• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

姜黄联合山楂对C57肥胖小鼠的减肥作用及机制研究

李强, 李亚婷, 徐华健, 郝宗围, 陈鹏浩, 司雄元, 汪雪雁

李强,李亚婷,徐华健,等. 姜黄联合山楂对C57肥胖小鼠的减肥作用及机制研究[J]. 食品工业科技,2024,45(1):310−317. doi: 10.13386/j.issn1002-0306.2023030050.
引用本文: 李强,李亚婷,徐华健,等. 姜黄联合山楂对C57肥胖小鼠的减肥作用及机制研究[J]. 食品工业科技,2024,45(1):310−317. doi: 10.13386/j.issn1002-0306.2023030050.
LI Qiang, LI Yating, XU Huajian, et al. Study on the Weight Loss Effect and Mechanism of Turmeric Combined with Hawthorn on C57 Obese Mice[J]. Science and Technology of Food Industry, 2024, 45(1): 310−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030050.
Citation: LI Qiang, LI Yating, XU Huajian, et al. Study on the Weight Loss Effect and Mechanism of Turmeric Combined with Hawthorn on C57 Obese Mice[J]. Science and Technology of Food Industry, 2024, 45(1): 310−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030050.

姜黄联合山楂对C57肥胖小鼠的减肥作用及机制研究

基金项目: 国家“重大新药创制”科技重大专项资助项目(2018ZX09J18102-001-003);安徽省教育厅质量工程教学研究项目(2019KFKC040)。
详细信息
    作者简介:

    李强(1990−),男,硕士,研究方向:食品工程,E-mail:1029022466@qq.com

    通讯作者:

    汪雪雁(1970−),女,硕士,副教授,研究方向:营养与食品安全,E-mail:2647039236@qq.com

  • 中图分类号: TS201.4

Study on the Weight Loss Effect and Mechanism of Turmeric Combined with Hawthorn on C57 Obese Mice

  • 摘要: 目的:评价姜黄联合山楂的减肥作用并探索其减肥机制。方法:32只C57BL/6J小鼠随机分为四组:正常组、正常干预组、高脂组、高脂干预组,每组8只。每天定时灌胃相应药物,每周定时检测小鼠脂肪率、瘦肉率、摄食和饮水量变化,每隔两周同一时间测定小鼠的随机血糖,12周后脱颈椎处死小鼠采集标本。检测血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、谷丙转氨酶(alanine aminotransferase,ALT)、谷草转氨酶(aspartate aminotransferase,AST),通过附睾脂肪和肝脏HE染色,观察脂肪和肝脏组织形态变化。实时荧光PCR法检测肝脏组织中胆固醇7α-羟化酶(cholesterol 7α-hydroxylase,CYP7A1)、脂肪酸合酶(fatty acid synthase,FAS)、肝X受体α(Liver X Receptorα,LXRα)、固醇调节元件结合蛋白2(Sterol Regulatory Element Binding Protein,SREBP2)、固醇调节元件结合蛋白1C(Sterol Regulatory Element Binding Protein,SREBP1C)、硬脂酰辅酶A去饱和酶(Steary-coenzyme A dehydro-synthase-1,SCD1)mRNA的相对表达水平。结果:相比高脂组,高脂干预组小鼠体质量、脂肪率、TG、TC、LDL-C显著降低,瘦肉率、HDL-C显著升高(P<0.05),摄食、饮水量无显著差异;抑制了脂肪细胞肥大,使得脂肪沉积减少;改善了肝脏细胞空泡化、炎症浸润;肝脏组织中CYP7A1 mRNA表达水平显著升高(P<0.05),LXRαSREBP1CSCDFAS mRNA表达水平极显著降低(P<0.01),SREBP2 mRNA表达水平无显著变化。结论:姜黄-山楂具有良好的减肥作用,其减肥机制与调节相关基因中mRNA表达水平有关。
    Abstract: Objective: To evaluate the weight loss effect of turmeric combined with hawthorn and explore its weight loss mechanism. Methods: Thirty-two C57BL/6J mice were randomly divided into four groups: normal group, normal intervention group, high-fat group and high-fat intervention group, 8 mice in each group. The mice were gavaged with the corresponding drugs regularly every day, and the changes of adiposity, leanness, food intake and water consumption were detected regularly every week. The random blood glucose of the mice was measured at the same time every two weeks, after 12 weeks, the mice were removed from the cervical spine and the specimens were collected. The contents of total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST) were measured in serum. The morphological changes of fat and liver tissue were observed by HE staining of epididymal fat and liver. The relative mRNA expressions of cholesterol 7α-hydroxylase (CYP7A1), fatty acid synthase (FAS), Liver X Receptorα (LXRα), Sterol Regulatory Element Binding Protein 2 (SREBP2), Sterol Regulatory Element Binding Protein (SREBP1C), Steary-coenzyme A dehydro-synthase-1 (SCD1) in liver were measured by real time polymerase chain reaction (RT-PCR). Results: Compared with the high-fat group, the body mass, fat percentage, TG, TC, LDL-C of mice in the high-fat intervention group were significantly decreased, lean meat percentage and HDL-C were significantly increased (P<0.05), and there was no significant difference in food intake and water intake. It could inhibit adipocyte hypertrophy and reduce fat deposition. And their liver cell vacuolation and inflammatory infiltration were improved. The mRNA expression level of CYP7A1 in liver was significantly increased (P<0.05). The mRNA expression levels of LXRα, SREBP1C, SCD and FAS were extremely significantly decreased (P<0.01). There was no significant change in the expression level of SREBP2 mRNA. Conclusion: Turmeric-hawthorn has good weight loss effects, and its weight loss mechanism is related to the regulation of mRNA expression levels in related genes.
  • 肥胖是一种复杂的慢性疾病。研究表明,目前我国城乡居民超重或肥胖人数已超过总人口一半,慢性病发病率显著上升[1]。显然膳食结构是引起肥胖和慢性病因素之一[2]。目前关于肥胖的定义有两种:一种是世界卫生组织所提倡的采用BMI指数进行分类以定义肥胖等级[3],另一种是通过机器检测人体体脂率表明人体的肥胖程度[4]。研究表明,肥胖不仅通过影响人们的心理健康导致死亡率上升,也会引起人体疾病产生严重危害[5],如:非酒精性脂肪肝[6]、血脂异常、2型糖尿病[7]、高血压[8]、生殖障碍[9],甚至引发相关器官组织的癌症病变[10]。当前可通过调节以下机制来治疗肥胖:调节体内神经肽Y的激素水平可调节食欲,维持机体能量平衡[11];抑制糖类、脂类相关酶的活性。通过抑制脂肪酶、糖苷酶以及淀粉酶的活性减少胃肠道对食物的吸收,进而降低机体内的能量摄入[12];抑制前脂肪细胞分化和增殖。过氧化物酶体增殖物激活受体γ(PPARγ)在脂肪代谢过程中具有关键的调节作用,在调节前脂肪细胞的分化和增殖有重大作用,在此过程中还与CCAAT/增强子结合蛋白(C/EBP)共同调控[13]

    复方在中药的应用调节上有整体观念,其化学组成的多成分特性,药理作用的多靶点功效,相比单一的天然提取物或单一靶点的西药具有更明显的优势[14]。研究发现,姜黄(Curcuma longa L.)与山楂(Crataegus pinnatifida Bunge)联用可能具有协同增效的作用[15],但还未得到更进一步的证实以及机理方面的探讨。姜黄含有姜黄素、倍半萜、二萜、三萜、甾醇、生物碱等功能性成分[16]。姜黄素、脱甲氧基姜黄素和双脱甲氧基姜黄素在抗氧化、抗炎和抗增殖作用有着不同的优势[17]。因此姜黄的抗氧化、抗炎、抗癌、抗衰老、止痛等作用也就更为明确[1819]。姜黄素的生物利用率比较低。有研究显示,姜黄中的姜黄油可以提高姜黄素的生物利用度[20]。山楂为蔷薇科植物的干燥成熟果实,消食健胃、行气散瘀、化浊降脂。山楂含有丰富的类黄酮及其衍生物、多糖、有机酸类化合物、萜类化合物[21]。山楂由于在心血管治疗、抗氧化、抗菌等方面作用突出,成为了植物治疗和食品应用中非常受欢迎的草药[22]

    综上所述,虽然已有姜黄、山楂在降血脂、2型糖尿病以及抗氧化方面的研究,但针对二者联合在治疗肥胖及机制上的研究还未见报道。山楂和姜黄同属药食同源类产品,其安全性能够保障。同时人们也倾向于天然、可持续的植物活性成分的药物,而此类药物多数兼具安全性、疗效性、高利用度和低成本等优势[23]。本文以姜黄和山楂为研究对象,探究姜黄和山楂对高脂饮食诱导的肥胖小鼠的减肥作用及可能机制,为后续药食同源产品的联用,以及姜黄-山楂产品的开发提供理论基础。

    C57BL/6JNifdc小鼠,SPF级、雄性、5~6周、32只 由浙江维通利华实验动物技术有限公司提供,生产许可证号:SCXK(浙)2019-0001,动物合格证编号:No.20220316Abzz0600000749;60%高脂饲料(TP23300) 南通特洛菲饲料科技有限公司;维持饲料 江苏省协同医药生物工程有限责任公司;姜黄、山楂 北京同仁堂;多聚甲醛固定液 上海碧云天生物技术有限公司;脂肪固定液 上海源叶生物科技有限公司;二甲苯、中性树胶 国药集团化学试剂有限公司;无水乙醇(色谱纯)、HE染液、分化液、返蓝液 Servicebio;总胆固醇(total cholesterol,TC)试剂盒、甘油三酯(triglyceride,TG)试剂盒、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)试剂盒、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)试剂盒、谷丙转氨酶(alanine aminotransferase,ALT/GOT)试剂盒、谷草转氨酶(aspartate aminotransferase,AST/GOT)试剂盒 南京建成生物工程研究所;DNA提取试剂盒、反转录试剂盒 赛默飞。

    Allegra 64R高速冷冻离心机 美国贝克曼库尔特有限公司;Multiskan FC酶标仪 美国BIOTEK公司;LF50小动物组分分析仪 德国布鲁克公司;JJ-12J脱水机 武汉俊杰电子有限公司;JB-P5包埋机 武汉俊杰电子有限公司;RM2255切片机 上海徕卡仪器有限公司组织;KD-Pll摊片机 浙江省金华市科迪仪器设备有限公司;Ni-E正置光学显微镜 日本尼康;ECLIPSE-Ti2成像系统 日本尼康;GHC50023电子秤 泊名臻品;580血糖仪 鱼跃;VeritiPro PCR仪 赛默飞。

    32只雄性SPF级C57BL/6J小鼠(体质量18~22 g)饲养条件:动物房湿度40%~70%,温度(23±3)℃,压差10~30 Pa,光照黑暗各12 h,饲养于安徽省合肥市安徽农业大学国家重点实验室SPF级动物房,自由摄取食物和饮水。适应性饲喂1周,随机分为正常组、正常干预组、高脂组、高脂干预组,每组8只。正常组饲喂基础饲料,高脂组饲喂高脂饲料。姜黄和山楂粉碎过60目筛,制成粉末,纯水灌胃,各干预组按照姜黄、山楂各390 mg/kg混合灌胃(剂量参照中国药典,灌胃溶液参照丸剂剂量),连续灌胃12周,处死前禁食12 h,采用4%水合氯醛麻醉,摘眼球取血,颈椎脱臼处死,血液经2000 r/min离心10 min,取上清备用。附睾脂肪保存于脂肪固定液。肝脏分别保存于多聚甲醛固定液、RNAlater保存液、−80 ℃环境中。本研究动物实验获得安徽农业大学动物伦理委员会批准,伦理编号AHAU2022019。

    从小鼠适应一周开始,每周同一时间称量体重。

    每周同一时间更换小鼠垫料,同时统计小鼠饮水、摄食量。

    将机器进行日常开机检验,用酒精将检测筒擦拭干净,同时在检测过程中及时清理小鼠产生的异物,避免沾染其它小鼠的气味对实验造成影响。每周同一时间测定小鼠体质成分。

    每隔两周在同一时间测定小鼠的随机血糖,采用尾尖取血,弃去第一滴血。

    以试剂盒测定小鼠TG、TC、HDL-C、LDL-C、AST、ALT含量,测定方法严格按照说明书操作。

    参照温永平等[24]的方法并稍作修改,取小鼠同部位的肝脏组织一小块,置于4%多聚甲醛固定液,固定48 h以后,脱水浸蜡、包埋和切片后制成厚度为4 μm的石蜡切片,经苏木素-伊红染色后,脱水封片,放置显微镜镜检,采集图像进行分析,过程中注意细胞核分化以及苏木素、伊红效价。

    取同一部位小鼠附睾脂肪,置于脂肪固定液中固定48 h后,参照1.2.7肝脏组织病理学检查进行操作。

    参考沈海亮[25]的方法并稍作修改,提取各组小鼠肝组织的总RNA,测定其浓度和纯度,稀释浓度过高的RNA使其最终浓度为100~500 ng/μL,随即使用反转录试剂盒将总RNA反转录为cDNA。采用qPCR法测定胆固醇7α-羟化酶(cholesterol 7α-hydroxylase,CYP7A1)、 脂肪酸合酶(fatty acid synthase,FAS)、肝X受体α(Liver X Receptorα,LXRα)、固醇调节元件结合蛋白2(Sterol Regulatory Element Binding Protein,SREBP2)、固醇调节元件结合蛋白1C(Sterol Regulatory Element Binding Protein,SREBP1C)、硬脂酰辅酶A去饱和酶(Steary-coenzyme A dehydro-synthase-1,SCD1)的mRNA相对表达量。反应体系:在0.2 mL的PCR管内加入,2×qPCR Mix(7.5 μL),2.5 μmol/L上下游基因引物(1.5 μL),cDNA (2.0 μL),添Water Nuclease-Free(4.0 μL)。反应条件:95 ℃预变性30 s,40个循环(95 ℃变性15 s,60 ℃延伸 30 s),溶解曲线选择在65~95 ℃,每升温0.5 ℃,采集一次荧光信号。选择GAPDH为内参基因,采用2-ΔΔCt法计算目的基因相对表达量。引物序列如表1所示。

    表  1  荧光qPCR引物序列
    Table  1.  Primer sequences for fluorescence qPCR
    基因上游引物(5’- 3’)下游引物(5’- 3’)
    CYP7A1TTCATCACAAACTCCCTGTCATACGCTTCTGTGTCCAAATGCCTT
    LXRαTCATCAAGGGAGCACGCTATGTCTTGAGCCTGTTCCTCTTCTTGC
    SREBP2CAAGAAGAAGGCAGGCGACCCACAAATCCCACAGAGTCCACA
    SREBP1CGACATGCTCCAGCTCATCAACAGACACGGACGGGTACATCTTTA
    SCDGTTAGCACCTTCTTGCGATACACTGTGAAGTTGATGTGCCAGCG
    FASTGTCCTGCCTCTGGTGCTTGGCAAAATGGGCCTCCTTGATAT
    GAPDHCCTCGTCCCGTAGACAAAATGTGAGGTCAATGAAGGGGTCGT
    下载: 导出CSV 
    | 显示表格

    采用SPSS 26.0软件统计处理,各组数据以均数±标准差(Mean±SEM)表示,采用单因素ANOVA分析,P<0.05,P<0.01,P<0.001表示差异具有统计学意义。

    研究表明高脂饮食可以增加机体体质量[26],相比正常小鼠,体重超过20%可定义为肥胖[27]。由图1可知,在12周的实验期间,各组小鼠体质量均呈现增长趋势,增长差异较大。随着时间的增加,高脂组与正常组相比,体重显著升高(P<0.05),当实验到达第六周时,相比高脂组,高脂干预组显著降低直至实验结束(P<0.05)。而在整个实验期间,相比正常组,正常干预组的体重没有显著差异,说明姜黄-山楂联合干预对正常组小鼠体重没有影响。在第12周结束时,正常组小鼠平均体质量达到28.56 g,相比正常组,高脂组平均体质量增加46.88%,差异高度显著(P<0.001)。相比高脂组,高脂干预组平均体质量下降13.4%,差异极显著(P<0.01),说明姜黄-山楂联用可以有效减缓小鼠体质量的增加。图中可以看到,在最初的两周干预组平均体重上升比非干预组快,这可能是由于山楂的健胃消食作用。

    图  1  姜黄-山楂联用对小鼠体质量的影响
    注:与正常组相比,* P<0.05、** P<0.01、*** P<0.001;与高脂组相比,# P<0.05、## P<0.01、### P<0.001;图3~图5图8同。
    Figure  1.  Effect of turmeric-hawthorn combination on body mass of mice

    图2a、2b所示,总体而言,相比正常组,正常干预组的摄食、饮水量差异不大。相比高脂组,高脂干预组的摄食、饮水量差异不大。说明姜黄-山楂联用,对小鼠的饮水、摄食量无影响。高脂组和高脂干预组摄食量和饮水量低于正常组和正常干预组。这可能是由于饮食结构的不同,维持饲料提供的能量远低于高脂饲料,这可能是导致高脂组摄食量减少的原因,此结果与夏海梅等[28]的研究一致。

    图  2  姜黄-山楂联用对小鼠摄食、饮水的影响
    Figure  2.  Effect of turmeric-hawthorn combination on feeding and drinking in mice

    本实验将监测小鼠体质成分所得数据分为脂肪率(总脂肪含量/体重)和瘦肉率(总瘦肉含量/体重),目前,越来越多的人认为,脂肪含量和肥胖息息相关[29]图3a为监测所得各阶段小鼠脂肪率,正常干预组长期稳定在7%左右的脂肪率,正常组长期稳定在10%左右,实验结束最后一周差异不显著(P>0.05)。与正常组相比,实验第一周,高脂组脂肪率差异高度显著(P<0.001),随时间增加,高脂组脂肪率由10%上升至28%。相比于高脂组,高脂干预组脂肪率上升缓慢,由实验开始时10%上升至22%,差异显著(P<0.05),说明姜黄联合山楂能够抑制小鼠脂肪率的增加。研究表明,瘦肉率能够间接反映机体肥胖程度[30]图3b为监测所得小鼠瘦肉率。正常干预组长期稳定在70%左右的瘦肉率,正常组长期稳定在68%左右,实验结束时差异不显著(P>0.05)。实验第一周,正常干预组与正常组具有显著差异(P<0.05),说明姜黄-山楂联用能够调高小鼠体内瘦肉率的含量。与正常组相比,高脂组瘦肉率由开始时的70%下降至54%,实验结束时差异极显著(P<0.01)。相比高脂组,高脂干预组瘦肉率由70%下降至60%,实验结束时差异显著(P<0.05),说明姜黄-山楂联用,能够有效地减缓小鼠体内瘦肉含量的下降,因此,摄入姜黄和山楂能够减少小鼠体内脂肪含量,增加小鼠体内瘦肉的含量,从而起到预防肥胖的作用。

    图  3  姜黄-山楂联用对小鼠体质成分的影响
    Figure  3.  Effect of turmeric-hawthorn combination on the body composition of mice

    研究表明,肥胖人群通常随机血糖也普遍较高[31]。实验为尽可能地保证小鼠生长周期减少外在环境的影响,进行了对小鼠12周的随机血糖监测。如图4所示,除干预组外,各组小鼠血糖值相对稳定。高脂组血糖值最高,但都未达到11.1 mmol/L(高血糖标准)。相比正常组,高脂组小鼠血糖含量差异极显著(P<0.01)。除试验期间第四周外,相比高脂组,高脂干预组血糖极显著下降(P<0.01),有时甚至低于正常组,说明姜黄-山楂联用在控制小鼠随机血糖的水平上,具有较好的效果。这与LIU等[32]、ADAB等[33]的研究一致。

    图  4  姜黄-山楂联用对小鼠随机血糖的影响
    Figure  4.  Effect of turmeric-hawthorn combination on random blood glucose in mice

    图5 a~d所示,与正常组相比,高脂组血清中TC、TG、LDL-C、HDL-C水平差异高度显著(P<0.001)。相比高脂组,高脂干预组能够高度显著降低高脂小鼠血清中TC、TG、LDL-C水平(P<0.001),高度显著升高HDL-C水平(P<0.001),这可能是姜黄-山楂参与了小鼠的脂代谢,降低了血清中TC、TG、LDL-C含量,升高了HDL-C含量。说明姜黄-山楂联用具有较好的降脂效果。图5e、5f所示,与正常组相比,高脂组能够高度显著升高小鼠血清中AST、ALT的含量(P<0.001)。相比高脂组,高脂干预组能够显著降低小鼠血清中AST、ALT含量(P<0.001)。这与TAN等[34]的研究结果一致。说明姜黄-山楂联用能够降低小鼠血清中总胆固醇、甘油三酯以及低密度脂蛋白胆固醇水平,升高血清中的高密度脂蛋白胆固醇水平,并且能够保护高脂饮食对肝脏带来的损伤。可能是姜黄中含有的姜黄素、姜黄油,以及山楂中的黄酮类等成分对机体产生的抗炎、降脂等作用[3537],从而达到了预防肥胖的目的。

    图  5  姜黄-山楂联用对小鼠血清生化指标的影响
    Figure  5.  Effect of turmeric-hawthorn combination on serum biochemical indexes of mice

    图6所示,各组小鼠肝脏组织经HE染色,可以看出正常组小鼠肝小叶结构紧密、分界清晰,组织结构无异常,细胞内未见明显脂滴,肝窦未见挤压或扩张。正常干预组肝细胞排列有序,未发现明显异常,表明姜黄-山楂无肝毒性。与正常组相比,高脂组细胞排列混乱,边界不清晰,肝质疏松。大量干细胞呈球状样变,间隙内含有较多脂肪空泡,核仁偏移。肝细胞坏死,炎性细胞浸润、血管周围肝细胞肿胀明显。与高脂组相比,高脂干预组边界模糊、脂肪空泡、核仁偏移改善明显,血管周围的脂质松散现象以及细胞肿胀有较大改善。说明姜黄-山楂能够改善肝脏脂肪病变。这同时与图5e、5f中肝脏内AST、ALT的降低互相佐证,姜黄-山楂能够起到对肝脏的保护作用。

    图  6  肝脏病理学切片(×400)
    注:A:正常组;B:正常干预组;C:高脂组;D:高脂干预组。
    Figure  6.  Pathological section of the liver (×400)

    图7所示,脂肪病理学切片显示,正常组小鼠附睾脂肪细胞排列整齐、大小均匀,细胞质充盈,未见明显异常。正常干预组,细胞无明显异常,细胞体积明显小于正常组细胞。与正常组相比,高脂组细胞体积明显增大,细胞质减少,排列散乱,细胞大小不一。与高脂组相比,高脂干预组在细胞形态有明显改善。虽然存在细胞大小不均的情况,但细胞质充盈,排列紧密,细胞有减小情况。

    图  7  附睾脂肪病理学切片(×200)
    注:A:正常组;B:正常干预组;C:高脂组;D:高脂干预组。
    Figure  7.  Fat pathology section of epididymis (×200)

    胆固醇的相关基因是调节脂代谢至关重要的作用机制[38],研究表明,胆固醇被转移到高密度脂蛋白颗粒中,并返回肝脏主要通过限速酶胆固醇CYP7A1转化为胆汁酸[39]。胆固醇同时受胆汁酸分泌的影响,LXRα调节胆汁酸的合成且能够调控SREBP1C基因的表达[40]SREBP2SREBP1C在胆固醇的代谢中发挥重要作用且表达量较高[41]SCD1可介导脂肪的积累,SCD1的表达对脂代谢具有重要影响[42]FAS异常表达会导致肝脏脂质累积[43]。由图8实验结果可以看出,与正常组相比,高脂组肝脏中CYPTA1 mRNA表达水平高度显著下降(P<0.001),与高脂组相比,高脂干预组CYPTA1 mRNA表达水平显著上升(P<0.05)。与高脂组相比,高脂干预组LXRαSREBP1C mRNA表达水平极显著下调(P<0.01)。与SREBP1C功能相似,姜黄-山楂的干预可调节SCD mRNA,降低SCD mRNA表达水平,差异高度显著(P<0.001)。其中SREBP2表达水平无显著变化。此外本研究还测定了脂肪酸合成酶的相对表达量,与正常组相比,高脂组FAS mRNA表达水平高度显著上升(P<0.001),相比高脂组,高脂干预组FAS mRNA表达水平高度显著降低,差异具有统计学意义(P<0.001)。因此推测姜黄协同山楂减肥的作用机制可能和CYPTA1LXRαSREBP1CSCDFAS mRNA表达水平有关。

    图  8  肝脏组织中CYP7A1LXRαSREBP2SREBP1CSCDFAS mRNA水平
    Figure  8.  CYP7A1, LXRα, SREBP2, SREBP1C, SCD, FAS mRNA levels in liver tissue

    姜黄-山楂联用能够有效减缓高脂饮食小鼠体质量的增加,抑制小鼠血清中脂质水平的升高,控制小鼠的随机血糖水平,能够有效减少体内的脂肪积累、提高瘦肉率的转化,从而达到预防肥胖的作用。其机制与姜黄-山楂联用上调CYPTA1 mRNA的表达量和下调LXRαSREBP1CSCDFAS mRNA表达量有关。从生理生化、病理学以及肝脏组织中mRNA的测定结果表明,姜黄和山楂联用对C57小鼠的减肥作用可能是调节脂代谢起到的作用,但机制的探索还需从蛋白水平以及转录组学等进行深入研究。关于中草药在动物实验中,多以提取物或已经工业化生产的制剂为研究对象,这可能会导致某些功能成分的损失。本实验采用的是全粉进行干预,这为开展以全药粉为加工工艺的工业化应用提供了依据,减少了加工过程中的原料损失。

  • 图  1   姜黄-山楂联用对小鼠体质量的影响

    注:与正常组相比,* P<0.05、** P<0.01、*** P<0.001;与高脂组相比,# P<0.05、## P<0.01、### P<0.001;图3~图5图8同。

    Figure  1.   Effect of turmeric-hawthorn combination on body mass of mice

    图  2   姜黄-山楂联用对小鼠摄食、饮水的影响

    Figure  2.   Effect of turmeric-hawthorn combination on feeding and drinking in mice

    图  3   姜黄-山楂联用对小鼠体质成分的影响

    Figure  3.   Effect of turmeric-hawthorn combination on the body composition of mice

    图  4   姜黄-山楂联用对小鼠随机血糖的影响

    Figure  4.   Effect of turmeric-hawthorn combination on random blood glucose in mice

    图  5   姜黄-山楂联用对小鼠血清生化指标的影响

    Figure  5.   Effect of turmeric-hawthorn combination on serum biochemical indexes of mice

    图  6   肝脏病理学切片(×400)

    注:A:正常组;B:正常干预组;C:高脂组;D:高脂干预组。

    Figure  6.   Pathological section of the liver (×400)

    图  7   附睾脂肪病理学切片(×200)

    注:A:正常组;B:正常干预组;C:高脂组;D:高脂干预组。

    Figure  7.   Fat pathology section of epididymis (×200)

    图  8   肝脏组织中CYP7A1LXRαSREBP2SREBP1CSCDFAS mRNA水平

    Figure  8.   CYP7A1, LXRα, SREBP2, SREBP1C, SCD, FAS mRNA levels in liver tissue

    表  1   荧光qPCR引物序列

    Table  1   Primer sequences for fluorescence qPCR

    基因上游引物(5’- 3’)下游引物(5’- 3’)
    CYP7A1TTCATCACAAACTCCCTGTCATACGCTTCTGTGTCCAAATGCCTT
    LXRαTCATCAAGGGAGCACGCTATGTCTTGAGCCTGTTCCTCTTCTTGC
    SREBP2CAAGAAGAAGGCAGGCGACCCACAAATCCCACAGAGTCCACA
    SREBP1CGACATGCTCCAGCTCATCAACAGACACGGACGGGTACATCTTTA
    SCDGTTAGCACCTTCTTGCGATACACTGTGAAGTTGATGTGCCAGCG
    FASTGTCCTGCCTCTGGTGCTTGGCAAAATGGGCCTCCTTGATAT
    GAPDHCCTCGTCCCGTAGACAAAATGTGAGGTCAATGAAGGGGTCGT
    下载: 导出CSV
  • [1] 中国居民营养与慢性病状况报告(2020年)[J]. 营养学报, 2020, 42(6):521. [Report on nutrition and chronic diseases in China (2020)[J]. Chinese Journal of Nutrition, 2020, 42(6):521.]

    Report on nutrition and chronic diseases in China (2020)[J]. Chinese Journal of Nutrition, 2020, 42(6): 521.

    [2]

    RAFAELA L, EMIL K, de ASSIS A M A. Dietary patterns and childhood obesity risk:A systematic review[J]. Childhood Obesity,2020,16(2):70−85. doi: 10.1089/chi.2019.0059

    [3]

    KHANNA D, PELTZER C, KAHAR P, et al. Body mass index (BMI):A screening tool analysis[J]. Cureus,2022,14(2):e22119−e22119.

    [4]

    SPEHNJAK M, GUŠIĆ M, MOLNAR S, et al. Body composition in elite soccer players from youth to senior squad[J]. International Journal of Environmental Research and Public Health,2021,18(9):4982. doi: 10.3390/ijerph18094982

    [5]

    SUTIN A R, STEPHAN Y, TERRACCIANO A. Weight discrimination and risk of mortality[J]. Psychological Science,2015,26(11):1803−1811. doi: 10.1177/0956797615601103

    [6]

    POLYZOS S A, KOUNTOURAS J, MANTZOROS C S. Obesity and nonalcoholic fatty liver disease:From pathophysiology to therapeutics[J]. Metabolism,2019,92:82−97. doi: 10.1016/j.metabol.2018.11.014

    [7]

    AL-RADDADI R, BAHIJRI S M, JAMBI H A, et al. The prevalence of obesity and overweight, associated demographic and lifestyle factors, and health status in the adult population of Jeddah, Saudi Arabia[J]. Therapeutic Advances in Chronic Disease,2019,10:1−10.

    [8]

    POWELL-WILEY T M, POIRIER P, BURKE L E, et al. Obesity and cardiovascular disease:A scientific statement from the American Heart Association[J]. Circulation,2021,143(21):e984−e1010.

    [9]

    HO J H, ADAM S, AZMI S, et al. Male sexual dysfunction in obesity:The role of sex hormones and small fibre neuropathy[J]. PloS One,2019,14(9):e0221992. doi: 10.1371/journal.pone.0221992

    [10]

    GARCíA-MIRANDA A, GARCIA-HERNANDEZ A, CASTAñEDA-SAUCEDO E, et al. Adipokines as regulators of autophagy in obesity-linked cancer[J]. Cells,2022,11(20):3230. doi: 10.3390/cells11203230

    [11]

    MARCOS P, COVEñAS R. Regulation of homeostasis by neuropeptide Y:Involvement in food intake[J]. Current Medicinal Chemistry,2022,29(23):4026−4049. doi: 10.2174/0929867328666211213114711

    [12]

    LI R, XUE Z, JIA Y, et al. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice[J]. International Journal of Biological Macromolecules,2021,192:452−460. doi: 10.1016/j.ijbiomac.2021.10.010

    [13]

    LEE Y J, JANG Y N, HAN Y M, et al. 6-Gingerol normalizes the expression of biomarkers related to hypertension via PPARδ in HUVECs, HEK293, and differentiated 3T3-L1 cells[J]. PPAR Research,2018,2018:1−14.

    [14] 黄哲, 李美辰, 施卉, 等. 基于全生命周期理念的中药新药监管科学研究[J]. 中草药,2021,52(17):5132−5138. [HUANG Zhe, LI Meichen, SHI Hui, et al. Scientific research on the supervision of new Chinese medicines based on the whole life cycle concept[J]. Chinese Herbal Medicine,2021,52(17):5132−5138.] doi: 10.7501/j.issn.0253-2670.2021.17.003

    HUANG Zhe, LI Meichen, SHI Hui, et al. Scientific research on the supervision of new Chinese medicines based on the whole life cycle concept[J]. Chinese Herbal Medicine, 2021, 52(17): 5132−5138. doi: 10.7501/j.issn.0253-2670.2021.17.003

    [15] 王远苹. 姜黄素纳晶复方胶囊的制备及生物利用度考察[D]. 广州:广东药科大学, 2017. [WANG Yuanping. Preparation and bioavailability of curcumin nanocrystalline compound capsules[D]. Guangzhou:Guangdong Pharmaceutical University, 2017.]

    WANG Yuanping. Preparation and bioavailability of curcumin nanocrystalline compound capsules[D]. Guangzhou: Guangdong Pharmaceutical University, 2017.

    [16]

    JIA S, SUN Y, LI L, et al. Discrimination of turmeric from different origins in China by MRM-based curcuminoid profiling and multivariate analysis[J]. Food Chemistry,2021,338:127794. doi: 10.1016/j.foodchem.2020.127794

    [17]

    VAFAEIPOUR Z, RAZAVI B M, HOSSEINZADEH H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome:An updated review[J]. Journal of Integrative Medicine,2022,20(3):193−203. doi: 10.1016/j.joim.2022.02.008

    [18]

    SUN J, CHEN F, BRAUN C, et al. Role of curcumin in the management of pathological pain[J]. Phytomedicine,2018,48:129−140. doi: 10.1016/j.phymed.2018.04.045

    [19]

    AGGARWAL B B, YUAN W, LI S, et al. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities:Identification of novel components of turmeric[J]. Molecular Nutrition & Food Research,2013,57(9):1529−1542.

    [20]

    TODEN S, THEISS A L, WANG X, et al. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis[J]. Scientific Reports,2017,7(1):1−12. doi: 10.1038/s41598-016-0028-x

    [21] 王磊, 王辉, 康福忠, 等. 山楂的生物活性成分及其在畜禽业中的研究进展[J]. 饲料研究,2022(21):146−149. [WANG Lei, WANG Hui, KANG Fuzhong, et al. Research progress of bioactive components of hawthorn and their application in livestock and poultry industry[J]. Feed Research,2022(21):146−149.] doi: 10.13557/j.cnki.issn1002-2813.2022.21.030

    WANG Lei, WANG Hui, KANG Fuzhong, et al. Research progress of bioactive components of hawthorn and their application in livestock and poultry industry[J]. Feed Research, 2022(21): 146−149. doi: 10.13557/j.cnki.issn1002-2813.2022.21.030

    [22]

    ALIREZALU A, AHMADI N, SALEHI P, et al. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications[J]. Foods,2020,9(4):436. doi: 10.3390/foods9040436

    [23]

    NAZHAND A, LUCARINI M, DURAZZO A, et al. Hawthorn (Crataegus spp.):An updated overview on its beneficial properties[J]. Forests,2020,11(5):564. doi: 10.3390/f11050564

    [24] 温永平, 朱迪, 孙健, 等. 魔芋甘露寡糖抗肥胖活性及机制[J]. 食品科学,2020,41(5):115−121. [WEN Yongping, ZHU Di, SUN Jian, et al. Anti-obesity activity and mechanism of konjac manna oligosaccharides[J]. Food Science,2020,41(5):115−121.] doi: 10.7506/spkx1002-6630-20190926-323

    WEN Yongping, ZHU Di, SUN Jian, et al. Anti-obesity activity and mechanism of konjac manna oligosaccharides[J]. Food Science, 2020, 41(5): 115−121. doi: 10.7506/spkx1002-6630-20190926-323

    [25] 沈海亮. 多穗柯三叶苷对高脂饮食诱导的肥胖大鼠的减肥作用及机理研究[D]. 重庆:西南大学, 2021. [SHEN Hailiang. Effect and mechanism of trifolin on weight loss in obese rats induced by high fat diet[D]. Chongqing:Southwest University, 2021.]

    SHEN Hailiang. Effect and mechanism of trifolin on weight loss in obese rats induced by high fat diet[D]. Chongqing: Southwest University, 2021.

    [26]

    SPEAKMAN J R. Use of high-fat diets to study rodent obesity as a model of human obesity [Z]. Nature Publishing Group, 2019:1491−1492.

    [27] 路晓杰. 基于肠道菌群研究普洱熟茶提取物对肥胖小鼠脂代谢及炎症影响[D]. 长春:吉林大学, 2018. [LU Xiaojie. Study on the effects of Pu 'er ripe tea extract on lipid metabolism and inflammation in obese mice based on intestinal flora[D]. Changchun:Jilin University, 2018.]

    LU Xiaojie. Study on the effects of Pu 'er ripe tea extract on lipid metabolism and inflammation in obese mice based on intestinal flora[D]. Changchun: Jilin University, 2018.

    [28] 夏海梅, 李艳萍, 陆中云, 等. 纳西族药青刺尖对C57BL/6J肥胖小鼠的减肥作用及机制研究[J]. 中药材,2022(9):2232−2236. [XIA Haimei, LI Yanping, LU Zhongyun, et al. Effect and mechanism of Naxi Chinese medicine Green Thorn Tip on weight loss in C57BL/6J obese mice[J]. Chinese Traditional Medicine,2022(9):2232−2236.] doi: 10.13863/j.issn1001-4454.2022.09.038

    XIA Haimei, LI Yanping, LU Zhongyun, et al. Effect and mechanism of Naxi Chinese medicine Green Thorn Tip on weight loss in C57BL/6J obese mice[J]. Chinese Traditional Medicine, 2022(9): 2232−2236. doi: 10.13863/j.issn1001-4454.2022.09.038

    [29]

    SCHVEY N A, MARWITZ S E, MI S J, et al. Weight-based teasing is associated with gain in BMI and fat mass among children and adolescents at-risk for obesity:A longitudinal study[J]. Pediatric Obesity,2019,14(10):e12538. doi: 10.1111/ijpo.12538

    [30]

    BATSIS J A, VILLAREAL D T. Sarcopenic obesity in older adults:Aetiology, epidemiology and treatment strategies[J]. Nature Reviews Endocrinology,2018,14(9):513−537. doi: 10.1038/s41574-018-0062-9

    [31]

    SHALABY M N, FADL M A, WAHAB H A H A, et al. Effect of a training program accompanied by a suggested diet on some physiological variables and regulating blood sugar level in type II diabetics[J]. Int J Hum Mov Sports Sci,2022,10:54−65.

    [32]

    LIU S, YU J, FU M, et al. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats[J]. Food Research International,2021,142:110239. doi: 10.1016/j.foodres.2021.110239

    [33]

    ADAB Z, EGHTESADI S, VAFA M R, et al. Effect of turmeric on glycemic status, lipid profile, hs-CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients[J]. Phytotherapy Research,2019,33(4):1173−1181. doi: 10.1002/ptr.6312

    [34]

    TAN X, SUN Z, ZHOU M, et al. Effects of dietary hawthorn extracts supplementation on lipid metabolism, skin coloration and gut health of golden pompano (Trachinotus ovatus)[J]. Aquaculture,2020,519:734921. doi: 10.1016/j.aquaculture.2020.734921

    [35]

    SUN Z, TAN X, YE H, et al. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀) fed high lipid diets[J]. Fish & Shellfish Immunology,2018,73:234−244.

    [36]

    TAN X, SUN Z, LIU Q, et al. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀) fed high lipid diets[J]. Fish & Shellfish Immunology,2018,72:399−409.

    [37]

    TAN X, SUN Z, YE C. Dietary Lycium barbarum extract administration improved growth, meat quality and lipid metabolism in hybrid grouper (Epinephelus lanceolatus♂×E. fuscoguttatus♀) fed high lipid diets[J]. Aquaculture,2019,504:190−198. doi: 10.1016/j.aquaculture.2019.01.044

    [38]

    DUAN Y, GONG K, XU S, et al. Regulation of cholesterol homeostasis in health and diseases:From mechanisms to targeted therapeutics[J]. Signal Transduction and Targeted Therapy,2022,7(1):265. doi: 10.1038/s41392-022-01125-5

    [39]

    CHAMBERS K F, DAY P E, ABOUFARRAG H T, et al. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1:A review[J]. Nutrients,2019,11(11):2588. doi: 10.3390/nu11112588

    [40]

    RONG S, CORTéS V A, RASHID S, et al. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice[J]. Elife,2017,6:e25015. doi: 10.7554/eLife.25015

    [41]

    BOZZA P, SOARES V, DIAS S, et al. SARS-CoV-2 engages replication and inflammasome activation through lipid remodeling via SREBPs [J]. Research Square,2022, 16:158686.

    [42]

    CHEN M, XU J, WANG Y, et al. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis[J]. Carbohydrate Research,2020,494:108055. doi: 10.1016/j.carres.2020.108055

    [43]

    ZHANG W, LI J Y, WEI X C, et al. Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway[J]. Food and Chemical Toxicology,2021,149:112029. doi: 10.1016/j.fct.2021.112029

  • 期刊类型引用(10)

    1. 文钰,杨莉玲,刘岚,哦哈尔·帕孜力江,张昱,马文强,杨晗,丁高鹏,崔宽波. 近冰温贮藏对西梅的采后品质及活性氧代谢的影响. 食品与发酵工业. 2024(11): 270-276 . 百度学术
    2. 周慧娟,张夏南,周讯,苏明申,杜纪红,李雄伟,张明昊,叶正文. 桃采后品质劣变生物学及调控技术研究进展. 果树学报. 2024(06): 1213-1227 . 百度学术
    3. 林语涵,蒋璇靓,郑金水,尤有利,刘誉隆,林文辉,胡碧. 激光微孔保鲜袋包装对荔枝采后果皮褐变及活性氧代谢的影响. 东南园艺. 2024(02): 109-116 . 百度学术
    4. 李辉,林毅雄,陈莲,张朝坤,周泽强,张鑫. 1-甲基环丙烯处理对‘红香1号’番石榴果实活性氧代谢和软化的影响. 食品研究与开发. 2024(16): 57-66 . 百度学术
    5. 郑碧霞,黄进,李慧,余永松,张玥,顿耀元. 不同1-MCP浓度对桃果实采后质地品质的影响. 天津农业科学. 2024(11): 86-90 . 百度学术
    6. 刘培培,黄惠芸,周天峰,罗小芳,郑舒桓,谢宝贵,陈炳智,江玉姬,刘芳. 荷叶离褶伞保鲜方法及其贮藏效果. 菌物学报. 2023(05): 1203-1218 . 百度学术
    7. 刘雪平,张永涛,刘凌霄,赵莉,冷鹏. 桃保鲜技术与加工工艺研究进展. 粮食与油脂. 2023(05): 19-23 . 百度学术
    8. 张皓波,吴喜庆,杨蕊,林奇,包媛媛. 褪黑素结合气调包装处理对黄牛肝菌保鲜效果影响. 食用菌学报. 2023(03): 68-80 . 百度学术
    9. 杨松,朱倩,王灼琛,杜京京,郭家刚,伍玉菡,俞飞飞,江舰. 1-MCP结合PE包装处理对带壳茭白贮藏品质的影响. 食品研究与开发. 2023(24): 46-53 . 百度学术
    10. 程玉豆. 桃果实贮藏保鲜技术研究进展. 河北农业科学. 2023(06): 68-72 . 百度学术

    其他类型引用(7)

  • 其他相关附件

图(8)  /  表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  21
  • PDF下载量:  23
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-03-05
  • 网络出版日期:  2023-11-05
  • 刊出日期:  2023-12-31

目录

/

返回文章
返回
x 关闭 永久关闭