Simultaneous Detection of 38 Fungicides Residues in Eggs by Multi-Plug Filtration Cleanup with Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry
-
摘要: 采用快速滤过型净化法(m-PFC)结合超高效液相色谱-串联质谱(UPLC-MS/MS),建立了鸡蛋中38种杀菌剂类农药残留同时检测的分析方法。样品加水混匀后经过乙酸乙腈提取,QuEChERS盐包分层,取上层提取液经m-PFC柱净化,液相色谱-质谱联用测定,采用多反应监测模式( MRM) 进行分析,基质外标法定量。结果表明:该方法的检出限(LOD)为0.01~0.2 μg/kg,定量限(LOQ)为0.02~0.7 μg/kg,其定量限满足国家标准GB 2763-2021中规定的最大残留限量要求,38种杀菌剂类农药在0.001~0.50 μg/mL浓度范围线性关系良好,决定系数(R2)均高于0.9912 。在10、50、200 µg/kg三种浓度水平下添加回收率在 72.7%~113.5%之间,相对标准偏差为0.40%~10%(n=6)。该方法快速、准确,为监测鸡蛋中农药残留提供了检测方法,也为鸡蛋中农药最大残留限量的制定提供了参考。
-
关键词:
- 鸡蛋 /
- 快速滤过型净化 /
- 超高效液相色谱-串联质谱 /
- 杀菌剂类农药
Abstract: This research demonstrated a method for simultaneous determination of 38 fungicides residues in eggs based on multi-plug filtration cleanup (m-PFC) method combined with ultra-performance liquid chromatoid-tandem mass spectrometry (UPLC-MS/MS). After mixing with water, samples were extracted with acetonitrile (acetic acid). QuEChERS salt packs were used to separate the organic and aqueous phases of the sample. The upper fraction was purified on an m-PFC column before analysis by LC-MS/MS, the samples were then analyzed using multi-reaction monitoring (MRM) method and quantified using the matrix-matched external standard method. The results showed a limit of detection (LOD) of 0.01~0.2 µg/kg and the limit of quantification (LOQ) of 0.02~0.7 µg/kg, meeting the maximum residue limit requirements specified in the national standard GB 2763-2021. The correlation coefficient (R2) of 38 fungicides was higher than 0.9912 in the concentration range of 0.001~0.50 μg/mL. The recoveries at three concentration levels (10, 50 and 200 µg/kg) were in the range of 72.7%~113.5%, with the relative standard deviation (RSD, n=6) of 0.40%~10%. Thus, the method is proved to be rapid and accurate for monitoring pesticide residues in eggs, which also provides a reference for the formulation of maximum residue limits of pesticides in eggs. -
鸡蛋的生产和消费体量在我国都比较大,是餐桌上的常见食物。近年来,为了防治蛋鸡疾病,提高鸡蛋产量,一些养殖者在养殖过程中使用药物,使食用鸡蛋存在安全隐患。2017年8月欧洲爆出鸡蛋中氟虫腈污染的食品安全事件[1],引发大家开始关注鸡蛋的药物残留问题,如抗生素[2]、抗病毒药[3]、杀虫剂[4]等。养殖者们会使用一些杀虫剂、杀菌剂,对养殖环境进行消毒、杀虫、防蝇,蛋鸡通过食用受到农药污染的养殖水或饲料等,农药有可能在体内富集,产出受到农药污染的畜禽产品或直接造成畜禽产品的农药污染[5-6]。长期食用农药残留超标的畜禽产品,可引起慢性中毒,甚至致畸、致癌和致突变[7-8]。目前《GB 2763-2021 食品中农药最大残留限量》标准中规定了鸡蛋中杀菌剂类农药残留限量有32项[9],而针对鸡蛋中多杀菌剂类农药残留的检验方法还没有。因此,建立鸡蛋中多农药残留简单、准确、快速的检测方法具有十分重要的意义。
目前,鸡蛋中残留污染物的测定方法主要有气相色谱法[10]、液相色谱法[11]、气相色谱-质谱联用法[12]、液相色谱-质谱联用法[13-14]等,而在这些方法中大多采用是常规QuEChERS方法进行净化,但是,日常监测中发现使用常规QuEChERS方法净化高脂、高蛋白基质会导致部分脂质农药提取效率低、净化过程损失较大,所以本研究考察选取一种快速滤过净化柱(multi-plug filtration cleanup,m-PFC)进行净化。
快速滤过净化柱(multi-plug filtration cleanup,m-PFC)中用多壁碳纳米管(multiwall carbon nanotubes,MWCNTs)代替传统QuEChERs方法中的石墨化碳黑(GCB),并与其他净化填料一起填充制备成固相净化小柱,无需淋洗、活化,直接按压式过滤,节省了振荡、离心等操作步骤,缩短了前处理时间,具有传统QuEChERs方法简便的优点,也增强了净化能力,提高了灵敏度。目前已应用于果蔬[15-19]、枸杞[20]、茶叶[21]、人参[22]等食用农产品样品中的农药残留及鱼肉[23]、血液[24]、干制水产品[25]等动物源性样品中药残分析,但m-PFC快速滤过净化柱应用于鸡蛋基质中农药残留研究较少。
本研究选取国家食品监督抽检监测中常见的38种杀菌剂类药物,以鸡蛋为基质,优化提取和净化方法、质谱仪器参数和流动相体系,研究建立一种快速滤过型净化结合超高效液相色谱-串联质谱法同时测定鸡蛋中38种杀菌剂类农药残留的检测方法,以期满足日常监测需要,适用于鸡蛋中杀菌剂类农药残留的定性定量分析,为鸡蛋风险监测提供有力的技术支撑。
1. 材料与方法
1.1 材料与仪器
鸡蛋本地超市和农贸市场采购(每批采购数量:1 kg);38种农药标准品(纯度≥95.0%) 购自德国 Dr.Ehrenstorfer GmbH公司;乙腈(色谱纯) 德国MERCK公司;甲酸、乙酸(LC-MS级) 美国ACS恩科化学;乙酸铵(色谱纯) Thermo Fisher 公司;氯化钠(分析纯) 上海国药集团化学试剂有限公司;QuEChERS盐包1(含6 g MgSO4和1.5 g C2H9NaO5) 美国Agilent公司;QuEChERS 盐包2(含 4 g MgSO4和1 g NaCl) 美国Agilent公司;m-FPC净化柱 北京科德诺思技术有限公司。
WATERS ACQUITY UPLC液相色谱仪、 Xevo TQ-S质谱仪和MassLynx工作软件 沃特世科技(上海)有限公司;Acquity BEH C18色谱柱 美国Waters公司;XS204万分之一天平 瑞士Mettler Toledo公司;XW-80A旋涡混合器 上海精科实业有限公司;IKA® KS 4000 ic恒温摇床 德国IKA公司;Centrifuge 5804R冷冻离心机 德国eppendorf公司;IKA® T25组织匀浆机 德国IKA公司。
1.2 实验方法
1.2.1 样品制备
取20枚新鲜鸡蛋(约1000 g),去壳,在组织匀浆机中充分搅碎均匀,放入聚乙烯瓶中,将试样按照测试和备用分别存放,于−20~−16 ℃条件下保存。
1.2.2 样品前处理
前处理方法参考GB 23200.115-2018[26]鸡蛋中氟虫腈及其代谢物残留量的测定和丁路阳等[27]所建立的鸡蛋中多农药残留检测方法。称取5.0 g(精确至0.01 g)均质样品于50 mL离心管中,加入5 mL水,涡旋混匀1 min,加入15 mL 1%乙酸-乙腈,涡旋混匀1 min,室温振荡提取20 min,0 ℃冷冻20 min,再加入盐包2,涡旋1 min,以8000 r/min离心5 min。在净化柱前端装上0.22 μm有机微孔滤膜,吸取2 mL上清液于m-FPC净化柱(油脂类)中,收集滤液,混匀,装瓶,待测。
1.2.3 标准溶液的配制
分别准确称取10 mg(精确至0.1 mg)各农药标准品,选择乙腈溶解并定容到10 mL容量瓶中,配制成质量浓度为1.0 mg/mL的标准储备液,于−20~−16 ℃ 条件下保存,备用。
分别吸取100 μL各农药标准储备液,用乙腈稀释定容到100 mL容量瓶中,配制成1.0 μg/mL混合标准溶液,于−20~−16 ℃ 条件下保存,备用。
分别吸取混合标准溶液10、25、50、100、500、1000、2500、5000 μL于10 mL容量瓶中,吸取两组,一组用乙腈定容配制成不同质量浓度的溶剂标准工作溶液,一组用空白样品提取液定容配制成不同质量浓度的基质匹配混合标准工作溶液,用于建立标准曲线,混合标准工作溶液现用现配。
1.2.4 液相色谱条件
采用 Acquity BEH C18(1.7 μm,2.1 mm×100 mm)分离;流动相:0.1%甲酸水溶液(A),乙腈(B);流速0.4 mL/min;柱温35 ℃;进样量2 μL;梯度洗脱程序:0~0.5 min,95% A;0.5~3.5 min,5.0% A;3.5~4.5 min,5.0% A;4.5~4.6 min,95% A;4.6~6.0 min,95% A。
1.2.5 质谱条件
离子源类型:电喷雾离子源;扫描方式:正离子扫描(ESI+);多反应监测(multiple reaction monitoring,MRM)模式;碰撞气:氩气(Ar);毛细管电压:1.00 kV;离子源温度:120 ℃;锥孔气流量:150 L/h;脱溶剂气温度:500 ℃;脱溶剂气流量:800 L/h。其它质谱条件详见表1。
表 1 38种农药质谱参数Table 1. Mass spectrometric parameters of 38 pesticides农药 母离子 子离子 锥孔电压(V) 碰撞能量(eV) 霜霉威Propamocarb 189.2 102.0*,144.0 15 15,10 多菌灵Carbendazim 192.1 132.0,160.0* 10 30,15 嘧霉胺Pyrimethanil 200.1 82.0,107.0* 25 24,24 噻菌灵Thiabendazole 202.0 131.0,175.0* 45 30,25 福美双Thiram 241.2 88.0*,119.9 30 13,25 乙霉威Diethofencarb 268.2 124.1*,152.1 25 30,20 甲霜灵Metalaxyl 280.2 192.1,220.1* 30 20,15 腐霉利Procymidone 284.0 145.0,256.1* 30,42 45,17 腈菌唑Myclobutanil 289.1 125.1*,151.0 25 30,25 三唑酮Triadimefon 294.1 197.0*,225.1 30 14,12 三唑醇Triadimenol 296.1 70.2*,99.1 30 10,15 抑霉唑Imazalil 297.1 159.0*,255.0 25 20,17 环酰菌胺Fenhexamid 302.1 55.3,97.2* 32 38,22 粉唑醇Flutriafol 302.1 109.0,123.0* 30,25 34,30 丁苯吗啉Fenpropimorph 304.3 130.1,147.1* 30 30,30 戊唑醇Tebuconazole 308.2 70.0,125.0* 30 24,40 己唑醇Hexaconazole 314.1 70.0,159.0* 30 20,30 氟硅唑Flusilazole 316.1 165.0*,247.0 20 25,20 氰霜唑Cyazofamid 325.1 108.0*,261.0 25 15,10 烯唑醇Diniconazole 326.1 70.0,159.0* 10 25,30 苯霜灵Benalaxyl 326.2 148.0*,208.1 25 20,14 异菌脲Iprodione 330 244.7*,288.0 30 16,15 氟环唑Epoxiconazole 330.1 101.0,121.0* 15 50,22 腈苯唑Fenbuconazole 337.1 70.0,125.0* 15 20,30 丙环唑Propiconazole 342.1 159.0*,205.0 35 20,14 啶酰菌胺Boscalid 343.0 140.0,307.0* 25 25,20 甲基硫菌灵Thiophanate-methyl 343.1 151.0*,311.0 30 20,10 氟菌唑Triflumizole 346.1 73.0,278.0* 15 18,10 啶氧菌酯Picoxystrobin 368.1 145.1*,205.1 10 25,10 咪鲜胺Prochloraz 376.0 266.0,308.0* 30,20 15,12 吡唑醚菌酯Pyraclostrobin 388.1 163.0*,194.0 25 25,12 烯酰吗啉Dimethomorph 388.1 165.0,301.1* 30 30,20 嘧菌酯Azoxystrobin 404.1 329.1,372.1* 30 30,16 苯醚甲环唑Difenoconazole 406.1 188.0,251.0* 35 40,20 肟菌酯Trifloxystrobin 409.1 145.0,186.0* 25 40,14 嗪氨灵Triforine 435 83.0,390.1* 20 52,10 氟啶胺Fluazinam 464.9 338.1,373.0* 32 26,26 噻呋酰胺Thifluzamide 528.8 148.0*,168.0 50 42,28 注:*为定量离子。 1.3 数据处理
实验数据采用沃特世 MassLynx工作软件建立方法、数据采集以及数据定量处理,导出原始数据后采用WPS Office进行数据整理、分析和表格绘制,用Origin软件进行柱状图绘制。前处理和分析条件优化中的回收率的计算均采用3个平行样品取平均值计算,精密度选择低、中、高3个浓度,每个浓度梯度取连续采集6次数据的峰面积进行相对标准偏差RSD值的计算。
2. 结果与分析
2.1 样品前处理方法的优化
2.1.1 流动相的选择
在一些文献和常用的农药检测国家标准方法中,采用超高效液相色谱-串联质谱进行农药残留检测分析时,电喷雾离子源正离子模式下在流动相中加入一定量的甲酸、乙酸铵等,可以增加目标离子的离子化状态,提高目标物离子化效率,改善峰形,提高分离度[28-30]。本文在相同梯度洗脱条件下,考察了水-乙腈、0.1%甲酸水-乙腈、5 mmol/L乙酸铵-乙腈、0.1%甲酸-5 mmol/L乙酸铵-乙腈共4种流动相体系对38种农药的峰型、分离度和灵敏度影响。结果表明,甲酸的引入,待测组分的峰型更好,但加入乙酸铵后,福美双电离受到抑制,响应降低。所以最终选择0.1%甲酸水-乙腈溶液作为流动相。
2.1.2 提取剂的选择
鸡蛋样品中富含蛋白质和脂肪。乙腈通用性强,对绝大多数农药溶解度较高,具有沉淀蛋白的作用,能减少蛋白质和脂肪对净化过程造成的影响[31],是理想的食品中农药多残留提取溶剂。但有的农药受提取剂pH影响较大,因此本研究以空白鸡蛋为研究对象,添加水平为15 μg/kg,考察了乙腈、1%乙酸-乙腈、1%甲酸-乙腈3种提取溶剂对38种农药的提取影响。由图1可知,当乙腈提取时,发现分层差,提取液浑浊,油脂析出明显,嘧霉胺、噻菌灵和烯酰吗啉的回收率低于70.0%,可能部分脂溶性较强的农药未被有效提取;当在乙腈中加入1%的酸时,提取液颜色较浅,但选择1%甲酸-乙腈提取时,霜霉威回收低于60.0%,而1%乙酸-乙腈提取时,所有物质回收率在73.1%~103.2%之间,满足农药残留检测实验要求,因此选择1%乙酸-乙腈作为提取溶剂。
2.1.3 提取溶剂体积的确定
以空白鸡蛋为研究对象,添加水平为15 μg/kg时,分别考察了提取剂体积为10、15和20 mL时对农药残留的提取效果。结果表明,提取剂为10 mL时,多菌灵、嘧霉胺和噻菌灵回收率为80.0%左右;而提取剂为20 mL时,嘧霉胺和噻菌灵的回收率下降至50.0%;采用15 mL提取剂时各物质回收率均在70.0%~120%之间,能达到充分提取目标分析物的目的,所以最终采用15 mL提取剂。
由于蛋液黏性较大,仅使用1%乙酸-乙腈提取存在分散不完全的现象,向其中加入少量水,可提高对样品的渗透性,使基质分散的更均匀,既可提高对目标物的提取效率,又可减少蛋液中脂质物质的溶入量,更有利于后续净化[32],所以本研究考察了1%乙酸-乙腈、1%乙酸-乙腈+5 mL水、1%乙酸-乙腈+10 mL水,在添加水平为15 μg/kg 时,三种条件下的回收率见图2,由图2可见加5 mL水时各物质回收率更好,所以最终采用加5 mL水。
2.1.4 除水材料的选择
为了使有机相与水相更好的分层,净化时更好的吸取有机相,通常会在样液中加入无机盐,本研究考察了NaCl、QuEChERS盐包1、QuEChERS盐包2这三种除水材料。以空白鸡蛋为研究对象,添加水平为15 μg/kg,由图3可知,单独加入NaCl,氟啶胺和噻呋酰胺回收率低于60.0%,而且实验过程中发现蛋液粘稠度增大,出现乳化现象,水相与有机相界限模糊。另外两种QuEChERS 提取盐包的除水效果均较佳,由于QuEChERS 盐包1中带有缓冲盐体系,对于弱酸性农药,如吡唑醚菌酯等不利于提取,加入QuEChERS 盐包1时吡唑醚菌酯回收率低于70.0%,加入QuEChERS盐包2时各物质响应更好,回收率均在70.4%~118.0%,所以最终采用QuEChERS盐包2。
2.1.5 净化方法的选择
提取液中含有少量蛋白质、脂肪和卵磷脂,它们会对仪器性能和分析结果造成不利影响,因此选择合适的净化方法去除[27]。以空白鸡蛋为研究对象,向空白鸡蛋液中添加15 μg/kg的农药混合标准液,比较QuEChERS方法和m-PFC柱对样品净化的效果。图4结果表明,QuEChERS方法净化时样品澄清,但是霜霉威、多菌灵、嘧霉胺、噻菌灵、吡唑醚菌酯的回收率低于70.0%;m-PFC柱净化后样品澄清,对杂质的去除率较好,38种农药回收率均在85.3%~106.3%之间,而且m-PFC柱省去了QuEChERS方法净化时涡旋混匀、离心等步骤,缩短了前处理时间。因此,本研究中采用 m-PFC柱进行除杂净化。
2.2 方法评价
2.2.1 线性范围、检出限及定量限
以标准工作溶液质量浓度为横坐标,以农药定量用离子的质量色谱图峰面积为纵坐标,绘制基质匹配标准工作曲线,由表2可知,38种农药在0.001~0.50 μg/mL范围内,线性关系良好,决定系数均大于0.9912。使用空白基质对基质标准溶液进行不断逐级稀释,以信噪比(S/N=3)作为方法的检出限,信噪比(S/N=10)作为定量限,计算得到38种农药的方法检出限为0.01~0.2 μg/kg,定量限为0.02~0.7 μg/kg(见表2)。结果表明,该方法的各化合物的定量限均低于国家标准方法GB 2763-2021中鸡蛋的定量限10 μg/kg[9],能满足日常检测的定性、定量要求。
表 2 38种农药线性关系、检出限、定量限Table 2. Linear relationships, detection limits and quantitation limits of 38 pesticides农药 线性范围(µg/mL) 线性方程 R2 检出限
LOD(µg/kg)定量限
LOQ(µg/kg)霜霉威 Propamocarb 0.001~0.10 y=38181.2x−27810.1 0.9931 0.02 0.06 多菌灵 Carbendazim 0.001~0.10 y=45958.9x−94295.9 0.9971 0.01 0.03 嘧霉胺 Pyrimethanil 0.0025~0.25 y=26906.0x−62776.6 0.9945 0.2 0.6 噻菌灵 Thiabendazole 0.001~0.10 y=22005.2x−37999.0 0.9955 0.01 0.04 福美双 Thiram 0.005~0.50 y=209.622x+193.057 0.9937 0.02 0.05 乙霉威 Diethofencarb 0.001~0.10 y=4445.59x+687.856 0.9987 0.02 0.07 甲霜灵 Metalaxyl 0.001~0.10 y=17216.1x+3781.04 0.9965 0.01 0.04 腐霉利 Procymidone 0.005~0.50 y=134.922x+293.057 0.9912 0.03 0.10 腈菌唑 Myclobutanil 0.001~0.10 y=16378.9x+4720.45 0.9945 0.06 0.17 三唑酮 Triadimefon 0.005~0.50 y=24765.8x+5734.51 0.9994 0.03 0.09 三唑醇 Triadimenol 0.005~0.50 y=5767.01x+8782.64 0.9968 0.04 0.10 抑霉唑 Imazalil 0.001~0.10 y=19328.5x−3253.06 0.9976 0.05 0.17 环酰菌胺 Fenhexamid 0.001~0.10 y=14028.6x+7989.27 0.9934 0.04 0.13 粉唑醇 Flutriafol 0.0025~0.25 y=27124x+1252.43 0.9985 0.03 0.09 丁苯吗啉 Fenpropimorph 0.001~0.10 y=69357.8x−16174.6 0.9976 0.01 0.03 戊唑醇 Tebuconazole 0.0025~0.25 y=6140.33x+4222.45 0.9966 0.1 0.4 己唑醇 Hexaconazole 0.0025~0.25 y=9817.97x+7807.63 0.9965 0.06 0.19 氟硅唑 Flusilazole 0.005~0.50 y=66329.3x+134611 0.9929 0.02 0.06 氰霜唑 Cyazofamid 0.0025~0.25 y=5292.83x+3192.75 0.9965 0.03 0.09 烯唑醇Diniconazole 0.0025~0.25 y=4586.06x+1042.43 0.9978 0.2 0.7 苯霜灵 Benalaxyl 0.001~0.10 y=67289.7x+25798.7 0.9932 0.01 0.04 异菌脲 Iprodione 0.005~0.50 y=541.019x−917.69 0.9956 0.01 0.04 氟环唑 Epoxiconazole 0.005~0.50 y=64688.8x+88622 0.9950 0.03 0.10 腈苯唑 Fenbuconazole 0.0025~0.25 y=26514.5x+6647.27 0.9992 0.06 0.15 丙环唑 Propiconazole 0.0025~0.25 y=43094.1x+9855.89 0.9982 0.03 0.10 啶酰菌胺 Boscalid 0.0025~0.25 y=2202.62x+1046.27 0.9973 0.1 0.3 甲基硫菌灵 Thiophanate-methyl 0.0025~0.25 y=28214.1x+9244.96 0.9988 0.01 0.03 氟菌唑 Triflumizole 0.005~0.50 y=20162.6x+18520.8 0.9998 0.03 0.10 啶氧菌酯 Picoxystrobin 0.0025~0.25 y=9865.46x+12165.1 0.9995 0.04 0.13 咪鲜胺 Prochloraz 0.005~0.50 y=10129.9x+10373.4 0.9961 0.04 0.13 吡唑醚菌酯 Pyraclostrobin 0.001~0.10 y=16755.2x+3114.81 0.9969 0.04 0.16 烯酰吗啉 Dimethomorph 0.0025~0.25 y=16905.7x+4369.13 0.9963 0.03 0.09 嘧菌酯 Azoxystrobin 0.0025~0.25 y=29164.4x+2849.37 0.9934 0.03 0.12 苯醚甲环唑 Difenoconazole 0.001~0.10 y=42582.7x+6199.05 0.9981 0.02 0.07 肟菌酯 Trifloxystrobin 0.0025~0.25 y=55656.1x−16424.5 0.9987 0.01 0.04 嗪氨灵 Triforine 0.005~0.50 y=501.046x+564.104 0.9953 0.01 0.02 氟啶胺 Fluazinam 0.005~0.50 y=1341.78x+3202.22 0.9972 0.08 0.27 噻呋酰胺 Thifluzamide 0.0025~0.25 y=523.363x+471.993 0.9920 0.2 0.5 2.2.2 准确度与精密度
以空白鸡蛋为研究对象,向空白鸡蛋样品中添加10、50、200 µg/kg三种不同浓度的标准混合溶液,按1.2.2节前处理后上机检测,进行准确度和精密度分析。由表3可知,3个不同浓度水平测得的加标回收率在72.7%~113.5%,RSD在0.40%~10%,表明本方法符合农药残留检测方法要求,可以满足禽蛋中农药检测。
表 3 38种农药精密度及添加回收率(n=6)Table 3. Precision and additive recovery of 38 pesticides (n=6)农药 10 µg/kg 50 µg/kg 200 µg/kg 回收率(%) RSD(%) 回收率(%) RSD(%) 回收率(%) RSD(%) 霜霉威 Propamocarb 77.5 1.1 83.3 0.60 86.4 1.6 多菌灵 Carbendazim 86.5 1.2 82.4 1.0 87.0 0.90 嘧霉胺 Pyrimethanil 72.7 1.5 74.9 0.80 81.0 0.70 噻菌灵 Thiabendazole 79.2 1.7 83.3 0.80 113.5 0.60 福美双 Thiram 92.6 0.40 103.5 1.6 105.6 2.3 乙霉威 Diethofencarb 91.3 5.1 93.7 4.7 93.8 3.5 甲霜灵 Metalaxyl 80.2 4.2 97.5 1.6 90.2 1.3 腐霉利 Procymidone 102.6 3.0 100.7 6.0 86.4 8.3 腈菌唑Myclobutanil 102.6 3.0 100.7 6.0 86.4 8.3 三唑酮 Triadimefon 91.3 3.1 104.0 2.1 93.3 2.8 三唑醇 Triadimenol 86.7 8.6 95.3 2.7 92.0 1.8 抑霉唑 Imazalil 81.5 0.70 80.6 1.1 84.3 1.3 环酰菌胺 Fenhexamid 89.2 8.6 90.2 1.2 89.2 3.1 粉唑醇 Flutriafol 86.9 1.1 99.1 1.7 88.2 1.5 丁苯吗啉 Fenpropimorph 88.0 0.70 88.6 0.80 94.5 1.0 戊唑醇 Tebuconazole 90.5 3.8 93.7 2.6 83.9 2.2 己唑醇 Hexaconazole 92.8 4.4 95.3 0.70 86.1 1.0 氟硅唑 Flusilazole 93.7 3.0 99.1 1.5 97.9 1.5 氰霜唑 Cyazofamid 99.9 9.7 90.9 5.4 82.7 2.1 烯唑醇 Diniconazole 93.1 6.3 88.8 3.3 81.4 0.90 苯霜灵 Benalaxyl 98.0 3.0 92.8 2.6 73.6 3.8 异菌脲 Iprodione 90.7 7.2 94.6 5.0 87.5 5.7 氟环唑 Epoxiconazole 91.1 4.5 91.5 1.6 95.7 0.90 腈苯唑 Fenbuconazole 93.3 9.8 88.9 1.6 87.3 2.6 丙环唑 Propiconazole 93.5 5.6 91.1 3.2 87.4 1.1 啶酰菌胺 Boscalid 89.1 7.6 83.0 5.4 81.6 1.8 甲基硫菌 Thiophanate-methyl 73.4 1.1 83.5 0.80 84.3 1.0 氟菌唑 Triflumizole 88.9 4.2 95.7 3.1 84.8 3.6 啶氧菌酯 Picoxystrobin 88.5 4.7 93.6 2.3 83.5 2.4 咪鲜胺 Prochloraz 76.4 2.8 83.5 1.2 80.8 1.9 吡唑醚菌酯 Pyraclostrobin 86.0 3.2 85.0 3.0 84.8 2.4 烯酰吗啉 Dimethomorph 78.5 6.9 99.9 1.2 89.7 1.2 嘧菌酯 Azoxystrobin 89.1 3.0 104.8 2.8 94.1 0.90 苯醚甲环唑 Difenoconazole 93.2 3.4 83.5 5.6 78.8 2.7 肟菌酯 Trifloxystrobin 94.6 5.3 107.6 2.9 86.8 0.90 嗪氨灵 Triforine 86.8 4.0 104.7 4.2 92.1 1.8 氟啶胺 Fluazinam 85.1 3.1 96.7 5.6 88.7 2.5 噻呋酰胺 Thifluzamide 96.4 10 91.4 1.6 80.4 5.4 2.2.3 基质效应
鸡蛋中富含蛋白质、氨基酸、维生素等营养物质,基质效应往往会对分析准确性产生重要影响,因此有必要对此研究过程中鸡蛋样品的基质效应进行分析[33]。分别配制质量浓度为0.001~0.50 μg/mL的溶剂标准溶液和空白基质标准溶液,绘制了溶剂标准曲线和基质标准曲线,根据标准曲线斜率计算基质效应。计算公式如下:
根据以上基质效应的计算公式,|ME|在不大于20%为弱基质效应,|ME|在20%~50%为中等基质效应,|ME|超过50%为强基质效应[34]。各组分农药的基质效应结果如图5所示,可以直观地看到采用UPLC-MS/MS法对鸡蛋中38种农药进行检测时,大部分农药都有不同程度的基质效应,其中26种农药为弱基质效应,9种农药为中等基质效应,3种农药为强基质效应,因此在结果分析中有必要通过基质标准曲线进行校正。
2.2.4 实际样品测定
为了对本方法进行验证,从海口市各农贸市场和超市随机购买了20份鸡蛋样品进行检测。结果表明均未检出相关杀菌剂,说明本地区市售鸡蛋杀菌剂类农药目前处于比较安全状态,但仍需加强日常监测。
3. 结论
依据《GB 2763-2021 食品安全国家标准 食品中农药最大残留限量》对鲜蛋中杀菌剂农药残留限量的规定,其中噻菌灵、苯醚甲环唑等农药在动物源性食品的残留物不相同于植物性食品,目前限于其代谢物的标准物质难以获得,本文只研究建立了农药母体的检测方法。
本实验将QuEChERS前处理技术与液相色谱-串联质谱技术结合,建立了鸡蛋中38种杀菌剂类农药的检测方法,相较于常规的QuEChERS方法净化,该方法减少了净化管净化的涡旋混匀、离心等操作步骤,缩短了前处理时间,操作简单快捷,大大提高了检测工作效率。在低、中、高三水平添加回收下,回收率在72.7%~113.5%之间,相对标准偏差在0.40%~10%之间,表明该方法在不同浓度水平具有较高的精密度与准确度。将该方法应用于实际鸡蛋样品的检测,达到了良好的检测结果,可满足鸡蛋中多种农药残留的高通量快速检测。
-
表 1 38种农药质谱参数
Table 1 Mass spectrometric parameters of 38 pesticides
农药 母离子 子离子 锥孔电压(V) 碰撞能量(eV) 霜霉威Propamocarb 189.2 102.0*,144.0 15 15,10 多菌灵Carbendazim 192.1 132.0,160.0* 10 30,15 嘧霉胺Pyrimethanil 200.1 82.0,107.0* 25 24,24 噻菌灵Thiabendazole 202.0 131.0,175.0* 45 30,25 福美双Thiram 241.2 88.0*,119.9 30 13,25 乙霉威Diethofencarb 268.2 124.1*,152.1 25 30,20 甲霜灵Metalaxyl 280.2 192.1,220.1* 30 20,15 腐霉利Procymidone 284.0 145.0,256.1* 30,42 45,17 腈菌唑Myclobutanil 289.1 125.1*,151.0 25 30,25 三唑酮Triadimefon 294.1 197.0*,225.1 30 14,12 三唑醇Triadimenol 296.1 70.2*,99.1 30 10,15 抑霉唑Imazalil 297.1 159.0*,255.0 25 20,17 环酰菌胺Fenhexamid 302.1 55.3,97.2* 32 38,22 粉唑醇Flutriafol 302.1 109.0,123.0* 30,25 34,30 丁苯吗啉Fenpropimorph 304.3 130.1,147.1* 30 30,30 戊唑醇Tebuconazole 308.2 70.0,125.0* 30 24,40 己唑醇Hexaconazole 314.1 70.0,159.0* 30 20,30 氟硅唑Flusilazole 316.1 165.0*,247.0 20 25,20 氰霜唑Cyazofamid 325.1 108.0*,261.0 25 15,10 烯唑醇Diniconazole 326.1 70.0,159.0* 10 25,30 苯霜灵Benalaxyl 326.2 148.0*,208.1 25 20,14 异菌脲Iprodione 330 244.7*,288.0 30 16,15 氟环唑Epoxiconazole 330.1 101.0,121.0* 15 50,22 腈苯唑Fenbuconazole 337.1 70.0,125.0* 15 20,30 丙环唑Propiconazole 342.1 159.0*,205.0 35 20,14 啶酰菌胺Boscalid 343.0 140.0,307.0* 25 25,20 甲基硫菌灵Thiophanate-methyl 343.1 151.0*,311.0 30 20,10 氟菌唑Triflumizole 346.1 73.0,278.0* 15 18,10 啶氧菌酯Picoxystrobin 368.1 145.1*,205.1 10 25,10 咪鲜胺Prochloraz 376.0 266.0,308.0* 30,20 15,12 吡唑醚菌酯Pyraclostrobin 388.1 163.0*,194.0 25 25,12 烯酰吗啉Dimethomorph 388.1 165.0,301.1* 30 30,20 嘧菌酯Azoxystrobin 404.1 329.1,372.1* 30 30,16 苯醚甲环唑Difenoconazole 406.1 188.0,251.0* 35 40,20 肟菌酯Trifloxystrobin 409.1 145.0,186.0* 25 40,14 嗪氨灵Triforine 435 83.0,390.1* 20 52,10 氟啶胺Fluazinam 464.9 338.1,373.0* 32 26,26 噻呋酰胺Thifluzamide 528.8 148.0*,168.0 50 42,28 注:*为定量离子。 表 2 38种农药线性关系、检出限、定量限
Table 2 Linear relationships, detection limits and quantitation limits of 38 pesticides
农药 线性范围(µg/mL) 线性方程 R2 检出限
LOD(µg/kg)定量限
LOQ(µg/kg)霜霉威 Propamocarb 0.001~0.10 y=38181.2x−27810.1 0.9931 0.02 0.06 多菌灵 Carbendazim 0.001~0.10 y=45958.9x−94295.9 0.9971 0.01 0.03 嘧霉胺 Pyrimethanil 0.0025~0.25 y=26906.0x−62776.6 0.9945 0.2 0.6 噻菌灵 Thiabendazole 0.001~0.10 y=22005.2x−37999.0 0.9955 0.01 0.04 福美双 Thiram 0.005~0.50 y=209.622x+193.057 0.9937 0.02 0.05 乙霉威 Diethofencarb 0.001~0.10 y=4445.59x+687.856 0.9987 0.02 0.07 甲霜灵 Metalaxyl 0.001~0.10 y=17216.1x+3781.04 0.9965 0.01 0.04 腐霉利 Procymidone 0.005~0.50 y=134.922x+293.057 0.9912 0.03 0.10 腈菌唑 Myclobutanil 0.001~0.10 y=16378.9x+4720.45 0.9945 0.06 0.17 三唑酮 Triadimefon 0.005~0.50 y=24765.8x+5734.51 0.9994 0.03 0.09 三唑醇 Triadimenol 0.005~0.50 y=5767.01x+8782.64 0.9968 0.04 0.10 抑霉唑 Imazalil 0.001~0.10 y=19328.5x−3253.06 0.9976 0.05 0.17 环酰菌胺 Fenhexamid 0.001~0.10 y=14028.6x+7989.27 0.9934 0.04 0.13 粉唑醇 Flutriafol 0.0025~0.25 y=27124x+1252.43 0.9985 0.03 0.09 丁苯吗啉 Fenpropimorph 0.001~0.10 y=69357.8x−16174.6 0.9976 0.01 0.03 戊唑醇 Tebuconazole 0.0025~0.25 y=6140.33x+4222.45 0.9966 0.1 0.4 己唑醇 Hexaconazole 0.0025~0.25 y=9817.97x+7807.63 0.9965 0.06 0.19 氟硅唑 Flusilazole 0.005~0.50 y=66329.3x+134611 0.9929 0.02 0.06 氰霜唑 Cyazofamid 0.0025~0.25 y=5292.83x+3192.75 0.9965 0.03 0.09 烯唑醇Diniconazole 0.0025~0.25 y=4586.06x+1042.43 0.9978 0.2 0.7 苯霜灵 Benalaxyl 0.001~0.10 y=67289.7x+25798.7 0.9932 0.01 0.04 异菌脲 Iprodione 0.005~0.50 y=541.019x−917.69 0.9956 0.01 0.04 氟环唑 Epoxiconazole 0.005~0.50 y=64688.8x+88622 0.9950 0.03 0.10 腈苯唑 Fenbuconazole 0.0025~0.25 y=26514.5x+6647.27 0.9992 0.06 0.15 丙环唑 Propiconazole 0.0025~0.25 y=43094.1x+9855.89 0.9982 0.03 0.10 啶酰菌胺 Boscalid 0.0025~0.25 y=2202.62x+1046.27 0.9973 0.1 0.3 甲基硫菌灵 Thiophanate-methyl 0.0025~0.25 y=28214.1x+9244.96 0.9988 0.01 0.03 氟菌唑 Triflumizole 0.005~0.50 y=20162.6x+18520.8 0.9998 0.03 0.10 啶氧菌酯 Picoxystrobin 0.0025~0.25 y=9865.46x+12165.1 0.9995 0.04 0.13 咪鲜胺 Prochloraz 0.005~0.50 y=10129.9x+10373.4 0.9961 0.04 0.13 吡唑醚菌酯 Pyraclostrobin 0.001~0.10 y=16755.2x+3114.81 0.9969 0.04 0.16 烯酰吗啉 Dimethomorph 0.0025~0.25 y=16905.7x+4369.13 0.9963 0.03 0.09 嘧菌酯 Azoxystrobin 0.0025~0.25 y=29164.4x+2849.37 0.9934 0.03 0.12 苯醚甲环唑 Difenoconazole 0.001~0.10 y=42582.7x+6199.05 0.9981 0.02 0.07 肟菌酯 Trifloxystrobin 0.0025~0.25 y=55656.1x−16424.5 0.9987 0.01 0.04 嗪氨灵 Triforine 0.005~0.50 y=501.046x+564.104 0.9953 0.01 0.02 氟啶胺 Fluazinam 0.005~0.50 y=1341.78x+3202.22 0.9972 0.08 0.27 噻呋酰胺 Thifluzamide 0.0025~0.25 y=523.363x+471.993 0.9920 0.2 0.5 表 3 38种农药精密度及添加回收率(n=6)
Table 3 Precision and additive recovery of 38 pesticides (n=6)
农药 10 µg/kg 50 µg/kg 200 µg/kg 回收率(%) RSD(%) 回收率(%) RSD(%) 回收率(%) RSD(%) 霜霉威 Propamocarb 77.5 1.1 83.3 0.60 86.4 1.6 多菌灵 Carbendazim 86.5 1.2 82.4 1.0 87.0 0.90 嘧霉胺 Pyrimethanil 72.7 1.5 74.9 0.80 81.0 0.70 噻菌灵 Thiabendazole 79.2 1.7 83.3 0.80 113.5 0.60 福美双 Thiram 92.6 0.40 103.5 1.6 105.6 2.3 乙霉威 Diethofencarb 91.3 5.1 93.7 4.7 93.8 3.5 甲霜灵 Metalaxyl 80.2 4.2 97.5 1.6 90.2 1.3 腐霉利 Procymidone 102.6 3.0 100.7 6.0 86.4 8.3 腈菌唑Myclobutanil 102.6 3.0 100.7 6.0 86.4 8.3 三唑酮 Triadimefon 91.3 3.1 104.0 2.1 93.3 2.8 三唑醇 Triadimenol 86.7 8.6 95.3 2.7 92.0 1.8 抑霉唑 Imazalil 81.5 0.70 80.6 1.1 84.3 1.3 环酰菌胺 Fenhexamid 89.2 8.6 90.2 1.2 89.2 3.1 粉唑醇 Flutriafol 86.9 1.1 99.1 1.7 88.2 1.5 丁苯吗啉 Fenpropimorph 88.0 0.70 88.6 0.80 94.5 1.0 戊唑醇 Tebuconazole 90.5 3.8 93.7 2.6 83.9 2.2 己唑醇 Hexaconazole 92.8 4.4 95.3 0.70 86.1 1.0 氟硅唑 Flusilazole 93.7 3.0 99.1 1.5 97.9 1.5 氰霜唑 Cyazofamid 99.9 9.7 90.9 5.4 82.7 2.1 烯唑醇 Diniconazole 93.1 6.3 88.8 3.3 81.4 0.90 苯霜灵 Benalaxyl 98.0 3.0 92.8 2.6 73.6 3.8 异菌脲 Iprodione 90.7 7.2 94.6 5.0 87.5 5.7 氟环唑 Epoxiconazole 91.1 4.5 91.5 1.6 95.7 0.90 腈苯唑 Fenbuconazole 93.3 9.8 88.9 1.6 87.3 2.6 丙环唑 Propiconazole 93.5 5.6 91.1 3.2 87.4 1.1 啶酰菌胺 Boscalid 89.1 7.6 83.0 5.4 81.6 1.8 甲基硫菌 Thiophanate-methyl 73.4 1.1 83.5 0.80 84.3 1.0 氟菌唑 Triflumizole 88.9 4.2 95.7 3.1 84.8 3.6 啶氧菌酯 Picoxystrobin 88.5 4.7 93.6 2.3 83.5 2.4 咪鲜胺 Prochloraz 76.4 2.8 83.5 1.2 80.8 1.9 吡唑醚菌酯 Pyraclostrobin 86.0 3.2 85.0 3.0 84.8 2.4 烯酰吗啉 Dimethomorph 78.5 6.9 99.9 1.2 89.7 1.2 嘧菌酯 Azoxystrobin 89.1 3.0 104.8 2.8 94.1 0.90 苯醚甲环唑 Difenoconazole 93.2 3.4 83.5 5.6 78.8 2.7 肟菌酯 Trifloxystrobin 94.6 5.3 107.6 2.9 86.8 0.90 嗪氨灵 Triforine 86.8 4.0 104.7 4.2 92.1 1.8 氟啶胺 Fluazinam 85.1 3.1 96.7 5.6 88.7 2.5 噻呋酰胺 Thifluzamide 96.4 10 91.4 1.6 80.4 5.4 -
[1] 刘国信. “毒鸡蛋”风波持续发酵, 食品安全任重道远[J]. 养禽与禽病防治,2017(11):26−29. [LIU G X. The “Poisonous Egg” crisis continues to ferment, and food safety has a long way to go[J]. Poultry Breeding and Prevention of Poultry Diseases,2017(11):26−29. LIU G X. The "Poisonous Egg" crisis continues to ferment, and food safety has a long way to go[J]. Poultry Breeding and Prevention of Poultry Diseases, 2017 (11): 26-29.
[2] 吴明, 徐飞. 液相色谱-串联质谱法测定鸡蛋中的喹诺酮类和四环素类抗生素[J]. 食品工业科技,2019,40(3):249−253. [WU M, XU F. Determination of quinolones and tetracyclines in eggs by liquid chromatography tandem mass spectrometry[J]. Food Industry Science and Technology,2019,40(3):249−253. WU M, XU F. Determination of quinolones and tetracyclines in eggs by liquid chromatography tandem mass spectrometry [J]. Food Industry Science and Technology, 2019, 40 (3): 249-253.
[3] 齐凯, 汤晓艳, 王敏, 等. 超高效液相色谱–串联质谱法分析鸡蛋中利巴韦林及其代谢物残留[J]. 分析化学,2016,44(6):923−928. [QI K, TANG X Y, WANG M, et al. Analysis of ribavirin and its metabolites in fresh eggs by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Chem,2016,44(6):923−928. QI K, TANG X Y, WANG M, et al. Analysis of ribavirin and its metabolites in fresh eggs by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chin J Anal Chem, 2016, 44(6): 923–928.
[4] 张艳, 陈国, 吴银良. 固相萃取–液相色谱串联质谱法测定鸡蛋中16种氨基甲酸酯类杀虫剂残留量[J]. 食品安全质量检测学报,2020,11(6):1728−1735. [ZHANG Y, CHEN G, WU Y L, et al. Simultaneous determination of 16 kinds of carbamate insecticides in egg by solid phase extraction coupled with liquid chromatography tandem mass spectrometry[J]. Journal of Food Safety & Quality,2020,11(6):1728−1735. ZHANG Y, CHEN G, WU Y L, et al. Simultaneous determination of 16 kinds of carbamate insecticides in egg by solid phase extraction coupled with liquid chromatography tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2020, 11(6): 1728–1735.
[5] ALFONSO D M, PATRIZIA P, IVANO C, et al. Selective, solid-matrix dispersion extraction of organophosphate pesticide residues from milk[J]. Journal of Chromatography A,1996,754(1):497−506.
[6] LEDOUX M. Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades[J]. Journal of Chromatography A,2011,1218(8):1021−1036. doi: 10.1016/j.chroma.2010.12.097
[7] 孙丹丹, 秦玉昌, 李军国. 鸡蛋生产质量安全问题分析及控制研究进展[J]. 中国家禽,2015,37(5):45−49. [SUN D D, QIN Y C, LI J G. Research progress in analysis and control of egg production quality and safety problems[J]. Chinese Poultry,2015,37(5):45−49. SUN D D, QIN Y C, LI J G. Research progress in analysis and control of egg production quality and safety problems [J]. Chinese Poultry, 2015, 37 (5): 45-49.
[8] TINGLE C C D, ROTHER J A, DEWHURST C F, et al. Fipronil: Environmental fate, ecotoxicology, and human health concerns[J]. Reviews of Environmental Contamination and Toxicology,2003,176(1):1−66.
[9] GB 2763-2021, 食品安全国家标准 食品中农药最大残留限量[S] GB2763-2021, National Food Safety Standard-Maximum residue limits for pesticides in food[S].
[10] 郝莉花, 贾利平. 分散固相萃取-气相色谱法测定鸡蛋中氟虫腈及其代谢物[J]. 食品与发酵工业,2021,47(23):252−257. [HAO L H, JIA L P. Determination of fipronil and its metabolites in eggs by dispersive solid phase extraction gas chromatography[J]. Food and Fermentation Industries,2021,47(23):252−257. HAO L H, JIA L P. Determination of fipronil and its metabolites in eggs by dispersive solid phase extraction gas chromatography [J]. Food and Fermentation Industries, 2021, 47 (23): 252-257.
[11] 龚震, 张瑞琪, 王铁峰, 等. 固相萃取-高效液相色谱检测鸡蛋中氟虫腈及其代谢物[J]. 食品安全质量检测学报,2020,11(6):1709−1714. [GONG Z, ZHANG R Q, WANG T F, et al. Determination of fipronil and its metabolites in eggs by solid phase extraction high performance liquid chromatography[J]. Journal of Food Safety & Quality,2020,11(6):1709−1714. GONG Z, ZHANG R Q, WANG T F, et al. Determination of fipronil and its metabolites in eggs by solid phase extraction high performance liquid chromatography [J]. Journal of Food Safety & Quality, 2020, 11 (6): 1709-1714.
[12] 兰红军, 吴雪梅, 冯耀基, 等. QuEChERS-气相色谱-串联质谱法测定鸡蛋中氟虫腈及其代谢产物[J]. 中国食品卫生杂志,2019,31(5):435−440. [LAN H J, WU X M, FENG Y J, et al. Determination of fipronil and its metabolites in eggs by QuEChERS gas chromatography tandem mass spectrometry[J]. Chinese Journal of Food Hygiene,2019,31(5):435−440. LAN H J, WU X M, FENG Y J, et al. Determination of fipronil and its metabolites in eggs by QuEChERS gas chromatography tandem mass spectrometry [J]. Chinese Journal of Food Hygiene, 2019, 31 (5): 435-440.
[13] 宁霄, 金绍明, 高文超, 等. QuEChERS-超高效液相色谱-串联质谱法测定动物源性食品中氟虫腈及其代谢物残留[J]. 分析化学,2018,46(8):1297−1305. [NING X, JIN S M, GAO W C, et al. QuEChERS ultra high performance liquid chromatography tandem mass spectrometry determination of fipronil and its metabolite residues in animal derived foods[J]. Chinese Journal of Analytical Chemistry,2018,46(8):1297−1305. doi: 10.11895/j.issn.0253-3820.171530 NING X, JIN S M, GAO W C, et al. QuEChERS ultra high performance liquid chromatography tandem mass spectrometry determination of fipronil and its metabolite residues in animal derived foods [J]. Chinese Journal of Analytical Chemistry, 2018, 46 (8): 1297-1305. doi: 10.11895/j.issn.0253-3820.171530
[14] 郝杰, 邵瑞婷, 姜洁, 等. QuEChERS-超高效液相色谱-串联质谱法测定鸡蛋、鸡肉中氟虫腈及其代谢物残留[J]. 食品科学,2019,40(2):326−331. [HAO J, SHAO R T, JIANG J, et al. Determination of fipronil and its metabolites residues in chicken meat and eggs by QuEChERS-ultraperformance liquid chromatography-tandem mass spectrometry[J]. Food Science,2019,40(2):326−331. HAO J, SHAO R T, JIANG J, et al. Determination of fipronil and its metabolites residues in chicken meat and eggs by QuEChERS–ultraperformance liquid chromatography–tandem mass spectrometry [J]. Food Science, 2019, 40(2): 326–331.
[15] ZHAO P Y, FAN S F, YU C S, et al. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS[J]. Journal of Separation Science,2013,36(20):3379−3386. doi: 10.1002/jssc.201300411
[16] ZHAO P Y, HUANG B Y, LI Y J, et al. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products[J]. Journal of Agricultural and Food Chemistry,2014,62(17):3710−3725. doi: 10.1021/jf405240j
[17] QIN Y H, ZHAO P Y, FAN S F, et al. The comparison of dispersive solid phase extraction and multi-plug filtration cleanup method based on multi-walled carbon nanotubes for pesticides multi-residue analysis by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A,2015,1385:1−11. doi: 10.1016/j.chroma.2015.01.066
[18] ZOU N, HAN Y T, LI Y J, et al. Multiresidue method for determination of 183 pesticide residues in leeks by rapid multiplug filtration cleanup and gas chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2016,64(31):6061−6070. doi: 10.1021/acs.jafc.5b05132
[19] 孟志娟, 黄云霞, 邸鹏月, 等. 快速滤过型净化法结合气相色谱-四极杆-飞行时间质谱同时筛查果蔬中234种农药残留[J]. 食品科学,2020,41(16):272−285. [MENG Z J, HUANG Y X, DI P Y, et al. Simultaneous screening of 234 pesticide residues in fruits and vegetables by rapid filtration purification combined with gas chromatography quadrupole time of flight mass spectrometry[J]. Food Science,2020,41(16):272−285. MENG Z J, HUANG Y X, DI P Y, et al. Simultaneous screening of 234 pesticide residues in fruits and vegetables by rapid filtration purification combined with gas chromatography quadrupole time of flight mass spectrometry [J]. Food Science, 2020, 41 (16): 272-285.
[20] 黄云霞, 孟志娟, 赵丽敏, 等. 快速滤过型净化-GC-MS/MS测定枸杞中75种农药残留[J]. 食品工业,2021,42(8):308−313. [HUANG Y X, MENG Z J, ZHAO L M, et al. Rapid filtration purification GC-MS/MS determination of 75 pesticide residues in Lycium barbarum[J]. Food Industry,2021,42(8):308−313. HUANG Y X, MENG Z J, ZHAO L M, et al. Rapid filtration purification GC-MS/MS determination of 75 pesticide residues in Lycium barbarum [J]. Food Industry, 2021, 42 (8): 308-313.
[21] 黄云霞, 孟志娟, 赵丽敏, 等. 快速滤过型净化结合气相色谱-串联质谱法同时检测茶叶中10种拟除虫菊酯农药残留[J]. 色谱,2020,38(7):798−804. [HUANG Y X, MENG Z J, ZHAO L M, et al. Simultaneous determination of 10 pyrethroid pesticide residues in tea by rapid filtration purification combined with gas chromatography tandem mass spectrometry[J]. Chinese Journal of Chromatography,2020,38(7):798−804. HUANG Y X, MENG Z J, ZHAO L M, et al. Simultaneous determination of 10 pyrethroid pesticide residues in tea by rapid filtration purification combined with gas chromatography tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2020, 38 (7): 798-804.
[22] 郝东宇, 席兴军, 初侨, 等. 快速滤过型净化法结合高效液相色谱-串联质谱同时检测人参中的5种农药残留[J]. 农药学学报,2019,21(1):82−88. [HAO D Y, XI X J, CHU Q, et al. Simultaneous determination of five pesticide residues in ginseng by rapid filtration purification combined with high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Pesticide Science,2019,21(1):82−88. HAO D Y, XI X J, CHU Q, et al. Simultaneous determination of five pesticide residues in ginseng by rapid filtration purification combined with high performance liquid chromatography tandem mass spectrometry [J]. Chinese Journal of Pesticide Science, 2019, 21 (1): 82-88.
[23] 涂祥婷, 杨鸿波, 郭峰, 等. 超高效液相色谱-高分辨质谱法同时测定鱼肉中16种全氟烷基化合物[J]. 分析化学,2021,49(4):528−537. [TU X T, YANG H B, GUO F, et al. Simultaneous determination of 16 perfluoroalkyl compounds in fish by ultra high performance liquid chromatography high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2021,49(4):528−537. TU X T, YANG H B, GUO F, et al. Simultaneous determination of 16 perfluoroalkyl compounds in fish by ultra high performance liquid chromatography high resolution mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2021, 49 (4): 528-537.
[24] 李润康, 李佳宜, 张云峰, 等. MPFC-QuEChERS结合GC-MS/MS测定血液中γ-羟基丁酸[J]. 分析测试学报,2022,41(3):386−391. [LI R K, LI J Y, ZHANG Y F, et al. MPFC QuEChERS combined with GC-MS/MS for determination of blood γ-hydroxybutyric acid[J]. Journal of Instrumental Analysis,2022,41(3):386−391. LI R K, LI J Y, ZHANG Y F, et al. MPFC QuEChERS combined with GC-MS/MS for determination of blood γ-hydroxybutyric acid [J]. Journal of Instrumental Analysis, 2022, 41 (3): 386-391.
[25] 申美容. 干制水产品中四环素类药物残留和N-亚硝胺的检测方法研究[D]. 山东. 烟台大学, 2021 SHEN M R. Study on the detection method of tetracycline residues and N-nitrosamines in dried aquatic products[D]. Shandong: Yantai University, 2021.
[26] GB 23200.115-2018, 食品安全国家标准 鸡蛋中氟虫腈及其代谢物残留量的测定 液相色谱-质谱联用法[S] GB 23200.115-2018, National Food Safety Standard-Determination of fipronil and metabolites residues in eggs-Liquid chromatography-tandem mass spectrometry method[S].
[27] 丁路阳, 张天超, 龙锦林, 等. 固相萃取-高效液相色谱-串联质谱法同时测定鸡蛋中42种农药残留[J]. 食品安全质量检测学报,2020,11(18):6707−6715. [DING L Y, ZHANG T C, LONG J L, et al. Simultaneous determination of 42 pesticide residues in eggs by solid phase extraction high performance liquid chromatography tandem mass spectrometry[J]. Journal of Food Safety & Quality,2020,11(18):6707−6715. DING L Y, ZHANG T C, LONG J L, et al. Simultaneous determination of 42 pesticide residues in eggs by solid phase extraction high performance liquid chromatography tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2020, 11 (18): 6707-6715.
[28] 谭建林, 彭珍华, 赵秀琳, 等. QuEChERS-UPLC-MS/MS法测定鸡蛋中19种氨基甲酸酯类农药及其代谢物残留量[J]. 食品工业科技,2022,43(1):320−325. [TAN J L, PENG Z H, ZHAO X L, et al. Determination of 19 carbamate pesticide and metabolites residues in eggs by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry,2022,43(1):320−325. TAN J L, PENG Z H, ZHAO X L, et al. Determination of 19 carbamate pesticide and metabolites residues in eggs by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2022, 43(1): 320-325.
[29] GB/T 20769-2008, 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱法-串联质谱法[S] GB/T 20769-2008, Determination of 450 pesticides and related chemicals residues in fruits and vegetables-LC-MS-MS method[S].
[30] GB 23200.121-2021, 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法[S] GB 23200.121-2021, National Food Safety Standard-Determination of 331 pesticides and metabolites residues in foods of plant origin-Liquid chromatography-tandem mass spectrometry method [S].
[31] 陈劲星. 固相萃取-气相色谱-质谱法测定鸡蛋中160种农药残留[J]. 福建分析测试,2021,30(1):11−18. [CHEN J X. Determination of 160 pesticide residues in eggs by solid phase extraction gas chromatography-mass spectrometry[J]. Fujian Analysis & Testing,2021,30(1):11−18. doi: 10.3969/j.issn.1009-8143.2021.01.03 CHEN J X. Determination of 160 pesticide residues in eggs by solid phase extraction gas chromatography-mass spectrometry [J]. Fujian Analysis & Testing, 2021, 30 (1): 11-18. doi: 10.3969/j.issn.1009-8143.2021.01.03
[32] 李敏青, 安文佳, 李菊, 等. 固相萃取/气相色谱法测定禽蛋中19种农药残留[J]. 分析测试学报,2020,39(4):520−525. [LI M Q, AN W J, LI J, et al. Determination of 19 pesticide residues in poultry eggs by solid phase extraction/gas chromatography[J]. Journal of Instrumental Analysis,2020,39(4):520−525. LI M Q, AN W J, LI J, et al. Determination of 19 pesticide residues in poultry eggs by solid phase extraction/gas chromatography [J]. Journal of Instrumental Analysis, 2020, 39 (4): 520-525.
[33] 舒晓, 褚能明, 张雪梅, 等. 脂质去除分散固相萃取-气相色谱-串联质谱测定鸡蛋中62种农药残留[J]. 食品科学,2021,42(14):320−327. [SHU X, CHU N M, ZHANG X M, et al. Determination of 62 pesticide residues in eggs by lipid removal dispersion solid phase extraction gas chromatography tandem mass spectrometry[J]. Food Science,2021,42(14):320−327. doi: 10.7506/spkx1002-6630-20191211-121 SHU X, CHU N M, ZHANG X M, et al. Determination of 62 pesticide residues in eggs by lipid removal dispersion solid phase extraction gas chromatography tandem mass spectrometry [J]. Food Science, 2021, 42 (14): 320-327. doi: 10.7506/spkx1002-6630-20191211-121
[34] 方海仙, 耿慧春, 梅文泉, 等. 气相色谱法测定农产品中农药残留的基质效应研究[J]. 食品安全质量检测学报,2018,9(14):3770−3779. [FANG H X, GENG H C, MEI W Q, et al. Study on matrix effect of determination of pesticide residues in agricultural products by gas chromatography[J]. Journal of Food Safety & Quality,2018,9(14):3770−3779. doi: 10.3969/j.issn.2095-0381.2018.14.037 FANG H X, GENG H C, MEI W Q, et al. Study on matrix effect of determination of pesticide residues in agricultural products by gas chromatography [J]. Journal of Food Safety & Quality, 2018, 9 (14): 3770-3779. doi: 10.3969/j.issn.2095-0381.2018.14.037
-
期刊类型引用(9)
1. 毛健鑫,张霁红,王玉安,陈柏,李明泽,李祯. 金银花提取物对软儿梨后熟生理品质的影响. 北方园艺. 2025(04): 53-59 . 百度学术
2. 陈轻轻,张元现,王倩,张金玲,郑林,黄勇,金阳,巩仔鹏,李月婷. 基于血浆药物化学结合网络药理学及药代动力学探究咳宁颗粒止咳祛痰的质量标志物. 中国中药杂志. 2025(04): 959-973 . 百度学术
3. 汤俊,陈翔,徐玲,胡敏,肖凌. 基于网络药理学对鹿蹄橐吾镇咳活性成分的初步研究. 中国药事. 2024(04): 423-438 . 百度学术
4. 李宏光,田广原,李媛,那顺布和,高笑宇,孙德俊. 大黄素止咳祛痰作用的实验研究. 国际呼吸杂志. 2024(04): 453-458 . 百度学术
5. 冯智龙,孔明霞. 网络药理学视角下蕲艾抗炎潜能及其作用机制研究. 黄冈职业技术学院学报. 2024(02): 82-85 . 百度学术
6. 李华,罗健毅,多甜甜. 浅析短视频矩阵宣传在农业发展中的作用. 现代园艺. 2024(14): 183-185+188 . 百度学术
7. 解琬迎,陆禹冰,郭晓敏,武艺,周顺,张琦,蒋希成,王赫,张乔. 基于靶点网络与分子对接探讨苦参介导NF-κB通路抗肝癌的作用机制. 黑龙江医药. 2024(04): 745-750 . 百度学术
8. 吴步梅,方彩霞,张婷婷,魏永波,史永梅,王国宇,陈辅斌,张文利. 甘肃冻梨产业发展现状及科研进展. 中国果树. 2024(09): 141-145 . 百度学术
9. 李祯,杨发军,张霁红,李明泽,胡生海,谢亚琼,秦飞. 冰温贮藏对软儿梨色泽及挥发性风味物质的影响. 寒旱农业科学. 2024(11): 1042-1047 . 百度学术
其他类型引用(0)