• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

Pickering全营养乳和传统全营养乳体外消化特性研究

王迎香, 刘金洋, 夏凯, 杨宗玲, 丁振江, 张子阳, 曹亚洲, 柳嘉, 段盛林

王迎香,刘金洋,夏凯,等. Pickering全营养乳和传统全营养乳体外消化特性研究[J]. 食品工业科技,2024,45(9):99−105. doi: 10.13386/j.issn1002-0306.2023060260.
引用本文: 王迎香,刘金洋,夏凯,等. Pickering全营养乳和传统全营养乳体外消化特性研究[J]. 食品工业科技,2024,45(9):99−105. doi: 10.13386/j.issn1002-0306.2023060260.
WANG Yingxiang, LIU Jinyang, XIA Kai, et al. Study on in Vitro Digestion Characteristics of Pickering and Traditional Whole Nutrient Emulsion[J]. Science and Technology of Food Industry, 2024, 45(9): 99−105. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060260.
Citation: WANG Yingxiang, LIU Jinyang, XIA Kai, et al. Study on in Vitro Digestion Characteristics of Pickering and Traditional Whole Nutrient Emulsion[J]. Science and Technology of Food Industry, 2024, 45(9): 99−105. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060260.

Pickering全营养乳和传统全营养乳体外消化特性研究

基金项目: 西藏高原青稞功能主食加工技术创新与示范(XZ202101YD0019C);糖尿病特定全营养配方食品关键技术体系研究与产业化应用示范(ZQ2022YY02)。
详细信息
    作者简介:

    王迎香(1997−),女,硕士研究生,研究方向:营养功能食品,E-mail:wangyingxiang97@163.com

    通讯作者:

    段盛林(1968−),男,硕士,正高级工程师,研究方向:营养功能食品,E-mail:Dslbeijing@163.com

  • 中图分类号: TS201.4

Study on in Vitro Digestion Characteristics of Pickering and Traditional Whole Nutrient Emulsion

  • 摘要: 为了研究乳化剂对全营养乳体外消化的影响,分别采用辛烯基琥珀酸淀粉颗粒(Octenyl succinic acid starch,OS)、玉米醇溶蛋白颗粒(Zein)和磷脂(Phospholipid,PL)作为乳化剂,通过剪切、高压均质制备三种全营养乳,然后利用pH-stat法模拟全营养乳体外消化,研究OS、Zein两种Pickering乳化剂和PL传统乳化剂对全营养乳消化特性的影响,测定了消化过程中全营养乳的粒径分布、zeta电位、微观结构和脂质消化速率。结果表明:模拟消化过程中,三种乳液的粒径均呈现先增大后减小的趋势;三种乳液的zeta电位绝对值均呈现先减小后增大的趋势,经消化后OS乳液、Zein乳液和PL乳液的电位值分别为:−14.53、−19.90、−18.80 mV,Zein乳液的油滴被脂肪酶水解的程度最大;Zein乳液、OS乳液和PL乳液最终游离脂肪酸的释放率分别为:20.54%、17.21%、14.29%,Pickering全营养乳的体外脂质消化速率高于传统全营养乳,有利于全营养乳脂质的消化吸收,有助于提高乳液中脂溶性生物活性成分的生物可及性。
    Abstract: In order to verify the effect of emulsifiers on the digestion of whole nutrient emulsion in vitro, three whole nutrient emulsions respectively containing octenyl succinic acid starch (OS), Zein, and phospholipids (PL) were prepared through shear and high-pressure homogenization. The pH-stat method was used to simulate the in vitro digestion process of whole nutrient emulsion, and the effects of OS, Zein Pickering emulsifier and PL traditional emulsifier on the digestion characteristics of whole nutrient emulsion were studied. The particle size distribution, zeta potential, microstructure, and lipid digestibility of whole nutrient emulsion during digestion were measured. The results showed that during the simulated digestion process, the particle sizes of the three emulsions showed a trend of first increasing and then decreasing, and the absolute values of zeta potential showed a trend of first decreasing and then increasing. After digestion, the potential values of OS emulsion, Zein emulsion, and PL emulsion were −14.53, −19.90, and −18.80 mV, respectively. The oil drops of Zein emulsion were most hydrolyzed by lipase and the final free fatty acid release rates of Zein emulsion, OS emulsion, and PL emulsion were 20.54%, 17.21%, and 14.29%, respectively. Pickering whole nutrient emulsion had a higher in vitro lipid digestion rate than traditional whole nutrient emulsion, which was conducive to the digestion and absorption of whole nutrient emulsion lipids and helped to improve the bioavailability of lipid soluble bioactive components in emulsion.
  • 全营养配方食品是可作为单一营养来源满足目标人群营养需求的特殊医学用途配方食品,产品形态以粉剂和乳剂最为常见。其中乳剂使用前无需进行冲调,使用场景更加便捷[1]。全营养乳是由人体所需的宏量营养素(蛋白质、碳水化合物、油脂)、微量营养素(矿物质、维生素)、以及膳食纤维等可选择成分通过与水混合、剪切、均质和灭菌等工艺制备的乳液[23]。全营养乳是针对进食受限、消化吸收障碍、代谢紊乱或特定疾病状态人群对营养素或膳食的特殊需要,专门加工而成的乳液食品,可有效改善体弱、长期营养不良、长期卧床病人、老年人等人群的营养状况[48]

    全营养乳是水相和油相通过乳化剂而形成的水包油体系[912],其中乳化剂在避免水相和油相之间的相分离方面起着重要作用。乳化剂主要有皮克林乳化剂和传统乳化剂。皮克林乳化剂是指吸附在油水界面处不溶于水或微溶于水的微米或纳米固体颗粒,包括多糖颗粒、蛋白质颗粒、脂肪颗粒和无机颗粒等;传统乳化剂是指天然或合成的具有两亲性的化合物,包括磷脂(Phospholipid,PL)、蔗糖脂肪酸酯、吐温和聚甘油酯等。食品中常用的皮克林乳化剂主要有辛烯基琥珀酸淀粉颗粒(Octenyl succinic acid starch,OS)和玉米醇溶蛋白颗粒(Zein)等,它们能不可逆地吸附在油水界面,形成不易受pH、离子强度、温度等环境因素影响的乳化稳定体系[1314]。食品中常用的传统乳化剂主要有PL、单双脂肪酸甘油酯和柠檬酸脂肪酸酯等,天然PL乳化剂因具有更好的生物相容性和更高的安全性而受到广泛的应用。

    乳化剂因其性质不同而使乳液表现出不同的特性。研究表明,不同类型的乳化剂(大豆蛋白分离物、酪蛋白酸钠、吐温20和磷脂)对乳液体外消化程度和营养素生物可及性具有影响[15]。消化主要发生在胃和小肠中。胃内的消化是由胃蛋白酶和胃脂肪酶水解,而在小肠内则是由胰蛋白酶和胰脂肪酶水解。其中,脂肪酶必须吸附到液滴表面,以便它能够接近液滴内所含的脂质底物[1618]。乳化剂是一种表面活性化合物,具有亲脂性和亲水性。因此,最初包裹食物中脂滴的乳化剂分子的性质可能会影响乳化剂在胃肠道中的行为[1925]。此外,乳化剂的性质将影响脂滴在胃肠道内合并和降解的敏感性,从而改变暴露于脂肪酶的脂的总表面积[2627],最终影响脂质的消化和吸收。当脂质被摄入时,它在通过胃肠道时可能会发生化学和结构组织的变化[2830]。但目前对于传统乳化剂和皮克林颗粒乳化的全营养乳的体外消化行为的研究较少。

    本研究旨在通过采用不同乳化剂OS、Zein和PL制备全营养乳,研究其在体外口腔胃肠道中的消化特性(粒径分布、zeta电位和微观结构的变化规律)以及全营养乳的脂质消化率,为基于Pickering乳化剂和传统乳化剂的全营养乳的消化吸收提供参考。

    糊精、OS 中柏兴业食品科技有限公司;酪蛋白酸钙 新东康营养科技有限公司;菊粉、低聚半乳糖 云浮市新金山生物科技股份有限公司;大豆膳食纤维 鲁发信德生物科技有限公司;复合稳定剂(结冷胶、卡拉胶、微晶纤维素) 阿泽雷斯国际贸易(上海)有限公司;复配宏量矿物质元素(钠、钾、镁、磷、氯)、复配微量矿物质元素(铁、铜、碘、锌、锰、硒)、复配维生素(维生素A、D、E、K1、B1、B2、B6、B12、烟酸、泛酸、叶酸、维生素C、生物素) 江苏科伦多食品配料有限公司;葵花籽油、大豆油、PL 青岛高科技工业园海博生物技术有限公司;Zein 上海兴隆生物科技有限公司;NaCl、KCl、MgCl2·6H2O、CaCl2·2H2O、HCl、NaOH、NaHCO3、KH2PO4、(NH42CO3、CH3COONa 分析纯,北京化工厂;唾液淀粉酶(>5 U/mg)、胃蛋白酶(>250 U/mg)、胰酶(4×USP)、胰脂肪酶(>20000 U/mg) 美国Sigma-Aldrich公司;胆盐 上海麦克林生化科技有限公司。

    AL204电子天平、FE20实验室pH计 梅特勒-托利多仪器(上海)有限公司;D2010W电动搅拌器 上海梅颖浦仪器仪表制造有限公司;T25 digital ULTRA TURRAX分散机 德国IKA公司;HOMOLAB 2高压均质机 意大利FBF公司;YXQ-LS30SII立式压力蒸汽灭菌锅 上海博迅医疗生物仪器股份有限公司;907自动电位滴定仪 瑞士万通中国有限公司;Multistirrer digital 15水浴循环磁力搅拌器 意大利VELP公司;S3500激光粒度分析仪 美国Microtrac公司;ZEN3700zeta电位仪 英国马尔文公司;CKX41倒置显微镜 日本奥林巴斯株式会社。

    乳液的制备参照武林贺等[31]、Shimokawa等[32]、Remanan等[33]和Bao等[34]的方法,并做相应的修改。将12%糊精、5%酪蛋白酸钙、0.6%菊粉、1.3%低聚半乳糖、1%大豆膳食纤维、0.05%复合稳定剂(结冷胶、卡拉胶、微晶纤维素)、0.6%复配矿物质和0.05%复配维生素加入超纯水中搅拌均匀形成水相,用1% KOH调节pH至7.0。称取葵花籽油、大豆油(14:11)加热至60 ℃混匀形成油相。缓慢将3%油相加入水相,高速剪切3 min(7000 r/min)形成粗乳液,用蒸馏水定容至100 mL。将粗乳液在50 MPa压力下高压均质1次后进行灌装,121 ℃灭菌15 min,冷却制得乳液。其中,将1% Zein或OS加入到糊精溶液中制备的乳液分别为Zein基Pickering全营养乳和OS基Pickering全营养乳,将1% PL加入到油脂混合液中制备的乳液为PL传统全营养乳。

    体外消化参照INFOGEST静态消化模型[3537],并稍加修改。采用体外三个阶段的模拟消化模型(口腔、胃、小肠)来研究各种乳液的消化特性[3839]

    参考Minekus等[40]的方法分别制备模拟口腔消化液(Simulated salivary fluid,SSF)、模拟胃消化液(Simulated gastric fluid,SGF)和模拟肠消化液(Simulated intestinal fluid,SIF)。

    口腔消化阶段:将SSF与乳液样品在37 ℃下预热10 min,取20 mL预热的SSF和20 mL乳液样品以1:1(v:v)混合,然后迅速用2 mol/L NaOH调节混合液pH7.0,混合液被放置于37 ℃的恒温水浴振荡器中以100 r/min的转速振荡2 min,模拟口腔消化阶段。本阶段,α-淀粉酶在终消化体系的浓度为75 U/mL。

    胃消化阶段:将SGF在37 ℃下预热10 min,取40 mL预热的SGF和40 mL口腔消化液以1:1(v:v)混合,然后迅速用2 mol/L HC1调节混合液pH至2.0,混合液被放置于37 ℃的恒温水浴振荡器中以100 r/min的转速振荡2 h,模拟胃消化阶段。本阶段,胃蛋白酶在终消化体系的浓度为2000 U/mL。

    小肠消化阶段:将SIF在37 ℃下预热10 min,取80 mL预热的SIF和80 mL胃消化液以1:1(v:v)混合,然后迅速用2 mol/L NaOH调节混合液pH至7.0,混合液被放置于37 ℃的恒温水浴振荡器中以100 r/min的转速振荡2 h,模拟小肠消化阶段。本阶段,胰脂肪酶在终消化体系的浓度为2000 U/mL,胆盐在终消化体系的浓度为10 mmol/L。

    采用上述口腔、胃和小肠的体外静态消化模型模拟乳液在体内的消化过程,研究乳液的消化特性。实验过程中始终维持消化体系处于37 ℃。

    用激光粒度分析仪测定乳液原液及各消化阶段的粒径及粒径分布。采用湿法测定,水的折射率设置为1.33[33]

    使用zeta电位仪测定乳剂的电位。在测定之前,乳液分别用蒸馏水、模拟胃液或模拟肠液稀释10倍[24]

    使用光学显微镜观察乳液的微观形态[28]。滴一滴样品在载玻片上,用盖玻片盖住,在40×10放大倍数下观察,用数码相机(Olympus DP22)拍摄图像。

    在肠道消化阶段,由于脂肪酶的作用,乳液中的油从甘油三酯和甘油二酯转化为游离脂肪酸(Free fatty acids,FFA)。这些FFA的释放是样品pH降低的原因,使用pH-stat法模拟小肠消化,用0.1 mol/L NaOH溶液滴定小肠消化液,通过计算小肠消化阶段pH保持在7.0时NaOH消耗的总体积[41],按照以下公式计算得到乳液脂质消化过程中FFA的释放率。

    FFA(%)=V×c×MW×2×100

    式中:FFA释放率表示游离脂肪酸的释放率,%;V表示肠消化过程中消耗的NaOH体积,L; c表示NaOH溶液的浓度,0.1 mol/L;M表示油相相对分子质量(255.682);W表示肠相所含油脂的总质量,0.52 g。

    每个实验进行三次平行实验,结果以平均值±标准差表示。采用SPSS Statistics 20软件对数据进行方差分析(P<0.05为差异显著),采用OriginPro8.5软件进行数据分析和图表处理。

    消化过程中,酶吸附到油水界面水解液滴的能力与液滴大小相关[42]。液滴越大,油水界面的表面积越小,酶吸附的可能性就越大;液滴越小,油水界面的表面积越大,酶吸附的可能性就越小[43]。因此,液滴大小可影响消化速率。

    图1为不同乳化剂制备的原液、口腔、胃、小肠消化阶段粒径的变化和粒径分布。如图1a所示,由Zein、OS、PL制备的乳液的粒径分别为:29.94、22.95、26.74 μm。模拟消化过程中,三种乳液粒径的变化趋势一致,呈先增大后减小的趋势,这主要是因为胃中较低的pH和较高离子强度导致乳液的稳定性下降,液滴发生不同程度的絮凝或聚集,粒径增大。OS乳液的平均粒径由22.95 μm增加到27.65 μm,Zein乳液由29.94 μm增加到30.89 μm,PL乳液由26.74 μm增加到29.62 μm,说明Zein乳液和PL乳液中的液滴与脂肪酶接触的可能性大于OS乳液。与Zein乳液相比,OS乳液在口腔中的平均粒径显著增大(P<0.05),由22.95 μm增加到27.72 μm,由图1c可观察到相似的结果,乳液在口腔消化阶段粒径分布的峰向右偏移且出现多峰形式,说明其液滴粒径变大,这是由于口腔消化阶段唾液淀粉酶的存在,淀粉类乳化剂被唾液淀粉酶水解,从而导致乳液粒径增大[44]。Zein乳液在胃中的粒径分布呈现多峰模式(图1b),说明其液滴发生了一定程度的聚集,这是由于模拟胃消化过程中胃蛋白酶的消化作用,蛋白类乳化剂可能被胃蛋白酶水解,导致乳液中液滴之间发生絮凝甚至聚结[45];PL乳液在胃中呈均一单峰模式(图1d),说明其在胃消化阶段后大部分液滴被水解消化,以上结果说明胃消化阶段PL传统全营养乳脂质消化程度大于Pickering全营养乳。

    图  1  不同乳化剂制备的原液和各个消化阶段的粒径变化
    注:a.液滴平均尺寸;b~d.原液及消化液粒径分布;图中不同小写字母表示同一乳液各消化阶段差异显著(P<0.05)。
    Figure  1.  Particle size changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    zeta电位是表征乳液稳定性的重要指标,液滴表面的高电位值可与临近液滴产生强烈的静电斥力,从而防止液滴的絮凝。液滴表面的电位值不仅取决于表面电荷的类型和浓度[46],还取决于周围液体中离子的类型和浓度[47]。通过zeta电位测量评估了乳化剂类型和体外消化阶段液滴表面电荷的变化。不同乳化剂因含有不同的表面官能团而产生不同的电位值。另外,吸附在液滴界面上的粒子的电荷是皮克林乳液表面电荷形成的主要原因[22]。如图2所示,Zein、OS和PL原液呈现出不同的负电荷(分别为−11.53、−18.03、−16.4 mV),这些结果与之前的研究一致[4850]。模拟口腔消化阶段,与原液相比,Zein包被液滴上的电荷量几乎没有变化,而OS和PL包被液滴上的电荷量有明显的下降,电荷的这种变化可能是由于模拟口腔液中离子的存在而产生的静电屏蔽效应[51],也可能是由于唾液淀粉酶与液滴表面的相互作用[24]。模拟胃消化阶段,三种乳液都由负电荷转变为正电荷,这可能是由于胃液中较低的pH和较高离子强度所致。Zein乳液和PL乳液的电位绝对值明显降低,OS乳液的电位绝对值有所增加,说明Zein乳液和PL乳液在模拟胃消化阶段的稳定性弱于OS乳液,这可能是由于胃蛋白酶水解了Zein乳化剂,使液滴稳定性下降甚至发生聚集,也可能是因为酸性条件诱导了Zein和PL包被的液滴的桥接絮凝[23]。模拟小肠消化阶段,三种乳液都具有相对高的负电荷,与原液相当,这可能是因为脂质消化过程中存在的各种阴离子颗粒(未消化的脂滴、囊泡或胶束)以及这些颗粒表面含有的来自肠液或脂质消化产物(胆汁、胰酶、游离脂肪酸),都可能对乳液的zeta电位产生影响[52]。消化过程中,酶解、新物质形成、成分之间的相互作用等也会导致乳液中液滴的界面性质发生变化,改变其电荷[53]。另外,肠液pH为中性,与未消化的原液相近,这可能是获得相似zeta电位值的另一个原因[54]。模拟小肠消化阶段,Zein乳液、OS乳液、PL乳液的zeta电位值分别为:−14.53、−19.90、−18.80 mV,说明Zein乳液中的液滴被酶水解的程度大于OS乳液和PL乳液。

    图  2  不同乳化剂制备的原液和各个消化阶段的zeta电位变化
    Figure  2.  Zeta potential changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    利用光学显微镜对Zein乳液、OS乳液、PL乳液消化前后的微观结构进行了观察。模拟体外消化过程中,不同乳化剂制备的乳液的微观结构具有较大差异(图3)。Zein乳液、OS乳液、PL乳液中的油滴都呈现均匀分散的状态。模拟口腔消化阶段,Zein乳液和PL乳液中的油滴发生了轻微的聚集现象,而OS乳液发生了明显的聚集,这也和粒径的变化趋势一致。模拟胃消化阶段,三种乳液中油滴的聚集程度进一步加剧,其中Zein乳液中油滴的聚集最为明显,说明在胃消化过程中胃蛋白酶对Zein的水解使其从油水界面脱去,使液滴逐渐聚结形成大油滴,增大了小肠中胰脂肪酶与油脂的接触面积[45]。同时,PL乳液中油滴的絮凝现象明显大于OS乳液,说明在胃消化过程中Zein乳液和PL乳液中的油滴比OS乳液更容易被水解消化。模拟小肠消化阶段,三种乳液中观察到了更大的油滴颗粒,其他关于乳液体外消化的研究中也观察到了类似的现象[55],这可能与乳液被模拟小肠消化液稀释、甘油三酯被胰脂肪酶水解以及脂质消化产物进入混合胶束中有关[38]

    图  3  不同乳化剂制备的原液和各个消化阶段的微观形态变化
    Figure  3.  Morphological changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    采用pH-stat法模拟乳液在小肠中的消化过程,探究不同乳化剂对乳液FFA释放的影响。如图4所示,三种乳液之间脂质消化的初始速率存在差异。10 min内,Zein乳液和PL乳液的FFA初始释放速度相似且快于OS乳液,而PL乳液在10 min之后便达到平衡,说明其表现为快速释放不利于油脂的持续消化和吸收。10~30 min,Zein乳液和OS乳液的FFA释放速度相似且缓慢,而OS乳液在30 min之后便达到平衡。模拟小肠消化过程中,Zein乳液在2 h后仍未达到平衡,说明Zein稳定的乳液表现出持续释放的特性,更利于油脂的持续消化和吸收,其原因可能是胃中的胃蛋白酶和小肠中的胰蛋白酶对Zein的水解作用导致油滴的聚集和暴露,增加了胰脂肪酶的作用时间[46,56],表现为FFA的持续释放。尽管OS乳液在模拟口腔条件下,有被唾液淀粉酶水解的趋势,但由于作用时间太短,导致其水解程度较低,暴露的油滴相比Zein乳液更少,因此其释放率更低。与Pickering全营养乳相比,PL乳液在模拟胃条件下油滴絮凝聚集的现象更明显,在胃中的水解程度可能更高,所以其在小肠阶段FFA释放率表现为最低,也可能与卵磷脂作为乳化剂的阴离子性质对脂肪酶的抑制作用有关[29]。此外,由Zein、OS、PL乳化剂制备的乳液在模拟小肠消化阶段的FFA释放率分别为:20.54%、17.21%、14.29%,三种乳液中脂质的消化程度依次为Zein乳液>OS乳液>PL乳液,说明Pickering全营养乳较传统全营养乳的脂质消化速率更高。此外,Zein乳液中的FFA表现为持续释放,更有利于油脂的体外消化和吸收。

    图  4  不同乳液在小肠消化过程中FFA释放率
    Figure  4.  FFA release rate of different emulsion during intestinal digestion

    本研究通过体外模拟消化研究了Pickering(OS和Zein)全营养乳和传统(PL)全营养乳消化特性。研究结果表明,全营养乳的消化速率和消化程度与乳化剂的类型有关,Zein全营养乳在模拟消化过程中表现为消化程度最大,这些变化可以从粒径、粒径分布、zeta电位以及微观结构的变化来证明。脂滴在模拟口腔胃肠道不同区域的电荷和聚集稳定性取决于包裹的乳化剂。小肠内脂质消化速率和程度也取决于乳化剂类型,Pickering全营养乳的脂质消化速率高于传统全营养乳,其中Zein包裹的脂滴的脂质消化速率高于OS乳液且表现为持续释放。本研究有助于将Zein、OS应用于具有高生物利用度的亲脂性生物活性成分的Pickering全营养乳化体系的设计与开发。

  • 图  1   不同乳化剂制备的原液和各个消化阶段的粒径变化

    注:a.液滴平均尺寸;b~d.原液及消化液粒径分布;图中不同小写字母表示同一乳液各消化阶段差异显著(P<0.05)。

    Figure  1.   Particle size changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    图  2   不同乳化剂制备的原液和各个消化阶段的zeta电位变化

    Figure  2.   Zeta potential changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    图  3   不同乳化剂制备的原液和各个消化阶段的微观形态变化

    Figure  3.   Morphological changes of emulsion prepared with different emulsifiers at initial and various digestion stages

    图  4   不同乳液在小肠消化过程中FFA释放率

    Figure  4.   FFA release rate of different emulsion during intestinal digestion

  • [1] 李侠, 杨宏, 刘学波. 特医全营养配方食品配方组成分析[J]. 中国食物与营养,2021,27(12):22−27. [LI Xia, YANG Hong, LIU Xuebo. Analysis of formula composition of special medical whole nutrition formula food[J]. China Food and Nutrition,2021,27(12):22−27.]

    LI Xia, YANG Hong, LIU Xuebo. Analysis of formula composition of special medical whole nutrition formula food[J]. China Food and Nutrition, 2021, 27(12): 22−27.

    [2]

    BROWN B, ROEHL K, BETZ M. Enteral nutrition formula selection:Current evidence and implications for practice[J]. Nutrition in Clinical Practice,2015,30(1):72−85. doi: 10.1177/0884533614561791

    [3]

    DOLEY J. Enteral nutrition overview[J]. Nutrients,2022,14(11):2180. doi: 10.3390/nu14112180

    [4]

    LYMAN B, WILLIAMS M, SOLLAZZO J, et al. Enteral feeding set handling techniques:A comparison of bacterial growth, nursing time, labor, and material costs[J]. Nutrition in Clinical Practice,2017,32(2):193−200. doi: 10.1177/0884533616680840

    [5]

    HURT R T, EPP L M, DUELLMAN W M, et al. Blenderized tube feedings for adult patients on home enteral nutrition:A pilot study[J]. Journal of Alternative and Complementary Medicine,2019,25(4):413−416. doi: 10.1089/acm.2018.0227

    [6]

    PENNISTON K L, PALMER E A, MEDENWALD R J, et al. Oxalate content of enteral nutrition formulas[J]. Journal of Pediatric Gastroenterology and Nutrition,2019,69(5):135−140.

    [7]

    DELOMPRÉ T, GUICHARD E, BRIAND L, et al. Taste perception of nutrients found in nutritional supplements:A review[J]. Nutrients,2019,11(9):2050. doi: 10.3390/nu11092050

    [8]

    BAIU, SPAIN I, DAVID A. Enteral nutrition[J]. The Journal of the American Medical Association,2019,321:2040. doi: 10.1001/jama.2019.4407

    [9] 李子琰, 刘媛, 刘光, 等. 贮藏条件对全营养乳剂型特医食品品质特性和稳定性影响[J]. 食品安全质量检测学报,2021,12(3):931−939. [LI Ziyan, LIU Yuan, LIU Guang, et al. Effect of storage conditions on quality characteristics and stability of special medical food with whole nutritional emulsion type[J]. Journal of Food Safety and Quality Inspection,2021,12(3):931−939.]

    LI Ziyan, LIU Yuan, LIU Guang, et al. Effect of storage conditions on quality characteristics and stability of special medical food with whole nutritional emulsion type[J]. Journal of Food Safety and Quality Inspection, 2021, 12(3): 931−939.

    [10]

    DE CARVALHO-GUIMARÃES F B, CORREA K L, DE SOUZA T P, et al. A review of pickering emulsions:Perspectives and applications[J]. Pharmaceuticals (Basel),2022,15(11):1413. doi: 10.3390/ph15111413

    [11]

    KOROLEVA M Y, YURTOV E V. Pickering emulsions:Structure, properties and the use as colloidosomes and stimuli-responsive emulsions[J]. Russian Chemical Reviews:Reviews on Current Topics in Chemistry,2022,91(5):5024.

    [12]

    STERN Y, TADMOR R, MULTANEN V, et al. A first order-based model for the kinetics of formation of Pickering emulsions[J]. Journal of Colloid and Interface Science,2022,628:409−416. doi: 10.1016/j.jcis.2022.07.110

    [13]

    CHEN L, AO F, GE X, et al. Food-grade pickering emulsions:preparation, stabilization and applications[J]. Molecules,2020,25(14):3202. doi: 10.3390/molecules25143202

    [14]

    BERTON-CARABIN C C, SCHROËN K. Pickering emulsions for food applications:Background, trends, and challenges[J]. Annu Review of Food Science and Technology,2015,6:263−97. doi: 10.1146/annurev-food-081114-110822

    [15]

    PARK S, MUN S, KIM Y R. Emulsifier dependent in vitro digestion and bioaccessibility of β-carotene loaded in oil-in-water emulsions[J]. Food Biophysics,2018,13:147−154. doi: 10.1007/s11483-018-9520-0

    [16]

    SARKAR A, ZHANG S, HOLMES M, et al. Colloidal aspects of digestion of pickering emulsions:Experiments and theoretical models of lipid digestion kinetics[J]. Advances in Colloid and Interface Science,2019,263:195−211. doi: 10.1016/j.cis.2018.10.002

    [17] 廖一, 孙禹凡, 彭新辉, 等. 紫苏油多层乳液的制备及乳液油脂体外消化特性[J]. 食品科学,2022,43(12):58−65. [LIAO Yi, SUN Yufan, PENG Xinhui, et al. Preparation of perilla oil multilayer emulsion and in vitro digestion characteristics of emulsion oil[J]. Food Science,2022,43(12):58−65.]

    LIAO Yi, SUN Yufan, PENG Xinhui, et al. Preparation of perilla oil multilayer emulsion and in vitro digestion characteristics of emulsion oil[J]. Food Science, 2022, 43(12): 58−65.

    [18] 刘念, 姜鹏, 戴凌燕, 等. 高粱复配米脂肪体外消化产物及其氧化稳定性[J]. 食品工业科技,2023,44(6):16−23. [LIU Nian, JIANG Peng, DAI Lingyan, et al. In vitro digestion products of fats in sorghum/rice mixture and their oxidative stability[J]. Science and Technology of Food Industry,2023,44(6):16−23.]

    LIU Nian, JIANG Peng, DAI Lingyan, et al. In vitro digestion products of fats in sorghum/rice mixture and their oxidative stability[J]. Science and Technology of Food Industry, 2023, 44(6): 16−23.

    [19]

    BORREANI J, LEONARDI C, MORAGA G, et al. How do different types of emulsifiers/stabilizers affect the in vitro intestinal digestion of o/w emulsions[J]. Food Biophysics,2019,14(3):313−325. doi: 10.1007/s11483-019-09582-2

    [20]

    BELLESI F A, MARTINEZ M J, PIZONES RUIZ-HENESTROSA V M, et al. Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions[J]. Food Hydrocolloids,2016,52:47−56. doi: 10.1016/j.foodhyd.2015.06.007

    [21]

    ZHOU Hualu, TAN Yunbing, LÜ Shanshan, et al. Nanochitin-stabilized pickering emulsions:Influence of nanochitin on lipid digestibility and vitamin bioaccessibility[J]. Food Hydrocolloids,2020,106:105878. doi: 10.1016/j.foodhyd.2020.105878

    [22]

    COSTA A L R, GOMES A, FURTADO G D F, et al. Modulating in vitro digestibility of pickering emulsions stabilized by food-grade polysaccharides particles[J]. Carbohydrate Polymers,2020,227:115344. doi: 10.1016/j.carbpol.2019.115344

    [23]

    ZHANG Ruojie, ZHANG Zipei, ZHANG Hui, et al. Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin)[J]. Food Hydrocolloids,2015,45:175−185. doi: 10.1016/j.foodhyd.2014.11.020

    [24]

    CHANG Yaoguang, MCCLEMENTS D J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan):Caseinate, whey protein, lecithin, or Tween 80[J]. Food Hydrocolloids,2016,61:92−101. doi: 10.1016/j.foodhyd.2016.04.047

    [25]

    INFANTES-GARCIA M R, VERKEMPINCK S H E, CASTILLO-SANTAELLA T D, et al. In vitro gastric lipid digestion of emulsions with mixed emulsifiers:Correlation between lipolysis kinetics and interfacial characteristics[J]. Food Hydrocolloids,2022,128:107576. doi: 10.1016/j.foodhyd.2022.107576

    [26]

    HUR S J, LEE S J, LEE S Y, et al. Effect of emulsifiers on microstructural changes and digestion of lipids in instant noodle during in vitro human digestion[J]. LWT-Food Science and Technology,2015,60(1):630−636. doi: 10.1016/j.lwt.2014.07.036

    [27]

    UDOMRATI S, PANTOA T, GOHTANI S, et al. Effects of water-soluble soybean polysaccharide on rheological properties, stability and lipid digestibility of oil-in-water emulsion during in vitro gastrointestinal digestion[J]. International Journal of Food Science Technology,2020,55(4):1437−1447. doi: 10.1111/ijfs.14420

    [28]

    GASA-FALCON A, ODRIOZOLA-SERRANO I, OMS-OLIU G, et al. Impact of emulsifier nature and concentration on the stability of β-carotene enriched nanoemulsions during in vitro digestion[J]. Food and Function,2019,10(2):713−722. doi: 10.1039/C8FO02069H

    [29]

    SANDOVAL-CUELLAR C E, PEREA-FLORES M D J, QUINTANILLA-CARVAJAL M X. In-vitro digestion of whey protein- and soy lecithin-stabilized high oleic palm oil emulsions[J]. Journal of Food Engineering,2020,278:109918. doi: 10.1016/j.jfoodeng.2020.109918

    [30] 洪泽翰, 吴婉仪, 李璐, 等. 不同大分子乳化剂构建番茄红素纳米乳液的体外消化规律比较[J]. 食品科学,2019,40(10):1−7. [HONG Zehan, WU Wanyi, LI Lu, et al. Comparison of in vitro digestion rules of lycopene nanoemulsions constructed by different macromolecular emulsifiers[J]. Food Science,2019,40(10):1−7.] doi: 10.7506/spkx1002-6630-20180619-369

    HONG Zehan, WU Wanyi, LI Lu, et al. Comparison of in vitro digestion rules of lycopene nanoemulsions constructed by different macromolecular emulsifiers[J]. Food Science, 2019, 40(10): 1−7. doi: 10.7506/spkx1002-6630-20180619-369

    [31] 武林贺, 袁诚, 罗明琍, 等. 复配稳定剂对全营养乳剂稳定性的影响[J]. 食品工业,2019,40(7):49−53. [WU Linhe, YUAN Cheng, LUO Mingli, et al. Effect of compound stabilizer on stability of whole nutrient emulsion[J]. Food Industry,2019,40(7):49−53.]

    WU Linhe, YUAN Cheng, LUO Mingli, et al. Effect of compound stabilizer on stability of whole nutrient emulsion[J]. Food Industry, 2019, 40(7): 49−53.

    [32]

    SHIMOKAWA K I, NAGASAKA Y, SAWA M, et al. Physicochemical properties and stability of the emulsion prepared with various emulsifiers for enteral nutrition preparations[J]. Journal of Dispersion Science and Technology,2017,38(8):1221−1226. doi: 10.1080/01932691.2016.1230066

    [33]

    REMANAN M K, ZHU F. Encapsulation of rutin in Pickering emulsions stabilized using octenyl succinic anhydride (OSA) modified quinoa maize and potato starch nanoparticles[J]. Food Chemistry,2023,405:134790. doi: 10.1016/j.foodchem.2022.134790

    [34]

    BAO Y, XUE H, YUE Y, et al. Preparation and characterization of pickering emulsions with modified okara insoluble dietary fiber[J]. Foods,2021,10(12):2982. doi: 10.3390/foods10122982

    [35]

    ZOU Yujun, ZHANG Shuai, LIU Ying, et al. In vitro digestion properties of different chitin nanofibrils stabilized lipid emulsions[J]. Food Hydrocolloids,2023,139:108512. doi: 10.1016/j.foodhyd.2023.108512

    [36]

    ZHOU H, TAN Y, MCCLEMENTS D J. Applications of the INFOGEST in vitro digestion model to foods:A Review[J]. Annu Rev Review of Food Science and Technology,2023,14:135−156. doi: 10.1146/annurev-food-060721-012235

    [37]

    TAN Y, ZHANG Z, MURIEL MUNDO J, et al. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST):Emulsifier type[J]. Food Research International,2020,137:109739.

    [38]

    ZHU Y, ZHOU Y, TIAN T, et al. In vitro simulated digestion and microstructure of peppermint oil nanoemulsion[J]. Journal of Oleo Science,2019,68(9):863−871. doi: 10.5650/jos.ess19102

    [39]

    ZHOU J, QAING S Q, YANG B W, et al. Cold plasma treatment with alginate oligosaccharide improves the digestive stability and bioavailability of nutrient-delivered particles:An in vitro INFOGEST gastrointestinal study[J]. International Journal of Biological Macromolecules,2023,232:123309. doi: 10.1016/j.ijbiomac.2023.123309

    [40]

    MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food Funct,2014,5(6):1113−1124. doi: 10.1039/C3FO60702J

    [41]

    CHUESIANG P, KIM J T, SHIN G H. Observation of curcumin-encapsulated pickering emulsion stabilized by cellulose nanocrystals-whey protein isolate (CNCs-WPI) complex under in vitro lipid digestion through INFOGEST model[J]. International Journal of Biological Macromolecules,2023,234:123679. doi: 10.1016/j.ijbiomac.2023.123679

    [42]

    SHAO P, FENG J, SUN P, et al. Recent advances in improving stability of food emulsion by plant polysaccharides[J]. Food Research International,2020,137:109376. doi: 10.1016/j.foodres.2020.109376

    [43]

    LAI Hao, ZHAN Fuchao, WEI Yujie, et al. Influence of particle size and ionic strength on the freeze-thaw stability of emulsions stabilized by whey protein isolate[J]. Food Science and Human Wellness,2022,11(4):922−932. doi: 10.1016/j.fshw.2022.03.018

    [44]

    MU Mingduo, POTHIYAPPAN K, JIAN Shechen, et al. Holmes and rammile ettelaie. effect of amylose and amylopectin content on the colloidal behaviour of emulsions stabilised by osa-modified starch[J]. Food Hydrocolloids,2021,111:106363. doi: 10.1016/j.foodhyd.2020.106363

    [45]

    CHENG C J, FERRUZZI M, JONES O G. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion[J]. Food Hydrocolloids,2019,87:229−236. doi: 10.1016/j.foodhyd.2018.08.013

    [46]

    HUANG Lihua, CAI Yongjian, LIU Tongxun, et al. Stability of emulsion stabilized by low-concentration soybean protein isolate:Effects of insoluble soybean fiber[J]. Food Hydrocolloids,2019,97:105232. doi: 10.1016/j.foodhyd.2019.105232

    [47]

    LIA Dan, ZHAO Yue, WANG Xu, et al. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion:Droplet size, zeta-potential, emulsifying properties, and rheological behavior[J]. Food Hydrocolloids,2020,98:105306. doi: 10.1016/j.foodhyd.2019.105306

    [48]

    INCHAURRAGA L, MARTÍNEZ-LÓPEZ A L, MARTIN-ARBELLA N, et al. Zein-based nanoparticles for the oral delivery of insulin[J]. Drug Delivery and Translational Research,2020,10(6):1601−1611. doi: 10.1007/s13346-020-00796-3

    [49]

    LIN B, LIANG R, ZHONG F, et al. Interactions between octenyl-succinic-anhydride-modified starches and calcium in oil-in-water emulsions[J]. Food Hydrocolloids,2018,77:30−39. doi: 10.1016/j.foodhyd.2017.08.034

    [50]

    ARTIGA-ARTIGAS M, LANJARI-PÉREZ Y, MARTÍN-BELLOSO O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant[J]. Food Chemistry,2018,266:466−474. doi: 10.1016/j.foodchem.2018.06.043

    [51]

    SONG Liwen, QI Junru, LIAO Jinsong, et al. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment[J]. Food Hydrocolloids,2021,121:107015. doi: 10.1016/j.foodhyd.2021.107015

    [52]

    SARKAR A, YE Aiqian, SINGH H. On the role of bile salts in the digestion of emulsified lipids[J]. Food Hydrocolloids,2016,60:77−84. doi: 10.1016/j.foodhyd.2016.03.018

    [53]

    WU Minhui, YAN Hong, CHEN Zhaoqing, et al. Effects of emulsifier type and environmental stress on the stability of curcumin emulsion[J]. Journal of Dispersion Science and Technology, 2016, 38.

    [54]

    ZHANG R, ZHANG Z, ZHANG H, et al. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions:In vitro digestion study[J]. Food Research International,2015,75:71−78. doi: 10.1016/j.foodres.2015.05.014

    [55]

    GAO J, QIU Y, CHEN F, et al. Pomelo peel derived nanocellulose as Pickering stabilizers:Fabrication of Pickering emulsions and their potential as sustained-release delivery systems for lycopene[J]. Food Chemistry,2023,415:135742. doi: 10.1016/j.foodchem.2023.135742

    [56]

    WANG Xin, LIN Quanquan, YE Aiqian, et al. Flocculation of oil-in-water emulsions stabilised by milk protein ingredients under gastric conditions:Impact on in vitro intestinal lipid digestion[J]. Food Hydrocolloids,2019,88:272−282. doi: 10.1016/j.foodhyd.2018.10.001

  • 期刊类型引用(5)

    1. 金鑫,段续,任广跃,陈俊亮,李琳琳,曹伟伟,刘文超. 不同干燥方式对无花果干燥特性及品质的影响. 食品与发酵工业. 2024(10): 69-75 . 百度学术
    2. 孙兆岳,崔文玉,程安玮. 油用牡丹籽种皮多酚的提取及抗氧化和体外发酵特性. 现代食品科技. 2024(05): 162-170 . 百度学术
    3. 宋娟,张海燕,曾朝珍,袁晶,慕钰文,康三江,文鹏程. 干燥方式对苹果干品质特性及风味的影响. 食品工业科技. 2024(17): 221-231 . 本站查看
    4. 李楠,杨婷. 不同干燥方式对萌芽苦荞功能成分及抗氧化活性的影响. 运城学院学报. 2023(03): 41-45 . 百度学术
    5. 汤天瑾,王晓彤,齐杰,吕玥霖,朱文立,朱俊向,吴昊. 包装膜透气性对双孢蘑菇保鲜效果及呼吸代谢的影响. 食品科学. 2023(21): 249-257 . 百度学术

    其他类型引用(2)

  • 其他相关附件

图(4)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  10
  • PDF下载量:  15
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-06-26
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-04-30

目录

/

返回文章
返回
x 关闭 永久关闭