cm左右、腐烂指数降低了15%(P<0.05) [55] 贝式芽孢杆菌Bvel1 红地球葡萄 灰霉病 1×106 CFU/mL、
1×108 CFU/mL灰霉病发病率分别降低了55.77%和64.77% [41] 假单胞杆菌BHG13和BTZ7 红地球葡萄 灰霉病 1×108 CFU/mL BTZ7菌株的防治效果为50.00%,BHG13菌株的防治效果为68.59% [52] 洋葱霍尔德氏菌B-1 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗和果肉的防治效果分别提高了6.86%和36.5% [56] 虽然利用拮抗细菌防治葡萄采后灰霉病取得了一定的效果,但在后续实际生产应用仍具有较大的挑战,尤其是制剂加工及其对葡萄采后的抑菌效果。枯草芽孢杆菌BS2粉剂发酵7 d后,芽孢杆菌的含量不再变化,保持在1.56×1011个孢子/g,但保存6个月后含量降低到0.53×1011个孢子/g[53],对葡萄灰霉病防治效果不稳定且在实际生防应用中并不持久。枯草芽孢杆菌B579粉制剂的有效活菌数为3.0×1011 CFU/g,有效期可以达到7.2个月[38]。说明制剂剂型会显著影响其抗菌效果,在做相关研究时,应该测试不同助剂对拮抗菌剂的影响,既要延长保存时间,又要维持较高的拮抗效果。
3.2.2 拮抗细菌与其他方法联合在葡萄病害防治中的应用效果
针对单一拮抗细菌在抑菌方面的局限性,采用两种及两种以上的拮抗细菌复合处理,可以达到在功能上相互补充,同时防治多种病害,效果持久协同控制的目的[57]。当使用内生荧光假单胞菌CT2与聚群泛球菌AF2两菌株联合处理葡萄时,对灰霉病的抑制率最高,发病率降低约93%[58]。离体条件下,菌株GLB191和GLB197的发酵原液联合使用处理葡萄,腐烂抑制率比单一处理组分别提高了15.41%和17.98%;在葡萄果实成熟期和采收期,两菌株发酵液联合处理的防效为55.02%和70.20%,与化学药剂的防效相当,药剂组防效为48.57%和71.78%[47]。由此提示可以在采前使用复合拮抗细菌处理葡萄,从而提高葡萄采后抑菌能力。此外,与某些化学物质结合也可提高拮抗细菌对于葡萄采后病害的防治效率,当芽孢杆菌QST713和普鲁兰芽孢杆菌DSM14940与杀菌剂氟吡虫啉交替混合使用,对葡萄灰霉病的防治效果可达96%[50]。
虽然采用拮抗细菌组合的方法防治葡萄采后病害被认为是一种更实际、有效的生物防治策略,但此方法在使用上也存在一定局限性。混合使用的两菌株之间互作关系若是亲和的,则混合使用可以达到增效的目的[59],反之则相反,假单胞菌属、欧文氏菌属、短小杆菌属三种细菌的混合液对黄瓜枯萎病的生防效果较差,是阳性对照药剂的50%左右[60]。因此研究者需要通过体外实验确定拮抗细菌之间无寄生、竞争和溶解互斥关系,并在体内测试中观察到与体外实验一致的结果。
4. 拮抗菌防治葡萄采后病害的主要机理
通过对拮抗菌作用机理的深入研究,可为其制定预防药物、使用方法和定向改造策略提供理论基础。在外部环境条件的影响下,拮抗菌、病原菌和寄主三个方面之间的相互作用,形成了多种机制的综合效应,从而导致了每种拮抗菌拮抗效果的产生。Wisniewski等[61]通过图表展示了这种相互作用的关系。经对比分析,果蔬采后病害生物防治主要采用的拮抗作用机理为:抗生作用、竞争作用、重寄生作用和抗性诱导。
4.1 抗生作用
用于生物防治的众多拮抗菌都能产生抑制病原菌生长的抗生素,而用于采后病害生物防治的拮抗菌主要是以分泌抗菌素的方式发挥作用。Nifokas等[41]的实验结果表明菌株Bvel1含有13个抗菌生物合成基因簇,包括伊藤素A、表面活性素、杆菌素、胆小霉素等,菌株Bvel1能有效抑制受损葡萄体内灰霉病的侵染和扩散,其在受伤葡萄中表现出足够的定殖效率。Li等[62]体外实验结果表明,枯草芽孢杆菌K1能显著抑制灰霉病菌菌丝的生长,抑制率达到78.42%±1.23%。同时基因分析显示,枯草芽孢杆菌K1染色体含有许多已知的生物合成基因簇,如编码枯草菌素、硅藻烯、芽孢杆菌素和风霉素等。阴沟肠杆菌S6存在不同的次生代谢产物基因簇,包括芽孢杆菌素、风霉素、表面素和杆菌素,以及非核糖体肽合成酶和细菌素[45],其能够限制病原菌的发展,对灰霉病菌菌丝生长的抑制率达到37%左右,并显著减少与灰葡萄孢属相关的坏死。
红酵母能够分泌抑制霉菌的酵母酸,酵母酸能鳌合铁离子,使病原菌缺少铁元素而死亡。陈莹莹等[63]研究表明灰葡萄孢菌被C4H10O2、C4H8O2和C5H10O2等挥发性物质熏蒸48 h时,菌丝生长势明显受阻,抑制率高达72.41%,其产孢量始终低于空白组(P<0.05)。李贞景等[64]研究发现6.0 g TD-1菌株麦麸培养物产生的二甲基异冰片和1,4-二甲基金刚烷等挥发性物质对灰霉孢菌的抑菌率为66.67%,灰霉孢菌的产孢量(3.9×106 个/cm2)较空白组(5.9×107 个/cm2)显著降低(P<0.01)。张迪[65]检测到异常威克汉姆酵母产生的Styrene对于葡萄灰霉病菌菌丝有明显抑菌作用,导致灰霉病菌菌丝体的扭曲和畸形。采用双板法检测表明枯草芽孢杆菌K1的挥发性物质邻苯二甲酸二丁酯显著抑制了灰葡萄球菌的生长,抑制率达到83.32%±1.84%[43]。高全等[66]发现草果挥发油中桉油醇对葡萄灰霉病菌的抑菌活性最显著,EC50值为235.30 mg/L,且活体试验证明,当质量浓度为500 mg/L时,草果挥发油对葡萄灰霉病的防治效果为76.51%。
4.2 竞争作用
许多酵母菌和类酵母菌都通过相互抵消对方的营养来保护它们免受侵害。酵母菌的一个显著的优势在于它们能够迅速地增加它们的数量,从而获得更多的营养来满足它们的生存需求[67]。拮抗酵母菌可在短时间内快速利用果实皮孔、伤口处的低营养物质,迅速繁殖,最终占领全部生长空间。康萍芝等[68]明确了木霉菌主要是通过快速繁殖与病菌竞争营养和生存空间以及重寄生作用达到抑菌效果,尤其是康氏木霉表现出了很强的竞争优势,抑菌率达61.8%~77.6%。Lucia等[69]的研究证明对铁的竞争以及形成生物膜和定殖果实伤口的能力是异常威克汉姆酵母(M. pulcherrima)的主要作用机制。当细胞悬浮液浓度为3×108 CFU/mL时,异常威克汉姆酵母对灰霉病菌有显著抑制作用,抑制效果最佳[65]。实验结果表明Y. lipolytica接种于葡萄果实伤口处,在20 ℃或4 ℃中存放4 d后,该酵母菌能够快速利用葡萄伤口处的营养物质,长时间在伤口处定殖和大量繁殖,保持较高酵母菌数量[34]。有研究发现用芽孢杆菌Bvel1细胞培养处理受损葡萄果实时,菌落数量迅速增加从1.09 lg CFU/创面增加到2.91 lg CFU/创面,接种4 d后达到最大种群数为3.50 lg CFU/葡萄,表现出了足够的定殖效率,可有效控制灰霉病在体内的侵入和蔓延[41]。无论是接种还是浸泡处理,荧光假单胞菌都能在葡萄果实上快速生长定殖,消耗营养,抢占生态位点,从而抑制B. cinerea的生长[70]。
4.3 重寄生作用
拮抗菌可以直接作用于病原菌使其生长受到抑制。研究发现拮抗酵母菌在抑制病原菌时能够附着、缠绕在病原菌的菌丝上甚至覆盖菌丝,分泌降解病原真菌细胞壁或菌丝体的几丁质酶(chitinases,CHI)、β-1,3-葡聚糖酶(β-1,3-glucanases,GIU)等胞外水解酶,这些酶表现出明显的抗菌活性[71]。Wisniewski等[61]发现B. cinererea的细胞壁诱导毕赤酵母后,其菌菌株的β-1,3葡聚糖酶(GLU)活性增强。Drobys等[72]采用拮抗菌Candida oleophila喷洒葡萄表面,可显著提高其果实组织中CHI和GlU活性,同时研究发现在葡萄伤口处的假丝酵母,能够诱导伤口处几丁质酶、β-1,3-葡聚糖酶的活性,从而增强葡萄抗病性。Esa等[51]采用1%壳聚糖(w/v)诱导培养的P. anomala处理葡萄,显著增加了果实表面和培养基上酵母的数量,同时明显提高了P. anomala的β-1,3-葡聚糖酶和过氧化氢酶的活性,降低葡萄青霉病的发病率。Paul等[73]研究发现一种腐霉对灰霉病菌具有重寄生作用,它进入寄主菌丝后形成大量的分枝和有性结构,因而能抑制葡萄灰霉病症状的出现。荧光假单胞菌与B. cinerea在葡萄果实上共培养后发现,荧光假单胞菌能够附着在B. cinerea菌丝上破坏其菌丝形态、造成菌丝褶皱,影响B. cinerea正常生长[70]。
4.4 抗性诱导
有些拮抗菌可诱导果蔬合成与抗性提高有关的物质。如添加假丝酵母(Candida oleophila)细胞悬浮液的葡萄果皮组织能够更多的合成乙烯,积累苯丙氨酸氨基裂解酶,从而诱导宿主产生抗性[34]。酵母菌诱导寄主提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、多酚氧化酶(PPO)等抗性相关酶类的活性,增强寄主对病虫害、高温的抵抗能力[74]。肖金玮[31]的研究表明在以γ-氨基丁酸(GABA)为激发子诱导培养的S. pararoseus Y16相比S. pararoseus Y16单独处理对葡萄采后黑粉病具有更好的控制效果。Li等[62]实验表明在接种芽孢杆菌K1后,葡萄中诱导了更高水平的防御相关酶,包括POD、PPO和苯丙氨酸解氨酶(PAL)。Qiao等[46]通过基因水平验证经S. pararoseus Y16处理提高了鲜食葡萄PPO、CAT、PAL和抗坏血酸过氧化物酶(APX)的活性。经洋葱霍尔德氏菌处理可提高葡萄果实PAL、POD、SOD和PPO的活性,促进过氧化氢(H2O2)含量积累,延缓CAT活性峰值出现的时间[52]。Zhou等[55]发现淀粉芽孢杆菌NCPSJ7诱导的GLU活性(136.04 U/g FW)高于CK组(128.58 U/g FW),高于单独接种病原菌组(127.18 U/g FW),表明拮抗细菌NCPSJ7可以诱导果实对病原菌产生抗性。Esa等[51]发现单用毕赤酵母或用1% w/v的壳聚糖诱导食用葡萄采后处理,可提高葡萄果实中PPO、POD、PAL、CAT的活性和总酚的含量。Wu等[35]发现Pulcherrima T-2处理后显著提高POD、CAT、PAL等抗氧化酶活性,同时总酚和黄酮类化合物含量及代谢途径关键酶基因的表达水平均有所升高。
5. 总结与展望
利用拮抗菌进行生物防治,有望取代传统的化学杀菌剂,成为应对葡萄采后病害的一种绿色环保的方法。尽管目前已经成功地筛选分离出多种有效防治葡萄采后病害的拮抗细菌和酵母,但较难达到与化学保鲜剂相当的防效,在应用方面也存在一些问题:一是研究中大多使用从葡萄生长相关的自然环境中筛选获得的拮抗菌来防治葡萄采后病害,防治效果有限;二是拮抗菌制剂保存条件严格且抗菌活性不稳定;三是拮抗菌与其他方法联合防治时,对拮抗菌耐受物理、化学及生物条件要求较高,加大了测试工作量;四是拮抗菌应用于葡萄时需要考虑其安全性,保障人体健康安全。
随着我国葡萄产业的蓬勃发展,对葡萄采后保鲜技术的深入研究已成为当务之急,尤其是对于环保安全的生物防治技术的探索和研究,更是至关重要。未来对拮抗菌应用于葡萄贮藏保鲜方面的研究应考虑以下几点:a.可从特殊环境(如冰川、沙漠、古树林等)中筛选拮抗菌,一方面其产生的新的代谢产物可能会提高防治效果,另一方面也将提高其联合防治的耐受力;b.开发新型的拮抗菌制剂加工技术,最大程度保留其活性抑菌成分,延长保存期,提高防治效果;c.可将拮抗菌与采后物理技术(如冷库保存、热处理、气调保鲜等)间隔一定时间交替处理葡萄,避免同时处理降低拮抗菌的抗菌活性;d.需要将拮抗菌纳入小鼠急毒性试验,观察是否对其生长存在不利现象,以此确定拮抗菌的安全性,用于后续开发并应用于葡萄采后病害防治。
-
表 1 葡萄采后主要侵染性病害及其症状
Table 1 Main postharvest infectious diseases and symptoms of grapes
病害种类 致病菌 发病症状 参考文献 灰霉病 灰葡萄孢 染病早期出现直径2~3 mm的圆形凹陷病斑,白色霉层;后期鼠灰色,局部脱落;果梗染病后变成褐黑色,在病部出现褐色块状菌核 [16,18] 葡萄曲霉腐烂病 黑曲霉 染病初期表皮滋生白色的菌块,染病后期呈黑粉状或紫黑粉状;腐烂果穗上有尘埃状粉末,褐色、淡黄色或绿色的霉菌 [19−20] 青霉病 青霉 染病初期果实表面有水渍状,白色霉层和菌丝生长,孢子形成后变为青绿色并增厚;染病后期产生褐色病斑,感染组织有浓烈霉烂气味 [21−22] 根霉腐烂病 根霉属 染病初期呈褐色水渍状斑块;发病后期,果粒上布满白色菌丝及黑色点状物、孢子囊密集成灰色或黑色团 [23] 葡萄链格胞腐烂病 链格孢霉 发病时产生局部的淡褐色或棕色的腐败病斑,组织裂缝中长出绒毛状灰色真菌菌丝伴随分生孢子和分生孢子梗 [20,24] 葡萄拟茎点霉腐烂病 拟茎点霉 发病初期果实上产生直径约1 mm的淡褐色斑点,呈水渍状;后期病斑直径约10~20 mm [25] 表 2 防治葡萄果实采后病害主要的拮抗酵母菌
Table 2 Main antagonistic yeast for the prevention and control of postharvest diseases of grape fruits
表 3 防治葡萄果实采后病害主要的拮抗细菌
Table 3 Main antagonist bacteria for the prevention and control of postharvest diseases of grape fruits
表 4 单一拮抗酵母菌在葡萄病害防治中的应用效果
Table 4 Application effect of single antagonistic yeast in grape disease control
拮抗酵母菌名称 葡萄品种 病害种类 浓度 效果 参考文献 解脂亚罗酵母 红提葡萄 青霉病 1×109 cells/mL 腐烂率降低了66.7%,病斑直径缩小了7.72 mm [34] 解脂亚罗酵母Y-2 红提葡萄 根霉腐烂病 1×108 cells/mL 病斑直径降低了23.8%,伤口处赭曲霉毒素降低了44.05 ng/伤口 [27] 拮抗酵母菌YT-2 红提葡萄 曲霉腐烂病 1.0×108 CFU/mL 病斑直径缩小了19.87 mm,对黑曲霉的抑制率高达100% [32] 美极梅奇酵母T-2 闪亮马斯喀特葡萄 灰霉病 1×108 cells/mL 灰霉病发病率降低了34%,病斑直径缩小了15 mm [35] 季也蒙毕赤酵母 巨峰葡萄 灰霉病 1.0×108 CFU/mL 灰霉病发病率降低了48%(P<0.05) [15] 晋宁斯塔莫酵母 G17515和卡利比克迈耶氏酵母G31887 无核白葡萄 灰霉病 1×105 CFU/mL 灰霉病的发病率分别降低了21.79%和34.61%,其生防效果分别为48.56%和77.13% [47] 拟粉红锁掷孢酵母Y16 鲜食葡萄 曲霉腐烂病 1×108 cells/mL 和1×109 cells/mL 采后曲霉腐烂病的病斑直径相较于对照均缩小了
2.6 mm,果实腐烂率分别降低了20.63%和16%[46] 酿酒酵母 夏黑葡萄 曲霉腐烂病 1×108 CFU/mL 葡萄曲霉腐烂病发病率降低了84.4%(P<0.05) [48] 表 5 单一拮抗细菌在葡萄病害防治中的应用效果
Table 5 Application effect of single antagonistic bacteria in grape disease control
拮抗细菌名称 葡萄品种 病害种类 浓度 效果 参考文献 洋葱霍尔德氏菌 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗的腐烂率下降了69.58%,果肉腐烂指数下降了63.93% [54] 伯克霍尔德氏菌B-1 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗和果肉的腐烂率分别降低了69.58%和63.93% [42] 枯草芽孢杆菌K1 野葡萄果实 灰霉病 1×108 CFU/mL 果实腐烂率下降了60%、病斑直径缩小了22 mm [43] 淀粉芽孢杆菌NCPSJ7 红地球葡萄 灰霉病 1×107 CFU/mL 灰霉病发病率降低了26.7%、病斑直径缩小了0.3 cm左右、腐烂指数降低了15%(P<0.05) [55] 贝式芽孢杆菌Bvel1 红地球葡萄 灰霉病 1×106 CFU/mL、
1×108 CFU/mL灰霉病发病率分别降低了55.77%和64.77% [41] 假单胞杆菌BHG13和BTZ7 红地球葡萄 灰霉病 1×108 CFU/mL BTZ7菌株的防治效果为50.00%,BHG13菌株的防治效果为68.59% [52] 洋葱霍尔德氏菌B-1 玫瑰香葡萄 灰霉病 稀释5倍发酵液 果梗和果肉的防治效果分别提高了6.86%和36.5% [56] -
[1] 亓桂梅, 李旋, 张久慧, 等. 美洲地区鲜食葡萄产业概况及发展趋势[J]. 中外葡萄与葡萄酒,2016,207(3):52−56. [QI G M, LI X, ZHANG J H, et al. General situation and development trend of table grape industry in America[J]. Chinese and Foreign Grapes and Wine,2016,207(3):52−56.] QI G M, LI X, ZHANG J H, et al. General situation and development trend of table grape industry in America[J]. Chinese and Foreign Grapes and Wine, 2016, 207(3): 52−56.
[2] 李小红, 李运景, 马晓青, 等. 我国葡萄产业发展现状与展望[J]. 中国南方果树,2021,50(5):161−166. [LI X H, LI Y J, MA X Q, et al. Current situation and prospect of grape industry development in China[J]. Fruit Trees of Southern China,2021,50(5):161−166.] LI X H, LI Y J, MA X Q, et al. Current situation and prospect of grape industry development in China[J]. Fruit Trees of Southern China, 2021, 50(5): 161−166.
[3] 蔡全新. 我国葡萄种植产业发展现状及对策[J]. 乡村科技,2020,260(20):18−19. [CAI Q X. Current situation and countermeasures of grape planting industry development in China[J]. Rural Science and Technology,2020,260(20):18−19.] CAI Q X. Current situation and countermeasures of grape planting industry development in China[J]. Rural Science and Technology, 2020, 260(20): 18−19.
[4] 李侨飞. 拟粉红锁掷孢酵母Y16控制葡萄采后病害及其机制和制剂化研究[D]. 镇江:江苏大学, 2017. [LI Q F. Study on the control of postharvest disease of grape by Saccharomyces pinkifera Y16 and its mechanism and formulation[D]. Zhenjiang:Jiangsu University, 2017.] LI Q F. Study on the control of postharvest disease of grape by Saccharomyces pinkifera Y16 and its mechanism and formulation[D]. Zhenjiang: Jiangsu University, 2017.
[5] 秦丹, 石雪晖, 林亲录, 等. 葡萄采后病害生物防治研究进展[J]. 食品与机械,2007,122(6):142−144. [QIN D, SHI X H, LIN Q L, et al. Research progress on biological control of postharvest diseases of grape[J]. Food and Machinery,2007,122(6):142−144.] QIN D, SHI X H, LIN Q L, et al. Research progress on biological control of postharvest diseases of grape[J]. Food and Machinery, 2007, 122(6): 142−144.
[6] ROMANAZZI G, LICHTER A, GABLER F M, et al. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes[J]. Postharvest Biology and Technology,2012,63(1):141−147. doi: 10.1016/j.postharvbio.2011.06.013
[7] ASSAF L, PEDROZO L P, NALLY M C, et al. Use of yeasts from different environments for the control of Penicillium expansum on table grapes at storage temperature[J]. International Journal of Food Microbiology,2020,37(320):108520.
[8] JIANG C, SHI J, LIU Y, et al. Inhibition of Aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis[J]. Food Control,2014,35(1):41−48. doi: 10.1016/j.foodcont.2013.06.054
[9] Borry G. Controlled atmosphere alternative to the post-harvest use of suphur dioxide to inhibit the development of Botrytis cinerea in table grapes[J]. Postharvest Horticulture Series,1997,17(3):160−164.
[10] 王晓栋. 果蔬采摘后病害生物防治研究进展[J]. 种子科技,2021,39(19):65−66. [WANG X D. Research progress on biological control of diseases after fruit and vegetable picking[J]. Seed Technology,2021,39(19):65−66.] WANG X D. Research progress on biological control of diseases after fruit and vegetable picking[J]. Seed Technology, 2021, 39(19): 65−66.
[11] 王凤超. 二氧化硫处理对鲜食葡萄贮藏病害及生理的影响[D]. 乌鲁木齐:新疆农业大学, 2013. [WANG F C. Effects of sulfur dioxide treatment on storage diseases and physiology of table grapes[D]. Urumqi:University of Xinjiang Agricultural, 2013.] WANG F C. Effects of sulfur dioxide treatment on storage diseases and physiology of table grapes[D]. Urumqi: University of Xinjiang Agricultural, 2013.
[12] 秦丹, 石雪晖, 林亲录, 等. 葡萄采后病害生防制剂用拮抗酵母的筛选[J]. 食品科学,2008,344(7):303−305. [QIN D, SHI X H, LIN Q L, et al. Screening of antagonistic yeast for biocontrol of postharvest grape diseases[J]. Food Science,2008,344(7):303−305.] QIN D, SHI X H, LIN Q L, et al. Screening of antagonistic yeast for biocontrol of postharvest grape diseases[J]. Food Science, 2008, 344(7): 303−305.
[13] 孟晓美, 张丽芬, 陈复生, 等. 生物防治机理及其在采后果蔬病害应用中的研究进展[J]. 食品工业,2017,38(10):223−227. [MENG X M, ZHANG L F, CHEN F S, et al. Research progress of biological control mechanism and its application in postharvest fruit and vegetable diseases[J]. Food Industry,2017,38(10):223−227.] MENG X M, ZHANG L F, CHEN F S, et al. Research progress of biological control mechanism and its application in postharvest fruit and vegetable diseases[J]. Food Industry, 2017, 38(10): 223−227.
[14] 李梓童, 彭丽, 熊思国, 等. 1-MCP和SO2处理对阳光玫瑰葡萄贮藏品质及风味的影响[J]. 包装工程,2023,44(11):64−77. [LI Z T, PENG L, XIONG S G, et al. Effects of 1-MCP and SO2 treatments on storage quality and flavor of Sunny Rose grape[J]. Packaging Engineering,2023,44(11):64−77.] LI Z T, PENG L, XIONG S G, et al. Effects of 1-MCP and SO2 treatments on storage quality and flavor of Sunny Rose grape[J]. Packaging Engineering, 2023, 44(11): 64−77.
[15] 秦丹. 生防制剂在葡萄保鲜中的应用与抑菌机理研究[D]. 长沙:湖南农业大学, 2007. [QIN D. Application of biocontrol preparations in grape preservation and study on bacteriostatic mechanism[D]. Changsha:Hunan Agricultural University, 2007.] QIN D. Application of biocontrol preparations in grape preservation and study on bacteriostatic mechanism[D]. Changsha: Hunan Agricultural University, 2007.
[16] 宋开艳. 葡萄采后病害病原菌致病特点及拮抗菌的筛选[D]. 阿拉尔:塔里木大学, 2011. [SONG K Y. Pathogenic characteristics and screening of antagonistic bacteria of grape postharvest diseases[D]. Alar:Tarim University, 2011.] SONG K Y. Pathogenic characteristics and screening of antagonistic bacteria of grape postharvest diseases[D]. Alar: Tarim University, 2011.
[17] 李宁. 葡萄采后致腐菌检测及真菌源激发子诱导抗病研究[D]. 杨陵:西北农林科技大学, 2005. [LI N. Detection of postharvest rot bacteria and resistance induced by fungus-derived elicitor in grape[D]. Yangling:Northwest Agriculture and Forestry University, 2005.] LI N. Detection of postharvest rot bacteria and resistance induced by fungus-derived elicitor in grape[D]. Yangling: Northwest Agriculture and Forestry University, 2005.
[18] 陈宇飞. 葡萄果实抗灰霉病机制研究[D]. 哈尔滨:东北农业大学, 2006. [CHEN Y F. Mechanism of grape fruit resistance to gray mold disease[D]. Harbin:Northeast Agricultural University, 2006.] CHEN Y F. Mechanism of grape fruit resistance to gray mold disease[D]. Harbin: Northeast Agricultural University, 2006.
[19] 孙晨旭. 阳光玫瑰葡萄真菌病害种类与采后病害控制方法研究[D]. 上海:华东师范大学, 2020. [SUN C X. Study on fungal disease species and postharvest disease control methods of sunny rose grape[D]. Shanghai:East China Normal University, 2020.] SUN C X. Study on fungal disease species and postharvest disease control methods of sunny rose grape[D]. Shanghai: East China Normal University, 2020.
[20] 许玲, 李学文, 滕康宁, 等. 果蔬采后致病真菌的检测及其控制[J]. 食品科学,2003,24(7):155−158. [XU L, LI X W, TENG K N. Detection and control of postharvest pathogenic fungi in fruits and vegetables[J]. Food Science,2003,24(7):155−158.] XU L, LI X W, TENG K N. Detection and control of postharvest pathogenic fungi in fruits and vegetables[J]. Food Science, 2003, 24(7): 155−158.
[21] 葛毅强, 叶强, 陈颖, 等. 鲜食葡萄的采后生理及贮运保鲜[J]. 植物生理学通讯,1999,35(6):507−512. [GE Y Q, YE Q, CHEN Y, et al. Postharvest physiology and storage and preservation of table grapes[J]. Plant Physiology Communication,1999,35(6):507−512.] GE Y Q, YE Q, CHEN Y, et al. Postharvest physiology and storage and preservation of table grapes[J]. Plant Physiology Communication, 1999, 35(6): 507−512.
[22] 李凤琴. 赭曲霉毒素A与人类健康关系研究进展[J]. 卫生研究,2003,32(2):172−175. [LI F Q. Research progress on the relationship between Helatoxin A and human health[J]. Health Research,2003,32(2):172−175.] LI F Q. Research progress on the relationship between Helatoxin A and human health[J]. Health Research, 2003, 32(2): 172−175.
[23] 王刘庆, 焦健, 王蒙, 等. 葡萄及其制品中赭曲霉毒素A的污染与控制研究进展[J]. 食品安全质量检测学报,2022,13(2):612−619. [WANG L Q, JIAO J, WANG M et al. Research progress of Ochratoxin A pollution and control in grape and its products[J]. Food Safety and Quality Testing,2022,13(2):612−619.] WANG L Q, JIAO J, WANG M et al. Research progress of Ochratoxin A pollution and control in grape and its products[J]. Food Safety and Quality Testing, 2022, 13(2): 612−619.
[24] 宋卫翠, 郭庆元, 王洪凯, 等. 吐鲁番地区及北疆部分地区葡萄常见病害种类及发生现状[J]. 新疆农业科学,2014,51(5):893−901. [SONG W C, GUO Q Y, WANG, H K, et al .Grape diseases and their occurrence status in turpan area and some areas of northern Xinjiang[J]. Xinjiang Agricultural Sciences,2014,51(5):893−901.] SONG W C, GUO Q Y, WANG, H K, et al .Grape diseases and their occurrence status in turpan area and some areas of northern Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(5): 893−901.
[25] 薛萍, 付宏岐, 王录军, 等. 鲜食葡萄采后微生物病害及防治[J]. 陕西农业科学,2017,63(11):75−77. [XUE P, FU H Q, WANG L J, et al. Postharvest microbial diseases and their control in table grapes[J]. Shanxi Agricultural Science,2017,63(11):75−77.] XUE P, FU H Q, WANG L J, et al. Postharvest microbial diseases and their control in table grapes[J]. Shanxi Agricultural Science, 2017, 63(11): 75−77.
[26] 魏玉洁, 邹弯, 马文瑞, 等. 应用高通量测序技术研究新疆产区葡萄果实、叶片及果园土壤微生物多样性[J]. 食品科学,2018,39(6):162−170. [WEI Y J, ZOU W, MA W R, et al. High-throughput sequencing technology was used to study the microbial diversity of grape fruits, leaves and orchards in Xinjiang[J]. Food Science,2018,39(6):162−170.] WEI Y J, ZOU W, MA W R, et al. High-throughput sequencing technology was used to study the microbial diversity of grape fruits, leaves and orchards in Xinjiang[J]. Food Science, 2018, 39(6): 162−170.
[27] 张晓云, 顾香玉, 赵利娜, 等. 解脂亚罗酵母Y-2对葡萄采后病害及赭曲霉毒素A的控制作用[J]. 中国食品学报,2020,20(8):201−206. [ZHANG X Y, GU X Y, ZHAO L N, et al. Control effect of Saccharomyces Y-2 on postharvest disease and ochratoxin A of grape[J]. Chinese Journal of Food Science,2020,20(8):201−206.] ZHANG X Y, GU X Y, ZHAO L N, et al. Control effect of Saccharomyces Y-2 on postharvest disease and ochratoxin A of grape[J]. Chinese Journal of Food Science, 2020, 20(8): 201−206.
[28] 王晓雯. 贵州地区葡萄园土壤微生物多样性研究[D]. 广东:华南理工大学, 2017. [WANG X W. Study on soil microbial diversity of vineyard in Guizhou Province[D]. Guangzhou:South China University of Technology, 2017.] WANG X W. Study on soil microbial diversity of vineyard in Guizhou Province[D]. Guangzhou: South China University of Technology, 2017.
[29] GODANA E A, YANG Q, ZHAO L, et al. Pichia anomala induced with chitosan triggers defense response of table grapes against post-harvest blue mold disease[J]. Front Microbiol,2021,22(12):704519.
[30] 刘海波, 田世平, 秦国政, 等. 罗伦隐球酵母对葡萄采后病害的拮抗效果[J]. 中国农业科学,2002,43(7):831−835. [LIU H B, TIAN S P, QIN G Z, et al. Antagonistic effect of Cryptococcus lorenensis on postharvest diseases of grape[J]. Agricultural Science in China,2002,43(7):831−835.] LIU H B, TIAN S P, QIN G Z, et al. Antagonistic effect of Cryptococcus lorenensis on postharvest diseases of grape[J]. Agricultural Science in China, 2002, 43(7): 831−835.
[31] 肖金玮. γ-氨基丁酸诱导提高拟粉红锁掷孢Y16对葡萄采后病害生防效力及其机制研究[D]. 镇江:江苏大学, 2022. [XIAO J W. Study on gamma-aminobutyric acid induced enhancement of biocontrol effect of Cladospora rhodoides Y16 on postharvest diseases of grape and its mechanism[D]. Zhenjiang:Jiangsu University, 2022.] XIAO J W. Study on gamma-aminobutyric acid induced enhancement of biocontrol effect of Cladospora rhodoides Y16 on postharvest diseases of grape and its mechanism[D]. Zhenjiang: Jiangsu University, 2022.
[32] 李丽梅, 刘霞, 李喜宏, 等. 常温下黑曲霉对刺伤红提葡萄的致病规律研究及拮抗菌筛选[J]. 食品研究与开发,2020,41(15):35−39. [LI L M, LIU X, LI X H, et al. Study on pathogenic rule of Aspergillus niger on punctured red grapes at room temperature and screening of antagonistic bacteria[J]. Food Research and Development,2020,41(15):35−39.] LI L M, LIU X, LI X H, et al. Study on pathogenic rule of Aspergillus niger on punctured red grapes at room temperature and screening of antagonistic bacteria[J]. Food Research and Development, 2020, 41(15): 35−39.
[33] PONSONE M L, CHIOTTA M L, PALAZZINI J M, et al. Control of ochratoxin A production in grapes[J]. Toxins (Basel),2012,4(5):364−372. doi: 10.3390/toxins4050364
[34] 王美艳. 解脂亚罗酵母对葡萄采后病害的生物防治及其诱导葡萄抗性相关机制研究[D]. 镇江:江苏大学, 2019. [WANG M Y. Study on biological control of postharvest diseases of grape by Saccharomyces lipopolytica and related mechanisms of grape resistance induction[D]. Zhenjiang:Jiangsu University, 2019.] WANG M Y. Study on biological control of postharvest diseases of grape by Saccharomyces lipopolytica and related mechanisms of grape resistance induction[D]. Zhenjiang: Jiangsu University, 2019.
[35] WU C, WANG Y, AI D, et al. Biocontrol yeast T-2 improves the postharvest disease resistance of grape by stimulation of the antioxidant system[J]. Food Science & Nutrition,2022,10(10):3219−3229.
[36] 王晓雯, 洪振瀚, 刘安瑞, 等. 基于荧光定量PCR和高通量测序技术的葡萄园土壤细菌群落结构多样性分析[J]. 酿酒科技,2016,37(11):28−33,36. [WANG X W, HONG Z H, LIU A R, et al. Analysis of bacterial community diversity in vineyard soil based on fluorescence quantitative PCR and high-throughput sequencing[J]. Brewing technology,2016,37(11):28−33,36.] WANG X W, HONG Z H, LIU A R, et al. Analysis of bacterial community diversity in vineyard soil based on fluorescence quantitative PCR and high-throughput sequencing[J]. Brewing technology, 2016, 37(11): 28−33,36.
[37] LAPPA K I, MPARAMPOUTI S, LANZA B, et al. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum:A phenotypic and gene transcription study[J]. International Journal of Food Microbiology,2018,35(275):56−65.
[38] 闫杨. 生防芽孢杆菌B579微生态效应研究及菌剂制备[D]. 聊城:聊城大学, 2020. [RUI Y. Study on microecological effects of biocontrol Bacillus B579 and preparation of bactericide[D]. Liaocheng:Liaocheng University, 2020.] RUI Y. Study on microecological effects of biocontrol Bacillus B579 and preparation of bactericide[D]. Liaocheng: Liaocheng University, 2020.
[39] 崔欣. 葡萄果穗附生微生物区系分析及葡萄灰霉病拮抗菌筛选[D]. 兰州:甘肃农业大学, 2009. [CUI X. Analysis of epiphytic microflora of grape ear and screening of antagonistic bacteria of grape gray mold[D]. Lanzhou:Gansu Agricultural University, 2009.] CUI X. Analysis of epiphytic microflora of grape ear and screening of antagonistic bacteria of grape gray mold[D]. Lanzhou: Gansu Agricultural University, 2009.
[40] 徐晓裕, 李甜, 史学伟, 等. 黑曲霉拮抗细菌的筛选、鉴定和生防条件优化[J]. 食品工业科技,2022,43(13):132−138. [XU X Y, LI T, SHI X W, et al. Screening, identification and optimization of biocontrol conditions of antagonistic bacteria against Aspergillus niger[J]. Food Industry Science and Technology,2022,43(13):132−138.] XU X Y, LI T, SHI X W, et al. Screening, identification and optimization of biocontrol conditions of antagonistic bacteria against Aspergillus niger[J]. Food Industry Science and Technology, 2022, 43(13): 132−138.
[41] NIFOKAS K, TSALGATIDOU P C, SKAGIA A, et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1:A biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes[J]. Plants (Basel),2021,10(8):1716. doi: 10.3390/plants10081716
[42] SHEN F, LIU Z, DU C, et al. Induction of resistance of antagonistic bacterium Burkholderia contaminans to postharvest Botrytis cinerea in rosa vinifera[J]. Comput Math Methods Med,2022,17(2022):12.
[43] LI P, FENG B, YAO Z, et al. Antifungal activity of Endophytic bacillus K1 against Botrytis cinerea[J]. Front Microbiol,2022,22(13):935675.
[44] 王红丽, 善文辉, 胡海瑶, 等. 生防菌混合接种对葡萄灰霉病菌的防治效果[J]. 中国生物防治学报,2020,36(2):265−271. [WANG H L, SHAN W H, HU H Y, et al. Effect of mixed inoculation of biocontrol bacteria on Botrytis cinerea of grape[J]. Chinese Journal of Biological Control,2020,36(2):265−271.] WANG H L, SHAN W H, HU H Y, et al. Effect of mixed inoculation of biocontrol bacteria on Botrytis cinerea of grape[J]. Chinese Journal of Biological Control, 2020, 36(2): 265−271.
[45] AMAROUCHI Z, ESMAEEL Q, SANCHEZ L, et al. Beneficial microorganisms to control the gray mold of grapevine:From screening to mechanisms[J]. Microorganisms,2021,9(7):1386. doi: 10.3390/microorganisms9071386
[46] QIAO F L, CHAO L L, PENG X L, et al. The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved[J]. Biological Control,2017,27(113):18−25.
[47] 赖呈纯, 赖恭梯, 陈冰星, 等. 拮抗酵母菌的筛选鉴定、生物学特性及其对葡萄灰霉病菌的抑菌活性研究[J]. 中国生物防治学报,2023,39(2):1−14. [LAI C C, LAI G T, CHEN B X, et al. Screening, identification, biological characteristics and antibacterial activity of antagonistic yeast against Botrytis botrytis[J]. Chinese Journal of Biological Control,2023,39(2):1−14.] LAI C C, LAI G T, CHEN B X, et al. Screening, identification, biological characteristics and antibacterial activity of antagonistic yeast against Botrytis botrytis[J]. Chinese Journal of Biological Control, 2023, 39(2): 1−14.
[48] 李强, 张红印, 杨其亚, 等. 一株生防酵母菌的筛选鉴定及对葡萄采后病害的生防效果[J]. 食品工业科技,2014,35(14):182−185. [LI Q, ZHANG H Y, YANG Q Y, et al. Screening and identification of a biocontrol yeast and its biocontrol effect on postharvest diseases of grape[J]. Science and Technology of Food Industry,2014,35(14):182−185.] LI Q, ZHANG H Y, YANG Q Y, et al. Screening and identification of a biocontrol yeast and its biocontrol effect on postharvest diseases of grape[J]. Science and Technology of Food Industry, 2014, 35(14): 182−185.
[49] ZHANG X K, LI B Q, ZHANG Z Q, et al. Antagonistic yeasts:A promising alternative to chemical fungicides for controlling postharvest decay of fruit[J]. Journal of Fungi,2020,6(3):1−3.
[50] ROTOLO C, DE M, ANGELINI R M, et al. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards[J]. Pest Management Science,2018,74(3):715−725. doi: 10.1002/ps.4767
[51] ESA A G, QIYA Y, KAILI W, et al. Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism[J]. LWT,2020,124(C):1−2.
[52] 靳小刚. 葡萄叶面附生微生物区系分析及葡萄灰霉病拮抗菌的筛选[D]. 兰州:甘肃农业大学, 2010. [JIN X G. Analysis of epiphytic microflora of grape leaf surface and screening of antagonistic bacteria against Botrytis cinerea[D]. Lanzhou:Gansu Agricultural University, 2010.] JIN X G. Analysis of epiphytic microflora of grape leaf surface and screening of antagonistic bacteria against Botrytis cinerea[D]. Lanzhou: Gansu Agricultural University, 2010.
[53] 李永刚. 葡萄生防菌保鲜剂的研究与应用[Z]. 黑龙江:东北农业大学, 2011-07-29. [LI Y G. Study and application of grape biocontrol bacteria preservative[Z]. Heilongjiang:Northeast Agricultural University, 2011-07-29.] LI Y G. Study and application of grape biocontrol bacteria preservative[Z]. Heilongjiang: Northeast Agricultural University, 2011-07-29.
[54] 范三红, 李静, 施俊凤, 等. 拮抗菌Burkholderia contaminans对玫瑰香葡萄采后灰霉病的抗性诱导[J]. 食品科学,2016,37(2):266−270. [FAN S H, LI J, SHI J F, et al. Resistance induction of antagonistic Burkholderia contaminans to postharvest gray mold in rose sweet grape[J]. Food Science,2016,37(2):266−270.] FAN S H, LI J, SHI J F, et al. Resistance induction of antagonistic Burkholderia contaminans to postharvest gray mold in rose sweet grape[J]. Food Science, 2016, 37(2): 266−270.
[55] ZHOU Q, FU M, XU M, et al. Application of antagonist Bacillus amyloliquefaciens NCPSJ7 against Botrytis cinerea in postharvest red globe grapes[J]. Food Science & Nutrition,2020,8(3):1499−1508.
[56] 施俊凤, 李静, 谢映平, 等. 洋葱霍尔德氏菌对玫瑰香葡萄采后灰霉病的抑制活性[J]. 中国食品学报,2018,18(4):211−218. [SHI J F, LI J, XIE Y P, et al. Inhibitory activity of Holderella cepacia on postharvest gray mold of rose fragrant grape[J]. Chinese Journal of Food Science,2018,18(4):211−218.] SHI J F, LI J, XIE Y P, et al. Inhibitory activity of Holderella cepacia on postharvest gray mold of rose fragrant grape[J]. Chinese Journal of Food Science, 2018, 18(4): 211−218.
[57] 陈志谊, 刘邮洲, 刘永峰, 等. 拮抗细菌菌株之间的互作关系及其对生物防治效果的影响[J]. 植物病理学报,2005,35(6):539−544. [CHEN Z Y, LIU Y Z, LIU Y F, et al. Interaction between strains of antagonistic bacteria and its influence on biological control[J]. Journal of Plant Pathology,2005,35(6):539−544.] CHEN Z Y, LIU Y Z, LIU Y F, et al. Interaction between strains of antagonistic bacteria and its influence on biological control[J]. Journal of Plant Pathology, 2005, 35(6): 539−544.
[58] AZIZ A, VERHAGEN B, MAGNIN R M, et al. Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards[J]. Plant and Soil,2016,405(2):141−153.
[59] 于淑池, 张利平, 王立安. 拮抗细菌作为生物防治手段研究进展[J]. 河北农业科学,2004,16(1):62−65. [YU S C, ZHANG L P, WANG L A. Research progress of antagonistic bacteria as biological control method[J]. Hebei Agricultural Sciences,2004,16(1):62−65.] YU S C, ZHANG L P, WANG L A. Research progress of antagonistic bacteria as biological control method[J]. Hebei Agricultural Sciences, 2004, 16(1): 62−65.
[60] 田雪亮, 霍云凤, 单长卷. 内生细菌对温室黄瓜枯萎病的防治作用[J]. 安徽农业科学,2006,46(7):1385−1386. [TIAN X L, HUO Y F, SHAN C J. Control effect of endophytic bacteria on Cucumber wilt in greenhouse[J]. Anhui Agricultural Sciences,2006,46(7):1385−1386.] TIAN X L, HUO Y F, SHAN C J. Control effect of endophytic bacteria on Cucumber wilt in greenhouse[J]. Anhui Agricultural Sciences, 2006, 46(7): 1385−1386.
[61] WISNIEWSKI M, BILES C, DROBY S, et al. Mode of action of the postharvest biocontrol yeast Pichia characterization of attachment to Botrytis cinerea[J]. Journal of Molecular Signaling,1991,39(4):245−258.
[62] LI P Q, FENG B Z, YAO Z, et al. Antifungal activity of Endophytic bacillus K1 against Botrytis cinerea[J]. Frontiers in Microbiology,2022,13(4):12−14.
[63] 陈莹莹, 张亚敏, 郭红莲, 等. 膜醭毕赤酵母挥发性物质对灰葡萄孢菌的抑菌活性及组分分析[J]. 食品与发酵工业,2023,49(11):1−9. [CHEN Y Y, ZHANG Y M, GUO H L, et al. Antibacterial activity and component analysis of volatile substances of Pichia membranifaciens on Botrytis cinerea[J]. Food and Fermentation Industry,2023,49(11):1−9.] CHEN Y Y, ZHANG Y M, GUO H L, et al. Antibacterial activity and component analysis of volatile substances of Pichia membranifaciens on Botrytis cinerea[J]. Food and Fermentation Industry, 2023, 49(11): 1−9.
[64] 李贞景, 张春慧, 路来风, 等. 白黄链霉菌TD-1菌株挥发性有机物对灰霉孢菌的抑制作用[J]. 食品科学技术学报,2016,34(3):46−52. [LI Z J, ZHANG C H, LU L F, et al. Inhibitory effect of volatile organic compounds of Streptomyces leucoflavus TD-1 strain on grisea[J]. Journal of Food Science and Technology,2016,34(3):46−52.] LI Z J, ZHANG C H, LU L F, et al. Inhibitory effect of volatile organic compounds of Streptomyces leucoflavus TD-1 strain on grisea[J]. Journal of Food Science and Technology, 2016, 34(3): 46−52.
[65] 张迪. 葡萄灰霉病拮抗酵母菌的筛选及产挥发性抑菌物质特性研究[D]. 石河子:石河子大学, 2018. [ZAHNG D. Screening of antagonistic yeasts from grape Botrytis and characterization of volatile inhibitory substances[D]. Shihezi:Shihezi University, 2018.] ZAHNG D. Screening of antagonistic yeasts from grape Botrytis and characterization of volatile inhibitory substances[D]. Shihezi: Shihezi University, 2018.
[66] 高全, 吴雅林, 胡平, 等. 草果挥发油化学成分及对葡萄灰霉病菌的抑菌活性[J]. 农药,2022,61(5):378−385. [GAO Q, WU Y L, HU P, et al. Chemical constituents of volatile oil of fructus herba and its antibacterial activity against bovis[J]. Pesticide,2022,61(5):378−385.] GAO Q, WU Y L, HU P, et al. Chemical constituents of volatile oil of fructus herba and its antibacterial activity against bovis[J]. Pesticide, 2022, 61(5): 378−385.
[67] SHARMA R, SINGH D, SINGH R et al. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists:A review[J]. Biological Control,2009,50(3):205−221. doi: 10.1016/j.biocontrol.2009.05.001
[68] 康萍芝, 张丽荣, 沈瑞清, 等. 11种木霉菌对葡萄灰霉病菌的拮抗作用[J]. 中国农学通报,2007,158(8):392−395. [KANG P Z, ZHANG L R, SHENG R Q, et al. Antagonism of 11 trichoderma species against Botrytis of grape[J]. Chinese Agricultural Science Bulletin,2007,158(8):392−395.] KANG P Z, ZHANG L R, SHENG R Q, et al. Antagonism of 11 trichoderma species against Botrytis of grape[J]. Chinese Agricultural Science Bulletin, 2007, 158(8): 392−395.
[69] LUCIA P, ALESSANDRO V, CRISTIAN R, et al. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape[J]. Food Microbiology,2015,47(3):85−92.
[70] 魏雪, 江孟遥, 钟涛, 等. 荧光假单胞菌ZX对葡萄采后灰霉病的防治[J]. 食品工业科技,2021,42(22):125−132. [WEI X, JIANG M Y, ZHONG T, et al. Control of postharvest gray mold of grape by Pseudomonas fluorescens ZX[J]. Science and Technology of Food Industry,2021,42(22):125−132.] WEI X, JIANG M Y, ZHONG T, et al. Control of postharvest gray mold of grape by Pseudomonas fluorescens ZX[J]. Science and Technology of Food Industry, 2021, 42(22): 125−132.
[71] 赵春松. 拮抗酵母菌的筛选及其在葡萄采后保鲜中的应用[D]. 兰州:兰州大学, 2022. [ZHAO C S. Screening of antagonistic yeast and its application in grape postharvest preservation[D]. Lanzhou:Lanzhou University, 2022.] ZHAO C S. Screening of antagonistic yeast and its application in grape postharvest preservation[D]. Lanzhou: Lanzhou University, 2022.
[72] DROBY S, VINOKUR V, WISS B, et al. Induction of resistance to Penicillium in grapefruit by the yeast biocontrol agent candida oleophila[J]. Phytopathology,2002,92(4):393−399. doi: 10.1094/PHYTO.2002.92.4.393
[73] PAUL B. Suppression of Botrytis cinerea causing the grey mould disease of grape-vine by an aggressive mycoparasite, Pythium radiosum[J]. FEMS Microbiology Letters,1999,176(1):25−30. doi: 10.1111/j.1574-6968.1999.tb13637.x
[74] 王晓冬. 拮抗酵母菌抑菌机理及对草莓采后冷藏品质影响的研究[D]. 南京:南京农业大学, 2010. [WANG X D. Study on inhibitory mechanism of antagonistic yeast and its effect on cold storage quality of strawberry after harvest[D]. Nanjing:Nanjing Agricultural University, 2010.] WANG X D. Study on inhibitory mechanism of antagonistic yeast and its effect on cold storage quality of strawberry after harvest[D]. Nanjing: Nanjing Agricultural University, 2010.
-
期刊类型引用(2)
1. 黄伟,张苗苗,王宁,詹发强,刘峰娟,王苏玲,吴隆源,唐琦勇,张丽娟,王玮. 苯乙酮气相熏蒸抑制葡萄采后灰霉病菌的作用机理. 食品工业科技. 2025(06): 334-341 . 本站查看
2. 王立华,刘帮迪,张敏,孙静,周新群,程建虎,郭雪霞,曾祥权,江利华. 食源拮抗菌-壳聚糖涂膜对采后芒果活性氧代谢和货架期发病的影响. 农业工程学报. 2024(14): 250-260 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 149
- HTML全文浏览量: 91
- PDF下载量: 21
- 被引次数: 2