• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

乳化/破乳法-气相色谱串联质谱法测定牛奶中12种亚硝胺残留

童文烽, 李劲松, 徐巧, 李剑

童文烽,李劲松,徐巧,等. 乳化/破乳法-气相色谱串联质谱法测定牛奶中12种亚硝胺残留[J]. 食品工业科技,2023,44(23):280−286. doi: 10.13386/j.issn1002-0306.2023020041.
引用本文: 童文烽,李劲松,徐巧,等. 乳化/破乳法-气相色谱串联质谱法测定牛奶中12种亚硝胺残留[J]. 食品工业科技,2023,44(23):280−286. doi: 10.13386/j.issn1002-0306.2023020041.
TONG Wenfeng, LI Jinsong, XU Qiao, et al. Determination of 12 Nitrosamines Residues in Milk by Emulsification/Demulsification Method Coupled with Gas Chromatography Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(23): 280−286. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020041.
Citation: TONG Wenfeng, LI Jinsong, XU Qiao, et al. Determination of 12 Nitrosamines Residues in Milk by Emulsification/Demulsification Method Coupled with Gas Chromatography Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(23): 280−286. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020041.

乳化/破乳法-气相色谱串联质谱法测定牛奶中12种亚硝胺残留

详细信息
    作者简介:

    童文烽(1994−),男,硕士,研究方向:食品营养与检测,E-mail:twf_1102@163.com

    通讯作者:

    童文烽(1994−),男,硕士,研究方向:食品营养与检测,E-mail:twf_1102@163.com

  • 中图分类号: TS252.7

Determination of 12 Nitrosamines Residues in Milk by Emulsification/Demulsification Method Coupled with Gas Chromatography Tandem Mass Spectrometry

  • 摘要: 基于乳化/破乳法,本研究建立了一种气相色谱-串联质谱法定量检测牛奶中12种亚硝胺化合物含量的方法。对滤膜种类、提取剂种类以及提取次数等前处理条件的优化结果如下:滤膜种类为尼龙,提取剂为乙腈,提取次数为2次。样品经乙腈提取,蛋白沉淀,乳化/破乳法除脂后,采用HP-INNOWAX色谱柱分离,采用多反应离子监测(MRM)模式,内标法定量测定亚硝胺含量。结果表明,N-亚硝基吡咯烷(NPYR)的线性范围为2~100 ng/mL,其余亚硝胺化合物在1~100 ng/mL的浓度范围内呈现良好的线性关系,决定系数均大于0.995。在高、中、低3个水平加标试验中,回收率在90.90%~114.30%之间,日内精密度在1.76%~7.62%之间,日间精密度在2.75%~7.71%之间。NPYR的定量限为4 µg/kg,其余化合物的定量限均为2 µg/kg。方法的精密度与准确度良好,可满足牛奶中12种亚硝胺的准确定量需求。实际样品检测结果显示,6组牛奶样品中均检出了N-亚硝基二苯基胺(NDPhA),含量在 4.29~6.67 μg/kg之间。
    Abstract: Based on the emulsification/demulsification method, a gas chromatography tandem mass spectrometry method was established for the quantitative determination of 12 nitrosamines in milk. The optimization results of pretreatment conditions such as the type of filter membrane, the type of extractant and the number of extractions were as follows: The type of filter membrane was nylon, the extractant was acetonitrile, and the number of extractions was two times. After acetonitrile extraction, deproteinizing, and degreased by emulsification/demulsification, the samples were separated on the HP-INNOWAX chromatographic column. The content of nitrosamines was quantitatively determined by the internal standard method, using multi-reactive ion monitoring (MRM) mode. The results showed that the linear range of N-nitrosopyrrolidine (NPYR) was 2~100 ng/mL, and the linear range of the other nitrosamines was 1~100 ng/mL. All nitrosamines had good determination coefficient which was greater than 0.995. During the high, medium and low-level fortification experiments, the recovery rate ranged from 90.90% to 114.30%, the intra-day precision ranged from 1.76% to 7.62%, and the inter-day precision ranged from 2.75% to 7.71%. The limit of quantitation (LOQ) of N-nitrosopyrrolidine (NPYR) was 4 µg/kg, and the LOQ of other compounds was 2 µg/kg. The method was precise and accurate, that met the demand of accurately testing 12 nitrosamines in milk. The test results of the actual samples indicated that N-nitrosodiphenylamine (NDPhA) was detected in six milk samples, and the content ranged from 4.29 to 6.67 μg/kg.
  • 亚硝胺是一类具有高度致癌性和致突变性的挥发性污染物,基本结构单元为N-N=O[1]。常见的亚硝胺有N-亚硝基二甲胺(NDMA)、N-亚硝基二乙胺(NDEA)、N-亚硝基甲基乙胺(NMEA)、N-亚硝基二丁胺(NDBA)、N-亚硝基正丙胺(NDPA)、N-亚硝基吗啉(NMOR)、N-亚硝基哌啶(NPIP)、N-亚硝基二苯胺(NDPhA)和 N-亚硝基吡咯烷(NPYR)等。在目前已发现的300多种亚硝胺化合物中,超过90%的亚硝胺均有动物致癌作用[2],其中NDMA和NDME已被国际癌症研究机构(IARC)定为2A类致癌物[3]。大量动物试验表明,亚硝胺的暴露与食管癌、肝癌、胃癌以及心血管疾病的发生率呈正相关[48]。人体可通过内源性合成和外源直接摄入亚硝胺[9],内源性合成可通过摄入含有亚硝酸盐的植源性和动物源性食品,亚硝酸盐在胃部酸性的环境下与蛋白质反应生成亚硝胺。

    研究表明,食品中的蛋白质在内源酶和微生物作用下易生成胺类物质,可与食品中的亚硝酸盐反应生成亚硝胺类化合物[10]。亚硝酸盐通常作为防腐剂存在于肉制品和乳制品中[11],并会进一步形成致癌的亚硝胺,对人体健康有害。目前针对亚硝胺的检测主要针对腌熏制品以及肉制品等,然而国内外针对牛奶中亚硝胺残留量的文献较少。牛奶中含有大量的碳水化合物、乳脂以及蛋白质,前处理净化对于准确测定牛奶中亚硝胺十分重要。研究表明,乳化/破乳法对于样品中疏水性强的提取物质(例如甘油三酯、萜类化合物、游离脂肪酸、甾醇等)有良好的净化效果,通过在有机提取液中加水乳化,使弱极性杂质形成许多微米级的液滴,再利用亲水滤膜对乳液进行破乳来达到净化的目的[12]。该法在油脂农残检测[12]、重金属回收[13]、药物分离[14]、染料去除[1516]等领域都有较好的应用效果。亚硝胺的检测手段主要有气相色谱法[1719]、液相色谱法[2021]、气相色谱-串联质谱联用法[2226]和液相色谱-串联质谱联用法[2728]。气相或液相的方法相比于质谱法而言灵敏度偏低,对于复杂基质中的准确定量存在困难,且气相色谱-串联质谱法对于挥发性亚硝胺化合物有良好的灵敏度。鉴于此,本研究将乳化/破乳法应用于牛奶基质的前处理中,建立一种高效便捷、高灵敏度的气相色谱-串联质谱定量方法,用于准确测定牛奶中12种亚硝胺的含量。

    调制乳、巴氏杀菌乳、超高温杀菌乳 市售;12种亚硝胺混合标准溶液,浓度均为200 µg/mL 上海安谱实验科技股份有限公司;N-亚硝基二甲基胺-d6(1000 µg/mL)、N-亚硝基二丙胺-d14(100 µg/mL)、N-亚硝基二丁基胺-d18(100 µg/mL) 上海安谱实验科技股份有限公司;丙酮、乙腈 均为色谱纯,德国Merck公司;氯化钠、无水硫酸镁、柠檬酸钠、柠檬酸二钠 均为分析纯,上海凌峰化学试剂有限公司;聚四氟乙烯(PTFE)针式滤器、聚醚砜(PES)针式滤器、尼龙(PA)针式滤器,规格均为25 mm×0.22 µm 上海安谱实验科技股份有限公司。

    GC 2000气相色谱仪、EXPEC 5231三重四极杆质谱仪、MassExpert软件 杭州谱育科技发展有限公司;TGL-16M冷冻离心机 湖南湘仪集团;BSA224S-CW万分之一天平 德国Sartorius公司;230V-EU PLUG涡旋混匀器 美国Labnet公司;Cascada I超纯水仪 美国PALL公司;KQ-800DE数控超声波清洗器 昆山市超声仪器有限公司。

    分别吸取1.1中N-亚硝基二甲基胺-d6溶液10 μL,N-亚硝基二丙胺-d14和N-亚硝基二丁基胺-d18溶液各100 μL,乙腈定容至10 mL,得到浓度为1 μg/mL的内标混合溶液。样品提取参考李登昆等[25]的研究,并进行调整,具体如下:称取5 g牛奶样品于50 mL离心管中,加入内标混合溶液(50 μL),加5 mL乙腈,振摇1 min后超声10 min,8000 r/min离心5 min,取上清,重复提取一次后,合并上清液,加入3 g无水硫酸镁,1 g氯化钠,0.5 g柠檬酸钠,0.25 g柠檬酸二钠,涡旋15 min后,8000 r/min离心5 min。

    采用乳化/破乳操作对提取液进行净化,参考Wang等[12]的研究并进行调整,具体如下:取出上述离心后的5 mL清液,加入5 mL水乳化,手动混匀后过PA针式滤器进行破乳后,在滤液中加入4 g无水硫酸镁,1 g氯化钠,8000 r/min离心5 min,取1 mL上清于进样瓶中,上机进样。

    色谱柱:HP-INNOWAX色谱柱(30 m⊆0.25 mm,0.25 µm);载气:高纯氦气(纯度≥99.999%),恒流模式,柱流量1.2 mL/min;隔垫吹扫流量:3.3 mL/min;载气吹扫流量:25 mL/min,于进样0.75 min后打开;进样口温度:250 ℃;进样体积1 µL,不分流进样。柱升温程序:初始温度为50 ℃;以20 ℃/min速率升温至190 ℃,保持1 min,最后以40 ℃/min速率升温至250 ℃,保持5.5 min。

    离子源采用电子轰击源(EI),离子源温度250 ℃,气质接口温度250 ℃,碰撞气为高纯氮气(纯度≥99.999%),溶剂延迟设置3 min,进行多反应监测模式(MRM)参数的采集与优化,各化合物的质谱参数如表1所示。

    表  1  多反应监测模式(MRM)参数
    Table  1.  Parameters of multiple reaction monitoring mode (MRM)
    化合物英文缩写CAS号保留时间(min)母离子(m/z)子离子(m/z)碰撞能量(eV)
    N-亚硝基二甲基胺-d6NDMA-d617829-05-94.148046.120
    8050.1*5
    N-亚硝基二甲基胺NDMA62-75-94.157444*4
    7442.117
    N-亚硝基甲基乙基胺NMEA10595-95-64.4488.171.1*3
    88.1737
    N-亚硝基二乙胺NDEA55-18-54.63102.185.1*3
    102.144.111
    N- 亚硝基二丙胺-d14NDPA-d1493951-96-35.44144.1126.1*3
    144.150.111
    N-亚硝基二丙胺NDPA621-64-75.49130.1113.2*3
    130.171.115
    N-亚硝基二丁基胺-d18NDBA-d181219798-82-96.51128.2110.1*10
    176.28110.110
    N-亚硝基二丁基胺NDBA924-16-36.58116.199.1*2
    158.199.17
    158.21415
    N-甲基-N-亚硝基苯胺NMPhA614-00-66.6310677*14
    10651.125
    N-亚硝基-N-乙基苯胺NEPhA612-64-66.63121.1106.1*13
    121.177.126
    N-亚硝基哌啶NPIP100-75-46.8114.184.1*5
    114.197.15
    N-亚硝基吡咯烷NPYR930-55-26.9810055*10
    1006811
    N-亚硝基吗啉NMOR59-89-27.2711686.1*2
    11656.19
    N-亚硝基二苯基胺NDPhA86-30-611.08169.1167.2*15
    169.1168.210
    N-亚硝基二苄基胺NDBzA5336-53-813.86181.1103.1*18
    226181.12
    注:*:定量离子。
    下载: 导出CSV 
    | 显示表格

    使用乙腈将亚硝胺混合标准溶液稀释成不同浓度的标准曲线工作液,并加入等量内标混合溶液,内标浓度为5 ng/mL,12种亚硝胺的质量浓度范围均为1~100 ng/mL,混匀后装瓶进样,由气相色谱分离,质谱检测,以浓度为横坐标,以峰面积与内标峰面积的比值为纵坐标进行线性拟合,得标准曲线。

    完成方法学验证后,应用该方法对购自当地超市的3类牛乳样品进行测试,每份样品重复3次。

    所有实验设置3组平行,前处理优化结果表示为平均值±标准差(mean±SD),回收率结果表示为平均值,并计算其相对标准偏差(RSD)。数据通过Excel进行计算并绘制图表。

    参考前人研究,本实验选择HP-INNOWAX毛细管色谱柱作为分析柱,并对升温程序进一步优化,在保证较好分离度的前提下,使色谱分离时间控制在15 min内,相比于国标《GB 5009.26-2016 食品中N-亚硝胺类化合物的测定》,分析时间缩短一半。同时对质谱参数进行了优化,将MRM模式下的碰撞能量做了调整,确定了质谱条件。优化后的亚硝胺混合标准品的提取离子流图(EIC)如图1所示。

    图  1  标准品的EIC图
    注:1:NDMA-d6,2:NDMA,3:NMEA,4:NDEA,5:NDPA-d14,6:NDPA,7:NDBA-d18,8:NDBA,9:NMPhA,10:NEPhA,11:NPIP,12:NPYR,13:NMOR,14:NDPhA,15:NDBzA。
    Figure  1.  Extracted ion chromatogram of the standard

    分别采用PTFE,PES以及PA滤膜对牛奶加标样品进行前处理,以化合物回收率进行评价其前处理效果。结果如图2所示,相较其它2种滤膜,PA膜对于12种化合物均有较好的回收率,均在80%~120%之间。而使用PTFE膜进行破乳,NPYR回收率偏高,大于120%;PES则有6个化合物回收率偏高,不符合国标《GB/T 27404-2008 实验室质量控制规范 食品理化检测》中的要求(当被测组分含量<0.1 mg/kg时,回收率应控制在60%~120%之间),因此本研究选取PA膜进行前处理破乳。

    图  2  不同滤膜对方法准确性的影响
    Figure  2.  Effect of different filters on method accuracy

    亚硝胺属强极性化合物,且牛奶中含有较多的蛋白质、乳脂肪以及碳水化合物等,选择合适的提取剂能有效提升亚硝胺化合物的提取效率,而且盐析效应有助于萃取效率的提升[29]。本实验考察了乙腈,丙酮以及乙腈/丙酮(80/20)提取剂对加标样品中亚硝胺的提取效果。从图3可以看出,使用丙酮进行提取,有8种亚硝胺化合物有较好的提取效果,但NMPhA和NEPhA提取效率不佳,回收率均低于50%,NYPR和NDPhA回收率高于150%;使用乙腈/丙酮(80/20)进行提取,NEPhA提取效率仍旧不佳,且NPYR回收率偏高。而使用乙腈进行提取,12种亚硝胺回收率均能保持在80%~120%之间,效果良好。因此本研究选择乙腈作为最佳提取剂。

    图  3  提取剂对方法准确性的影响
    Figure  3.  Effect of extractants on method accuracy

    考察了不同提取次数对于提取效率的影响,分别对牛奶加标样品使用最佳提取剂提取1、2、3次,以回收率比较不同提取次数下的提取效果,结果如图4所示。可以看出,提取1次的情况下,NDPA、NMPhA,NEPhA和NPIP提取效率不佳,回收率较差(低于70%);而提取2次和3次,各化合物均有较好的提取效果,回收率较好,并无明显差异,故本研究选择提取次数为2次作为最佳的提取次数。

    图  4  提取次数对方法准确性的影响
    Figure  4.  Effect of extraction times on method accuracy

    为了验证牛奶基质对目标分析物的信号是否存在抑制或者增强作用,本研究通过比较溶剂标准品响应值和同浓度基质标准品响应值的比值来评估亚硝胺类化合物在牛奶中的基质效应(Matrix effects,ME),根据公式:ME(%)=(AM/AS−1)×100计算[30],其中,AM是样品溶液中亚硝胺的响应值,AS是标准溶液中亚硝胺的响应值。ME(%)的绝对值在0~20%之间,表明基质效应较弱,可以忽略;ME(%)大于20%,表明基质效应明显,影响样品分析准确性。结果如表2显示,牛奶基质中12种亚硝胺类化合物的ME(%)的绝对值均大于20%,表明目标化合物在牛奶中展现出较强的基质效应,使用内标法校准后,各化合物的基质效应均得到有效消除。因此,本研究采用内标法进行校正,减少了基质效应对亚硝胺类化合物的准确定量影响。

    表  2  亚硝胺在牛奶基质中的基质效应评价(n=3)
    Table  2.  Evaluation of matrix effect of nitrosamines in milk (n=3)
    组分 基质效应(%)
    内标校准前 内标校准后
    NDMA 20.74 2.30
    NMEA 23.64 5.89
    NDEA 25.99 8.77
    NDPA 24.75 10.81
    NDBA 22.39 5.63
    NMPhA 23.54 6.28
    NEPhA 22.72 5.55
    NPIP 20.27 3.29
    NPYR 29.11 10.99
    NMOR 21.80 4.74
    NDPhA 29.86 11.67
    NBDzA 22.00 4.87
    下载: 导出CSV 
    | 显示表格

    各化合物的线性以及灵敏度如表3所示,其中NPYR的线性范围为2~100 ng/mL,其余亚硝胺的线性范围均为1~100 ng/mL;12种亚硝胺的决定系数R2均大于0.995,说明其在试验设定的浓度范围内线性良好。通过对混合标准品的逐步稀释进样,以信噪比S/N=10为定量限(LOQ),其中NPYR的定量限为4 µg/kg,其余化合物的定量限均为2 µg/kg,表明该方法的灵敏度较好,与同为气相色谱-串联质谱法测定亚硝胺的国标GB/T 29669-2013相比,灵敏度更优。

    表  3  方法线性及灵敏度评价
    Table  3.  Evaluation of method linearity and sensitivity
    组分 线性范围(ng/mL) 线性方程 决定系数R2 LOD(µg/kg) LOQ(µg/kg) 内标种类
    NDMA 1~100 y=0.1331x+0.0070 0.9969 0.67 2.00 NDMA-d6
    NMEA 1~100 y=0.1048x+0.0169 0.9990 0.67 2.00 NDMA-d6
    NDEA 1~100 y=0.0607x+0.0317 0.9991 0.67 2.00 NDMA-d6
    NDPA 1~100 y=0.1444x+0.0671 0.9961 0.67 2.00 NDPA-d14
    NDBA 1~100 y=0.1831x+0.0632 0.9956 0.67 2.00 NDBA-d18
    NMPhA 1~100 y=1.9411x+0.7860 0.9994 0.67 2.00 NDBA-d18
    NEPhA 1~100 y=0.8004x+0.5909 0.9951 0.67 2.00 NDBA-d18
    NPIP 1~100 y=0.2263x+0.0264 0.9952 0.67 2.00 NDBA-d18
    NPYR 2~100 y=0.2343x+0.1539 0.9982 1.33 4.00 NDBA-d18
    NMOR 1~100 y=0.3380x−0.0051 0.9955 0.67 2.00 NDBA-d18
    NDPhA 1~100 y=1.2044x+0.3248 0.9993 0.67 2.00 NDBA-d18
    NBDzA 1~100 y=0.1549x−0.0100 0.9963 0.67 2.00 NDBA-d18
    下载: 导出CSV 
    | 显示表格

    取牛奶样品,平行6份,将已知量的亚硝胺混合标准溶液加入牛奶样品中,加标量为高、中、低3个水平,经过同样的前处理步骤完成3 d、3个浓度水平、6个样品平行加标试验。计算测定值的RSD,得到日内精密度和日间精密度,并计算回收率,来评估方法的准确性。结果显示,各亚硝胺化合物的日内精密度范围在1.76%~7.62%之间,日间精密度范围在2.75%~7.71%之间(表4),且回收率为90.90%~114.30%,RSD为2.54%~9.93%(表5),说明该方法具有良好的准确度与精密度,满足12种亚硝胺的准确定量需求。

    表  4  日内及日间精密度结果
    Table  4.  Results of intra-day and inter-day precision
    组分日内精密度(%)日间精密度(%)
    NDMA4.926.41
    NMEA4.516.19
    NDEA4.995.51
    NDPA7.627.71
    NDBA5.437.43
    NMPhA3.144.67
    NEPhA1.762.75
    NPIP4.336.81
    NPYR6.126.77
    NMOR6.106.13
    NDPhA2.974.39
    NBDzA5.075.96
    下载: 导出CSV 
    | 显示表格
    表  5  三水平加标回收试验结果
    Table  5.  Results of three-level spiked recovery test
    组分加标质量浓度(μg/kg)回收率(%)RSD(%)
    NDMA2097.908.89
    40100.046.41
    10096.464.24
    NMEA20102.087.67
    4097.516.19
    10096.705.67
    NDEA20111.585.19
    40110.445.51
    10095.925.08
    NDPA2096.539.93
    4090.907.71
    10093.956.35
    NDBA20109.238.93
    40102.867.43
    10096.046.31
    NMPhA20108.686.80
    40110.044.67
    10097.944.55
    NEPhA20107.708.53
    40114.302.75
    100101.322.54
    NPIP2093.439.90
    4099.506.81
    100100.436.34
    NPYR2098.079.83
    40104.696.77
    10098.756.10
    NMOR2098.449.88
    40109.686.13
    100103.975.86
    NDPhA20101.338.49
    40113.014.39
    100102.244.92
    NBDzA20101.519.41
    40102.335.96
    100101.144.85
    下载: 导出CSV 
    | 显示表格

    选择3类具有代表性的市售牛奶,分别为巴氏杀菌乳、调制乳以及超高温杀菌乳,每类各选择两个不同品牌进行定量检测。结果显示,3类牛奶共6份牛奶样品中均有NDPhA检出,含量范围在4.29~6.67 μg/kg,其余亚硝胺未检出。样品图谱如图5所示。

    图  5  牛奶样品色谱图
    注:a. 巴氏杀菌乳样品1;b. 巴氏杀菌乳样品2;c. 调制乳样品1;d. 调制乳样品2;e. 超高温杀菌乳样品1;f. 超高温杀菌乳样品2;14:NDPhA。
    Figure  5.  Chromatograms of milk samples

    本研究基于乳化-破乳法,利用气相色谱-串联质谱平台建立了牛奶中12种亚硝胺的定量检测方法。该方法前处理步骤简单,能够在15 min内完成12种目标亚硝胺的分离与定量,各化合物的线性与稳定性良好,决定系数R2均大于0.995,日内精密度在1.76%~7.62%之间,日间精密度在2.75%~7.71%之间,且回收率为90.90%~114.30%,NPYR的定量限为4.00 µg/kg,其余化合物的定量限均为2.00 µg/kg。方法的精密度与准确度良好,大大缩短了分析时间,可满足牛奶中12种亚硝胺的准确定量。

  • 图  1   标准品的EIC图

    注:1:NDMA-d6,2:NDMA,3:NMEA,4:NDEA,5:NDPA-d14,6:NDPA,7:NDBA-d18,8:NDBA,9:NMPhA,10:NEPhA,11:NPIP,12:NPYR,13:NMOR,14:NDPhA,15:NDBzA。

    Figure  1.   Extracted ion chromatogram of the standard

    图  2   不同滤膜对方法准确性的影响

    Figure  2.   Effect of different filters on method accuracy

    图  3   提取剂对方法准确性的影响

    Figure  3.   Effect of extractants on method accuracy

    图  4   提取次数对方法准确性的影响

    Figure  4.   Effect of extraction times on method accuracy

    图  5   牛奶样品色谱图

    注:a. 巴氏杀菌乳样品1;b. 巴氏杀菌乳样品2;c. 调制乳样品1;d. 调制乳样品2;e. 超高温杀菌乳样品1;f. 超高温杀菌乳样品2;14:NDPhA。

    Figure  5.   Chromatograms of milk samples

    表  1   多反应监测模式(MRM)参数

    Table  1   Parameters of multiple reaction monitoring mode (MRM)

    化合物英文缩写CAS号保留时间(min)母离子(m/z)子离子(m/z)碰撞能量(eV)
    N-亚硝基二甲基胺-d6NDMA-d617829-05-94.148046.120
    8050.1*5
    N-亚硝基二甲基胺NDMA62-75-94.157444*4
    7442.117
    N-亚硝基甲基乙基胺NMEA10595-95-64.4488.171.1*3
    88.1737
    N-亚硝基二乙胺NDEA55-18-54.63102.185.1*3
    102.144.111
    N- 亚硝基二丙胺-d14NDPA-d1493951-96-35.44144.1126.1*3
    144.150.111
    N-亚硝基二丙胺NDPA621-64-75.49130.1113.2*3
    130.171.115
    N-亚硝基二丁基胺-d18NDBA-d181219798-82-96.51128.2110.1*10
    176.28110.110
    N-亚硝基二丁基胺NDBA924-16-36.58116.199.1*2
    158.199.17
    158.21415
    N-甲基-N-亚硝基苯胺NMPhA614-00-66.6310677*14
    10651.125
    N-亚硝基-N-乙基苯胺NEPhA612-64-66.63121.1106.1*13
    121.177.126
    N-亚硝基哌啶NPIP100-75-46.8114.184.1*5
    114.197.15
    N-亚硝基吡咯烷NPYR930-55-26.9810055*10
    1006811
    N-亚硝基吗啉NMOR59-89-27.2711686.1*2
    11656.19
    N-亚硝基二苯基胺NDPhA86-30-611.08169.1167.2*15
    169.1168.210
    N-亚硝基二苄基胺NDBzA5336-53-813.86181.1103.1*18
    226181.12
    注:*:定量离子。
    下载: 导出CSV

    表  2   亚硝胺在牛奶基质中的基质效应评价(n=3)

    Table  2   Evaluation of matrix effect of nitrosamines in milk (n=3)

    组分 基质效应(%)
    内标校准前 内标校准后
    NDMA 20.74 2.30
    NMEA 23.64 5.89
    NDEA 25.99 8.77
    NDPA 24.75 10.81
    NDBA 22.39 5.63
    NMPhA 23.54 6.28
    NEPhA 22.72 5.55
    NPIP 20.27 3.29
    NPYR 29.11 10.99
    NMOR 21.80 4.74
    NDPhA 29.86 11.67
    NBDzA 22.00 4.87
    下载: 导出CSV

    表  3   方法线性及灵敏度评价

    Table  3   Evaluation of method linearity and sensitivity

    组分 线性范围(ng/mL) 线性方程 决定系数R2 LOD(µg/kg) LOQ(µg/kg) 内标种类
    NDMA 1~100 y=0.1331x+0.0070 0.9969 0.67 2.00 NDMA-d6
    NMEA 1~100 y=0.1048x+0.0169 0.9990 0.67 2.00 NDMA-d6
    NDEA 1~100 y=0.0607x+0.0317 0.9991 0.67 2.00 NDMA-d6
    NDPA 1~100 y=0.1444x+0.0671 0.9961 0.67 2.00 NDPA-d14
    NDBA 1~100 y=0.1831x+0.0632 0.9956 0.67 2.00 NDBA-d18
    NMPhA 1~100 y=1.9411x+0.7860 0.9994 0.67 2.00 NDBA-d18
    NEPhA 1~100 y=0.8004x+0.5909 0.9951 0.67 2.00 NDBA-d18
    NPIP 1~100 y=0.2263x+0.0264 0.9952 0.67 2.00 NDBA-d18
    NPYR 2~100 y=0.2343x+0.1539 0.9982 1.33 4.00 NDBA-d18
    NMOR 1~100 y=0.3380x−0.0051 0.9955 0.67 2.00 NDBA-d18
    NDPhA 1~100 y=1.2044x+0.3248 0.9993 0.67 2.00 NDBA-d18
    NBDzA 1~100 y=0.1549x−0.0100 0.9963 0.67 2.00 NDBA-d18
    下载: 导出CSV

    表  4   日内及日间精密度结果

    Table  4   Results of intra-day and inter-day precision

    组分日内精密度(%)日间精密度(%)
    NDMA4.926.41
    NMEA4.516.19
    NDEA4.995.51
    NDPA7.627.71
    NDBA5.437.43
    NMPhA3.144.67
    NEPhA1.762.75
    NPIP4.336.81
    NPYR6.126.77
    NMOR6.106.13
    NDPhA2.974.39
    NBDzA5.075.96
    下载: 导出CSV

    表  5   三水平加标回收试验结果

    Table  5   Results of three-level spiked recovery test

    组分加标质量浓度(μg/kg)回收率(%)RSD(%)
    NDMA2097.908.89
    40100.046.41
    10096.464.24
    NMEA20102.087.67
    4097.516.19
    10096.705.67
    NDEA20111.585.19
    40110.445.51
    10095.925.08
    NDPA2096.539.93
    4090.907.71
    10093.956.35
    NDBA20109.238.93
    40102.867.43
    10096.046.31
    NMPhA20108.686.80
    40110.044.67
    10097.944.55
    NEPhA20107.708.53
    40114.302.75
    100101.322.54
    NPIP2093.439.90
    4099.506.81
    100100.436.34
    NPYR2098.079.83
    40104.696.77
    10098.756.10
    NMOR2098.449.88
    40109.686.13
    100103.975.86
    NDPhA20101.338.49
    40113.014.39
    100102.244.92
    NBDzA20101.519.41
    40102.335.96
    100101.144.85
    下载: 导出CSV
  • [1] 张潇. 腌熏肉制品中N-亚硝胺类化合物分析方法研究[D]. 上海:东华大学, 2021. [ZHANG Xiao. Study on analytical methods of N-nitrosamine compounds in cured and smoked meat products[D]. Shanghai:Donghua University, 2021.

    ZHANG Xiao. Study on analytical methods of N-nitrosamine compounds in cured and smoked meat products[D]. Shanghai: Donghua University, 2021.

    [2] 孔祥一. 水产制品中N-亚硝胺类化合物的检测技术研究[D]. 厦门:集美大学, 2021. [KONG Xiangyi. Determination of N-nitrosamines in aquatic products[D]. Xiamen:Jimei University, 2021.

    KONG Xiangyi. Determination of N-nitrosamines in aquatic products[D]. Xiamen: Jimei University, 2021.

    [3] 王双玉, 孙枫林, 吕晓静, 等. 食品中N-亚硝胺类化合物检测、风险评估与控制的研究进展[J]. 预防医学论坛,2022,28(11):876−880. [WANG Shuangyu, SUN Fenglin, LÜ Xiaojing, et al. Advances on detection, risk assessment and control of N-nitrosamines in food[J]. Preventive Medicine Tribune,2022,28(11):876−880.

    WANG Shuangyu, SUN Fenglin, LÜ Xiaojing, et al. Advances on detection, risk assessment and control of N-nitrosamines in food[J]. Preventive Medicine Tribune, 2022, 2811): 876880.

    [4]

    SÁNCHEZ D I, GONZÁLEZ-FERNÁNDEZ B, SAN-MIGUEL B, et al. Melatonin prevents deregulation of the sphingosine kinase/sphingosine 1-phosphate signaling pathway in a mouse model of diethylnitrosamine-induced hepatocellular carcinoma[J]. Journal of Pineal Research,2016,62(1):e12369.

    [5]

    YANG H, JIA X D, CHEN X X, et al. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats:The possible role of nuclear factor kappaB signaling pathway[J]. International Journal of Cancer,2012,131(7):1517−1527. doi: 10.1002/ijc.27423

    [6] 常伟, 张稳稳, 李培培, 等. 二乙基亚硝胺联合四氯化碳诱导原发性肝癌小鼠模型的方法[J]. 中国新药杂志,2017,26(10):1169−1173. [CHANG Wei, ZHANG Wenwen, LI Peipei, et al. Diethylnitrosamine combined with carbon tetrachloride to induce primary hepatic carcinoma model in mice[J]. Chinese Journal of New Drugs,2017,26(10):1169−1173.

    CHANG Wei, ZHANG Wenwen, LI Peipei, et al. Diethylnitrosamine combined with carbon tetrachloride to induce primary hepatic carcinoma model in mice[J]. Chinese Journal of New Drugs, 2017, 2610): 11691173.

    [7] 徐淼, 张倩男, 杨辉, 等. 亚硝胺及前体化合物的致癌效应及其食用安全性研究进展[J]. 癌变. 畸变. 突变, 2018, 30(1):76−79. [XU Miao, ZHANG Qiannan, YANG Hui, et al. Research progress on the carcinogenic effect of nitrosamines and their precursor compounds and their food safety[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(1):76−79.

    XU Miao, ZHANG Qiannan, YANG Hui, et al. Research progress on the carcinogenic effect of nitrosamines and their precursor compounds and their food safety[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(1): 76−79.

    [8] 周文斌, 郑越, 尚佳, 等. 二乙基亚硝胺诱导肝细胞癌模型鼠肠道微生态研究[J]. 浙江大学学报:医学版,2022,51(4):438−453. [ZHOU Wenbin, ZHENG Yue, SHANG Jia, et al. Intestinal microecology in mice bearing diethylnitrosamine-induced primary hepatocellular carcinoma[J]. Journal of Zhejiang University (Medical Sciences),2022,51(4):438−453. doi: 10.3724/zdxbyxb-2022-0283

    ZHOU Wenbin, ZHENG Yue, SHANG Jia, et al. Intestinal microecology in mice bearing diethylnitrosamine-induced primary hepatocellular carcinoma[J]. Journal of Zhejiang University (Medical Sciences), 2022, 514): 438453. doi: 10.3724/zdxbyxb-2022-0283

    [9] 杨宁. 腌制食品中9种N-亚硝胺同步检测的分析方法研究[D]. 武汉:武汉轻工大学, 2013. [YANG Ning. Investigation on analytical methods for the spontaneous detection of nine N-nitrosamines in pickled food[D]. Wuhan:Wuhan Polytechnic University, 2013.

    YANG Ning. Investigation on analytical methods for the spontaneous detection of nine N-nitrosamines in pickled food[D]. Wuhan: Wuhan Polytechnic University, 2013.

    [10] 熊凤娇, 马俪珍, 王洋, 等. 鱼糜制品营养、理化指标与挥发性N-亚硝胺含量的相关性分析[J]. 肉类研究,2017,31(5):10−15. [XIONG Fengjiao, MA Lizhen, WANG Yang, et al. Correlation analysis between nutritional, physical and chemical indicators of surimi products and volatile N-nitrosamine content[J]. Meat Research,2017,31(5):10−15.

    XIONG Fengjiao, MA Lizhen, WANG Yang, et al. Correlation analysis between nutritional, physical and chemical indicators of surimi products and volatile N-nitrosamine content[J]. Meat Research, 2017, 315): 1015.

    [11]

    PATRI S B, ADARAKATTI P S, MALINGAPPA P. Silver nanoparticles-chitosan composite embedded graphite screen-printed electrodes as a novel electrochemical platform in the measurement of trace level nitrite:Application to milk powder samples[J]. Current Analytical Chemistry,2019,15(1):56−65.

    [12]

    WANG S, LI X Q, LI M, et al. Emulsification/demulsification method coupled to GC-MS/MS for analysis of multiclass pesticide residues in edible oils[J]. Food Chemistry,2022,379:132098. doi: 10.1016/j.foodchem.2022.132098

    [13]

    CHIHA M, HAMDAOUI O, AHMEDCHEKKAT F, et al. Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process[J]. Ultrasonics Sonochemistry,2010,17(2):318−325. doi: 10.1016/j.ultsonch.2009.09.001

    [14]

    DÂAS A, HAMDAOUI O. Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane[J]. Environmental Science and Pollution Research,2014,21(3):2154−2164. doi: 10.1007/s11356-013-2140-9

    [15]

    KUSUMASTUTI A, ANIS S, SYAMWIL R, et al. Emulsion liquid membrane for textile dyes removal:Extraction process[J]. Journal of Physical Science,2018,29: 175−184.

    [16]

    ZERESHKI S, DARAEI P, SHOKRI A. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane[J]. Journal of Hazardous Materials,2018,356:1−8.

    [17] 周娜. QuEChERS EMR-Lipid技术结合气相色谱-热能分析仪法测定动物源性食品中7种亚硝胺类化合物[J]. 福建分析测试,2022,31(5):11−16. [ZHOU Na. Determination of seven N-nitrosamines in animal derived foods by QuEChERS combined with gas chromatography-thermal energy analyzer[J]. Fujian Analysis & Testing,2022,31(5):11−16.

    ZHOU Na. Determination of seven N-nitrosamines in animal derived foods by QuEChERS combined with gas chromatography-thermal energy analyzer[J]. Fujian Analysis & Testing, 2022, 315): 1116.

    [18] 咸瑞卿, 巩丽萍, 邢晟, 等. 气相色谱-热能分析仪法测定缬沙坦及其制剂中的N-二甲基亚硝胺[J]. 药物分析杂志,2019,39(8):1501−1505. [XIAN Ruiqing, GONG Liping, XING Sheng, et al. Determination of N-dimethylnitrosamine in valsartan and its preparations by GC-TEA[J]. Chinese Journal of Pharmaceutical Analysis,2019,39(8):1501−1505.

    XIAN Ruiqing, GONG Liping, XING Sheng, et al. Determination of N-dimethylnitrosamine in valsartan and its preparations by GC-TEA[J]. Chinese Journal of Pharmaceutical Analysis, 2019, 398): 15011505.

    [19] 田冲, 葛怡聪, 陈俏, 等. 气相色谱法测定啤酒中N-亚硝胺类化合物[J]. 食品科技,2021,46(10):294−297. [TIAN Chong, GE Yicong, CHEN Qiao, et al. Determination of N-nitrosamine compounds in beer by gas chromatography[J]. Food Science and Technology,2021,46(10):294−297.

    TIAN Chong, GE Yicong, CHEN Qiao, et al. Determination of N-nitrosamine compounds in beer by gas chromatography[J]. Food Science and Technology, 2021, 4610): 294297.

    [20] 范婷婷, 张晓栋. 缬沙坦中N-二甲基亚硝胺的高效液相色谱法检查方法[J]. 医学食疗与健康,2019(15):16−19. [FAN Tingting, ZHANG Xiaodong. High performance liquid chromatography method for the detection of N-dimethylnitrosamine in valsartan[J]. Medical Diet and Health,2019(15):16−19.

    FAN Tingting, ZHANG Xiaodong. High performance liquid chromatography method for the detection of N-dimethylnitrosamine in valsartan[J]. Medical Diet and Health, 201915): 1619.

    [21] 洪凰, 朱洪亮, 葛芳芳. 柱前衍生高效液相色谱法检测肉制品中亚硝胺化合物[J]. 现代农业科技,2016(16):243−247. [HONG Huang, ZHU Hongliang, GE Fangfang. Detection of nitrosamine compounds in meat products by pre-column derivatization coupled with high performance liquid chromatography[J]. Modern Agricultural Science and Technology,2016(16):243−247.

    HONG Huang, ZHU Hongliang, GE Fangfang. Detection of nitrosamine compounds in meat products by pre-column derivatization coupled with high performance liquid chromatography[J]. Modern Agricultural Science and Technology, 201616): 243247.

    [22] 管悦, 泮燕媚. QuEChERS结合GC-MS/MS测定酱腌菜中11种N-亚硝胺类化合物[J]. 中国食品卫生杂志,2022,34(6):1226−1232. [GUAN Yue, PAN Yanmei. Determination of 11 N-nitrosamines in Chinese pickles and salted vegetables by QuEChERS combined with GC-MS/MS[J]. Chinese Journal of Food Hygiene,2022,34(6):1226−1232.

    GUAN Yue, PAN Yanmei. Determination of 11 N-nitrosamines in Chinese pickles and salted vegetables by QuEChERS combined with GC-MS/MS[J]. Chinese Journal of Food Hygiene, 2022, 346): 12261232.

    [23] 李登昆, 张云, 赵士权, 等. 固相萃取-气相色谱-串联质谱法测定牛奶中9种N-亚硝胺的含量[J]. 理化检验(化学分册),2021,57(6):487−492. [LI Dengkun, ZHANG Yun, ZHAO Shiquan, et al. Determination of 9 N-Nitrosamines in milk by gas chromatography tandem mass spectrometry with solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2021,57(6):487−492.

    LI Dengkun, ZHANG Yun, ZHAO Shiquan, et al. Determination of 9 N-Nitrosamines in milk by gas chromatography tandem mass spectrometry with solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 576): 487492.

    [24] 文松松, 牛冲, 刘琦, 等. 盐酸二甲双胍制剂中N-亚硝胺基因毒性杂质的GC-MS/MS测定及N-亚硝基二甲胺的产生机制解析[J]. 药物分析杂志,2022,42(8):1424−1432. [WEN Songsong, NIU Chong, LIU Qi, et al. Determination of N-nitrosamine genotoxic impurities in metformin preparations by GC-MS/MS and investigation on generation mechanism of N-nitrosodimethylamine[J]. Chinese Journal of Pharmaceutical Analysis,2022,42(8):1424−1432. doi: 10.16155/j.0254-1793.2022.08.16

    WEN Songsong, NIU Chong, LIU Qi, et al. Determination of N-nitrosamine genotoxic impurities in metformin preparations by GC-MS/MS and investigation on generation mechanism of N-nitrosodimethylamine[J]. Chinese Journal of Pharmaceutical Analysis, 2022, 428): 14241432. doi: 10.16155/j.0254-1793.2022.08.16

    [25] 李登昆, 陈春静, 刘祥萍, 等. 串联固相萃取-气相色谱串联质谱法同时测定生活饮用水中10种N-亚硝胺[J]. 环境与职业医学,2022,39(8):924−930. [LI Dengkun, CHEN Chunjing, LIU Xiangping, et al. Simultaneous determination of 10 N-nitrosamines in drinking water by tandem solid phase extraction-gas chromatography tandem mass spectrometry[J]. Journal of Environmental and Occupational Medicine,2022,39(8):924−930. doi: 10.11836/JEOM21505

    LI Dengkun, CHEN Chunjing, LIU Xiangping, et al. Simultaneous determination of 10 N-nitrosamines in drinking water by tandem solid phase extraction-gas chromatography tandem mass spectrometry[J]. Journal of Environmental and Occupational Medicine, 2022, 398): 924930. doi: 10.11836/JEOM21505

    [26] 刘方征, 任雨鑫, 张丽萍, 等. 饱和盐辅助-分散液液微萃取-气相色谱-串联质谱法快速筛查啤酒中氨基甲酸乙酯与9种挥发性亚硝胺[J]. 食品安全质量检测学报,2022,13(12):3945−3952. [LIU Fangzheng, REN Yuxin, ZHANG Liping, et al. Rapid determination of ethyl carbamate and 9 kinds of volatile nitrosamines in beer by gas chromatography-tandem mass spectrometry with saturated salt-assisted-dispersible liquid-liquid microextraction[J]. Journal of Food Safety & Quality,2022,13(12):3945−3952. doi: 10.3969/j.issn.2095-0381.2022.12.spaqzljcjs202212027

    LIU Fangzheng, REN Yuxin, ZHANG Liping, et al. Rapid determination of ethyl carbamate and 9 kinds of volatile nitrosamines in beer by gas chromatography-tandem mass spectrometry with saturated salt-assisted-dispersible liquid-liquid microextraction[J]. Journal of Food Safety & Quality, 2022, 1312): 39453952. doi: 10.3969/j.issn.2095-0381.2022.12.spaqzljcjs202212027

    [27] 徐艳梅, 韩彬, 郝丽娟, 等. 高效液相色谱-串联质谱法同时检测厄贝沙坦原料药及其片剂中3种N-亚硝胺类基因毒性杂质[J]. 药物分析杂志,2021,41(4):720−725. [XU Yanmei, HAN Bin, HAO Lijuan, et al. Simultaneous detection of 3 N-nitrosamine genotoxic impurities in irbesartan[J]. Chinese Journal of Pharmaceutical Analysis,2021,41(4):720−725. doi: 10.16155/j.0254-1793.2021.04.21

    XU Yanmei, HAN Bin, HAO Lijuan, et al. Simultaneous detection of 3 N-nitrosamine genotoxic impurities in irbesartan[J]. Chinese Journal of Pharmaceutical Analysis, 2021, 414): 720725. doi: 10.16155/j.0254-1793.2021.04.21

    [28] 孙铭, 古其会, 张菊梅, 等. 超高效液相色谱-三重四极杆质谱联用检测饮用水中N-亚硝胺类消毒副产物[J]. 食品科学,2022,43(2):310−315. [SUN Ming, GU Qihui, ZHANG Jumei, et al. Detection of N-nitrosamine disinfection by-products in drinking water by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry[J]. Food Science,2022,43(2):310−315. doi: 10.7506/spkx1002-6630-20210425-351

    SUN Ming, GU Qihui, ZHANG Jumei, et al. Detection of N-nitrosamine disinfection by-products in drinking water by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry[J]. Food Science, 2022, 432): 310315. doi: 10.7506/spkx1002-6630-20210425-351

    [29]

    DONG H, GUO X D, XIAN Y P, et al. A salting out-acetonitrile homogeneous extraction coupled with gas chromatography-mass spectrometry method for the simultaneous determination of thirteen N-nitrosamines in skin care cosmetics[J]. Journal of Chromatography A,2015,1422:82−88. doi: 10.1016/j.chroma.2015.10.044

    [30] 叶学敏. 新型QuEChERS方法在果蔬农残分析中的应用研究的应用研究[D]. 杭州:浙江工业大学, 2020. [YE Xuemin. Applications of novel QuEChERS protocols for analysis of pesticide residues in fruits and vegetables[D] Hangzhou:Zhejiang University of Technology, 2020.

    YE Xuemin. Applications of novel QuEChERS protocols for analysis of pesticide residues in fruits and vegetables[D] Hangzhou: Zhejiang University of Technology, 2020.

  • 期刊类型引用(2)

    1. 贺璐,魏寒桥,杨吴华,王颖,林丽. 食品中N-亚硝胺类化合物的检测及控制研究进展. 食品工业. 2025(02): 255-261 . 百度学术
    2. 宁尚儒,杜留娟. 化学破乳法处理煤化工废水油类效果研究. 中国新技术新产品. 2024(12): 120-122 . 百度学术

    其他类型引用(0)

图(5)  /  表(5)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-06
  • 网络出版日期:  2023-10-03
  • 刊出日期:  2023-11-24

目录

/

返回文章
返回
x 关闭 永久关闭