• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王小平,刘忠莹,钟洋,等. 基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布[J]. 食品工业科技,2024,45(7):254−260. doi: 10.13386/j.issn1002-0306.2023050068.
引用本文: 王小平,刘忠莹,钟洋,等. 基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布[J]. 食品工业科技,2024,45(7):254−260. doi: 10.13386/j.issn1002-0306.2023050068.
WANG Xiaoping, LIU Zhongying, ZHONG Yang, et al. Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method[J]. Science and Technology of Food Industry, 2024, 45(7): 254−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050068.
Citation: WANG Xiaoping, LIU Zhongying, ZHONG Yang, et al. Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method[J]. Science and Technology of Food Industry, 2024, 45(7): 254−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050068.

基于离子色谱-电感耦合等离子体质谱法分析木耳、香菇、松茸和茶树菇中砷形态分布

Analysis of Arsenic Speciation Distribution in Agaric, Shiitake Mushroom, Matsutake and Agrocybe by IC-ICP-MS Method

  • 摘要: 为分析木耳、香菇、松茸和茶树菇中砷形态分布,采用离子色谱-电感耦合等离子体质谱(Ion Chromatography-Inductive Coupled Plasma Mass Spectrometer,IC-ICP-MS)法对其砷甜菜碱、二甲基砷、亚砷酸、砷胆碱、一甲基砷、砷酸进行测定,并进行方法学考察和含量测定。结果表明:方法在5 min内能将6种砷形态全部分离开,且峰型好;方法线性关系良好(标线质量浓度0.5~20 μg/L,r>0.999),6种砷形态检出限和定量限分别不超过0.005、0.017 mg/kg。木耳、茶树菇和香菇中6种砷形态加标回收率在80%~120%范围;对于松茸,适宜加标量(0.05 mg/kg二甲基砷、砷胆碱和砷酸;0.2 mg/kg亚砷酸和一甲基砷;5 mg/kg砷甜菜碱),加标回收率也在80%~120%范围。结合干制品脱水率,所测样品无机砷含量都符合GB 2762-2022要求;松茸总砷含量最高,但是无机砷(亚砷酸+砷酸)占总砷比例最低为3.7%~6.8%,其占比最高为砷甜菜碱(75.8%~87.3%);木耳、茶树菇和香菇中砷主要形式为无机砷,无机砷占总砷比例分别可达58.4%~66.1%、60.0%~66.7%、81.2%~91.7%,提示其总砷高时有食用安全风险。

     

    Abstract: To analyze the speciation distribution of arsenic in agaric, shiitake mushroom, matsutake and agrocybe, the ion chromatography-inductive coupled plasma mass spectrometer (IC-ICP-MS) was used to determine arsenobetaine, dimethyl arsenic, arsenous acid, arsenic choline, monomethyl arsenic and arsenic acid, and the methodological investigation and content determination were carried out. The results showed that the method could completely separate all six arsenic forms within 5 minutes, and the peak patterns were good. The linear relationship of the method was good (mass concentration of 0.5~20 μg/L, r>0.999). The detection limit and quantification limit of six arsenic species were not more than 0.005 and 0.017 mg/kg respectively. The recovery rate of six arsenic forms in agaric, agrocybe and shiitake mushroom could reach 80%~120% with standard addition. For matsutake, the standard addition recovery rate could also reach 80%~120% when adding right standard amounts (0.05 mg/kg dimethyl arsenic, arsenic choline and arsenic acid; 0.2 mg/kg arsenite and monomethyl arsenic; 5 mg/kg arsenic betaine). Combined with the dehydration rate of dry products, the inorganic arsenic content of the tested samples met the requirements of GB 2762-2022. The content of total arsenic in matsutake was the highest, but the proportion of inorganic arsenic(arsenic choline+arsenic acid) in total arsenic was the lowest 3.6%~6.8%, and the highest proportion was arsenobetaine (75.8%~87.3%). The main form of arsenic in agaric, agrocybe, and shiitake mushroom were inorganic arsenic. The proportion of inorganic arsenic to total arsenic could reach 58.4%~66.1%、60.0%~66.7%、81.2%~91.7%, respectively. There was a risk of food safety when the total arsenic content was high.

     

/

返回文章
返回