In Vitro Digestion Products of Fats in Sorghum/Rice Mixture and Their Oxidative Stability
-
摘要: 为探究高粱复配米脂肪体外消化产物及其氧化稳定性,将熟化高粱与大米按质量比1:4和1:1复配进行模拟体外消化,采用气相色谱-质谱联用法分析复配米饭的脂肪消化产物,并以脂质过氧化物值和丙二醛浓度为指标探究其氧化稳定性。结果表明,1:1和1:4复配米经胃肠液消化后含有25种脂肪酸,主要为棕榈酸、硬脂酸和亚油酸。不饱和脂肪酸占到34.34%和28.50%,人体必需脂肪酸亚油酸和α-亚麻酸含量分别为91.41、3.05和59.36、1.83 μg/g,均显著高于大米组(P<0.05)。此外,1:1和1:4复配米消化后肠液过氧化值为33.83和43.16 nmol/g、丙二醛含量为28.17和27.72 nmol/g,总氧化程度均低于高粱组。综上,食用高粱复配米比单纯食用大米改善了摄入的饮食脂肪酸组成,又比单纯食用高粱减少了人体对脂质氧化产物的吸收积累。Abstract: In order to investigate the in vitro digestion products of fat in the sorghum and rice mixture and its oxidative stability, sorghum and rice were compounded and cured in 1:4 and 1:1 mass ratios to simulate in vitro digestion. The fat digestion products of the sorghum and rice mixtures were analyzed qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS), and their oxidative stability was investigated using lipid peroxide values and malondialdehyde concentrations as indicators. The results showed that, the 1:1 and 1:4 compounded rice contained 25 kinds of fatty acids after digestion by gastrointestinal fluid, of which the major fatty acids were palmitic, stearic, and linoleic acids. Unsaturated fatty acids accounted for 34.34% and 28.50% of the total. The contents of the essential fatty acids linoleic acid and α-linolenic acid were 91.41, 3.05 and 59.36, 1.83 μg/g, respectively. All were significantly higher than the rice group (P<0.05). In addition, the digested intestinal fluid peroxide values of 33.83 and 43.16 nmol/g and the malondialdehyde levels of 28.17 and 27.72 nmol/g in the 1:1 and 1:4 mixtures were lower than that in the sorghum for total oxidation. In summary, consumption of the sorghum and rice mixture improved the composition of dietary fatty acids consumed compared to rice alone, and it also reduced the accumulation of lipid oxidation products absorbed by the body compared to sorghum alone.
-
Key words:
- sorghum /
- compound rice /
- in vitro digestion /
- fatty acids /
- oxidative stability
-
表 1 高粱与大米熟化前后脂肪酸含量(µg/g)
Table 1. Fatty acid content of sorghum and rice before and after maturation (µg/g)
脂肪酸种类 未处理高粱 微波蒸煮后高粱 未处理大米 蒸煮后大米 C8:0 0.04 0.02 0.30 0.20 C10:0 0.04 0.02 0.02 0.02 C11:0 0.01 0.01 0.01 0.01 C12:0 0.57 0.44 0.22 0.19 C13:0 0.01 0.02 0.01 0.01 C14:0 1.66 4.13 18.14 13.97 C14:1 1.41 2.46 1.69 1.47 C15:0 1.37 1.48 0.59 0.48 C15:1 1.26 1.50 1.55 1.39 C16:0 1140.81 849.40 396.99 295.01 C17:0 5.27 4.48 0.74 0.60 C17:1 0.38 0.41 0.46 0.82 C18:0 125.08 108.54 38.11 29.61 C18:1 3193.76 2517.38 414.92 337.93 C18:2 5458.05 4091.21 783.99 682.00 C18:3 480.19 357.88 24.00 21.67 C20:0 14.00 11.83 6.22 4.76 C20:1 16.67 15.39 3.80 3.20 C20:2 1.61 1.20 0.23 0.20 C20:3 1.03 0.62 0.11 0.34 C20:4 0.05 0.03 0.06 0.01 C20:5 0.05 0.05 0.05 0.04 C21:0 0.92 0.76 0.19 0.13 C22:0 5.77 4.95 2.88 1.86 C22:1 2.57 2.01 2.52 2.07 C22:2 0.28 0.32 0.51 0.39 C22:5 3.50 3.29 1.10 0.64 C23:0 1.38 1.16 0.59 0.37 C24:0 6.91 6.06 7.59 3.89 C24:1 3.35 2.40 1.78 1.41 饱和脂肪酸总量 1303.83 993.31 472.59 351.12 单不饱和脂肪酸
总量3219.41 2541.55 426.71 348.28 多不饱和脂肪酸
总量5944.75 4454.60 810.04 705.29 表 2 样品消化后胃液中脂肪酸种类及含量(μg/g)
Table 2. Types and contents of fatty acids in gastric juice after sample digestion (μg/g)
脂肪酸种类 0-1组 1-4组 1-1组 1-0组 C8:0 0.02±0.00Ae 0.02±0.00Ae 0.02±0.01Ad 0.02±0.00Ae C12:0 0.05±0.00Ae 0.07±0.04Ae 0.07±0.04Ad 0.11±0.06Ae C14:0 0.19±0.01Ade 0.32±0.13Ae 0.26±0.04Ad 0.27±0.10Ae C14:1 0.24±0.06Cde 0.97±0.07Ade 0.47±0.04Bd 0.44±0.07Bde C15:0 0.03±0.00Be 0.04±0.01Ae 0.04±0.00Ad 0.04±0.00Ae C15:1 0.44±0.02Ade 0.53±0.14Ae 0.61±0.12Ad 0.45±0.01Ade C16:0 5.02±0.45Ba 16.06±2.58Aa 12.33±2.47Ab 15.70±2.51Ab C17:0 0.07±0.02Be 0.08±0.02ABe 0.09±0.00Ad 0.10±0.01Ae C17:1 0.58±0.09Ad 0.43±0.06Be 0.43±0.09Bd 0.45±0.03Bde C18:0 5.30±1.59Aa 9.07±5.00Ab 6.74±2.39Ac 7.75±2.69Ac C18:1 0.16±0.01Bde 0.25±0.03Be 0.39±0.12Ad 0.51±0.04Ade C18:2 1.08±0.28Cc 5.86±1.12Cc 17.04±4.96Ba 24.32±3.83Aa C18:3 0.05±0.01Ce 0.22±0.03Ce 0.63±0.20Bd 0.93±0.51Ade C20:0 0.21±0.02Bde 0.26±0.03Ae 0.25±0.01Ad 0.28±0.01Ae C20:1 0.07±0.01Ae 0.07±0.02Ae 0.09±0.02Ad 0.10±0.03Ae C20:2 0.07±0.01Ae 0.07±0.04Ae 0.06±0.02Ad 0.06±0.02Ae C20:3 0.09±0.01Ae 0.06±0.01Be 0.07±0.02ABd 0.07±0.00ABe C20:4 0.03±0.00Ae 0.03±0.00Ae 0.04±0.02Ad 0.04±0.02Ae C20:5 0.06±0.02Ae 0.06±0.01Ae 0.05±0.01Ad 0.05±0.00Ae C21:0 0.01±0.00Ae 0.01±0.01Ae 0.01±0.00Ad 0.01±0.00Ae C22:0 0.05±0.01Ce 0.07±0.01BCe 0.08±0.01Bd 0.10±0.01Ae C22:1 2.21±0.29Ab 2.49±0.16Ad 2.26±0.15Ad 2.33±0.12Ad C22:2 0.34±0.05Ade 0.28±0.03Ae 0.31±0.05Ad 0.28±0.03Ae C24:0 0.09±0.00Be 0.11±0.01Be 0.11±0.02Bd 0.13±0.01Ae C24:1 0.19±0.02Ade 0.10±0.02Be 0.09±0.03Bd 0.15±0.07ABe 饱和脂肪酸总量 11.03±2.02B 28.86±5.64A 20.02±4.70AB 24.54±5.34A 单不饱和脂肪酸总量 3.90±0.32C 4.83±0.13A 4.34±0.18B 4.44±0.07B 多不饱和脂肪酸总量 1.72±0.22C 5.80±1.23C 18.19±5.12B 25.76±4.01A 注:不同大写字母表示不同样品组间差异显著(P<0.05),不同小写字母表示不同样品组间内差异显著(P<0.05);表3同。 表 3 样品消化后肠液中脂肪酸种类及含量(μg/g)
Table 3. Types and contents of fatty acids in intestinal fluid after sample digestion (μg/g)
脂肪酸种类 0-1组 1-4组 1-1组 1-0组 C8:0 0.05±0.01Ae 0.05±0.00Ad 0.05±0.00Ad 0.05±0.01Ad C12:0 0.37±0.09Ae 0.23±0.19Ad 0.16±0.09Ad 0.18±0.03Ad C14:0 2.46±0.07Ade 3.36±1.05Ad 2.65±0.32Ad 0.80±0.14Bd C14:1 1.00±0.14ABe 0.58±0.06Bd 1.62±0.58ABd 2.49±1.40Ad C15:0 0.14±0.02Ae 0.20±0.07Ad 0.21±0.05Ad 0.17±0.02Ad C15:1 1.45±0.35Ae 1.41±0.16Ad 1.13±0.34Ad 1.11±0.11Ad C16:0 70.96±8.24Ba 106.61±13.75Aa 121.86±16.31Aa 76.79±10.20Bb C17:0 0.44±0.06De 0.62±0.05Cd 0.84±0.08Bd 1.02±0.07Ad C17:1 1.08±0.20Ae 1.16±0.10Ad 0.58±0.07Bd 1.08±0.10Ad C18:0 21.98±1.52Dc 31.92±1.93Cc 46.16±1.94Bc 52.47±1.81Ac C18:1 1.21±0.26Ce 1.98±0.06Bd 2.53±0.25Bd 3.30±0.48Ad C18:2 27.93±4.93Db 59.36±4.36Cb 91.41±11.76Bb 163.78±25.42Aa C18:3 0.83±0.19De 1.83±0.17Cd 3.05±0.54Bd 6.29±0.84Ad C20:0 0.75±0.10De 1.01±0.11Cd 1.31±0.11Bd 1.66±0.03Ad C20:1 0.46±0.02Be 0.41±0.11Bd 0.68±0.20ABd 0.76±0.16Ad C20:2 0.11±0.02Be 0.12±0.03Bd 0.05±0.01Cd 0.17±0.01Ad C20:3 0.15±0.04Ae 0.16±0.04Ad 0.16±0.05Ad 0.08±0.02Bd C20:4 0.07±0.03Ae 0.06±0.01Ad 0.04±0.00Ad 0.06±0.00Ad C20:5 0.17±0.02ABe 0.25±0.07Ad 0.10±0.03Bd 0.12±0.03Bd C21:0 0.01±0.00Ce 0.05±0.00Bd 0.06±0.01Bd 0.13±0.01Ad C22:0 0.30±0.03Ce 0.53±0.08Bd 0.63±0.06Bd 0.92±0.11Ad C22:1 4.90±0.27Ad 5.26±0.47Ad 4.99±0.60Ad 5.23±0.14Ad C22:2 0.93±0.21Ae 0.56±0.11Bd 0.61±0.08ABd 0.67±0.17ABd C24:0 0.80±0.23Be 0.96±0.04ABd 1.08±0.12ABd 1.18±0.11Ad C24:1 0.23±0.03ABe 0.14±0.06Bd 0.17±0.08ABd 0.29±0.06Ad 饱和脂肪酸总量 98.26±9.59C 145.52±16.21B 180.55±21.75A 135.40±11.81B 单不饱和脂肪酸总量 10.32±0.97C 10.94±0.32BC 12.67±1.14AB 14.26±1.35A 多不饱和脂肪酸总量 30.19±5.31D 62.35±4.45C 96.90±17.14B 171.16±26.18A -
[1] 寇兴凯, 徐同成, 宗爱珍, 等. 高粱的营养价值以及应用现状[J]. 安徽农业科学,2015,43(21):271−273. [DOU X, XU T C, ZONG A Z, et al. Nutritional value of sorghum and its application status[J]. Journal of Anhui Agricultural Sciences,2015,43(21):271−273. [2] CHHIKARA N, ABDULAHI B, MUNEZERO C, et al. Exploring the nutritional and phytochemical potential of sorghum in food processing for food security[J]. Nutrition and Food Science,2018,49(2):318−332. [3] 向月, 曹亚楠, 赵钢, 等. 杂粮营养功能与安全研究进展[J]. 食品工业科技,2021,42(14):362−370. [XIANG Y, CAO Y N, ZHAO G, et al. Advances in the nutritional function and safety of coarse cereals[J]. Science and Technology of Food Industry,2021,42(14):362−370. [4] MEHMOOD S, ORHAN I, AHSAN Z, et al. Fatty acid composition of seed oil of different Sorghum bicolor varieties[J]. Food Chemistry,2008,109(4):855−859. doi: 10.1016/j.foodchem.2008.01.014 [5] HUR S J, LIM B O, DECKER E A, et al. In vitro human digestion models for food applications[J]. Food Chemistry,2011,125(1):1−12. doi: 10.1016/j.foodchem.2010.08.036 [6] 陈责, 贾慧. 体外消化模型的研究进展[J]. 农产品加工,2017(9):61−64, 68. [CHEN Z, JIA H. The advances of digestion simulation in vitro[J]. Farm Products Processing,2017(9):61−64, 68. [7] BOHN T, CARRIERE F, DAY L, et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?[J]. Critical Reviews in Food Science and Nutrition,2018,58(13):2239−2261. doi: 10.1080/10408398.2017.1315362 [8] SANCHÓN J, FERNÁNDEZ-TOMÉ S, MIRALLES B, et al. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation[J]. Food Chemistry,2018,239:486−494. doi: 10.1016/j.foodchem.2017.06.134 [9] GUERRA A, ETIENNE-MESMIN L, LIVRELLI V, et al. Relevance and challenges in modeling human gastric and small intestinal digestion[J]. Trends in Biotechnology,2012,30(11):591−600. doi: 10.1016/j.tibtech.2012.08.001 [10] EDWARDS-WEBB J D, THOMPSON S Y. Studies on lipid digestion in the preruminant calf: 2. * A comparison of the products of lipolysis of milk fat by salivary and pancreatic lipases in vitro[J]. British Journal of Nutrition,1977,37(3):431−440. doi: 10.1079/BJN19770046 [11] LI T, GUO Q, QU Y, et al. An improved gas chromatography-based approach for characterisation of fatty acids in fresh basil seed oil[J]. International Journal of Food Science & Technology,2021,56(5):2492−2503. [12] 昝光敏, 张玲, 张延瑞, 等. 大豆籽粒脂肪酸组分气相色谱检测方法的建立[J]. 中国农学通报,2021,37(9):118−124. [ZAN G M, ZHANG L, ZHANG Y R, et al. Establishment of gas chromatography for the determination of fatty acids in soybean[J]. Chinese Agricultural Science Bulletin,2021,37(9):118−124. [13] CHIU H H, KUO C H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples[J]. Journal of Food and Drug Analysis,2020,28(1):60−73. doi: 10.1016/j.jfda.2019.10.003 [14] 李小佳, 赵志红, 杨扬, 等. 气相色谱法检测食品中脂肪酸的研究进展[J]. 食品安全质量检测学报,2016,7(8):3114−3120. [LI X J, ZHAO Z H, YANG Y, et al. Research progress on detection of fatty acids in food by gas chromatography[J]. Journal of Food Safety and Quality,2016,7(8):3114−3120. [15] CALVO‐LERMA J, FORNÉS‐FERRER V, HEREDIA A, et al. In vitro digestion of lipids in real foods: Influence of lipid organization within the food matrix and interactions with nonlipid components[J]. Journal of Food Science,2018,83(10):2629−2637. doi: 10.1111/1750-3841.14343 [16] CALVO-LERMA J, ASENSIO-GRAU A, HEREDIA A, et al. Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions[J]. LWT,2020,118:108792. doi: 10.1016/j.lwt.2019.108792 [17] 姜鹏, 李忍, 戴凌燕, 等. 浸泡和微波处理对三种高粱熟化的影响[J]. 食品工业科技,2021,42(8):70−74. [JIANG P, LI R, DAI L Y, et al. Effects of soaking and microwave treatments on cultivability of three kinds of sorghums[J]. Science and Technology of Food Industry,2021,42(8):70−74. [18] MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food–an international consensus[J]. Food Function,2014,5(6):1113−1124. doi: 10.1039/C3FO60702J [19] AFIFY A E M M R, EL-BELTAGI H S, ABD EL-SALAM S M, et al. Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2012,40(1):86−92. doi: 10.15835/nbha4017585 [20] KUMAR A H G, KHATOON S, PRABHAKAR D S, et al. Effect of cooking of rice bran on the quality of extracted oil[J]. Journal of Food Lipids,2006,13(4):341−353. doi: 10.1111/j.1745-4522.2006.00057.x [21] HASSAN S, IMRAN M, AHMAD N, et al. Lipids characterization of ultrasound and microwave processed germinated sorghum[J]. Lipids in Health and Disease,2017,16(1):1−11. doi: 10.1186/s12944-016-0392-3 [22] KHATOON S, GOPALAKRISHNA A G. Fat-soluble nutraceuticals and fatty acid composition of selected Indian rice varieties[J]. Journal of the American Oil Chemists' Society,2004,81(10):939−943. doi: 10.1007/s11746-004-1005-5 [23] ZHANG Y, ZHANG T, LIANG Y, et al. Dietary bioactive lipids: A review on absorption, metabolism, and health properties[J]. Journal of Agricultural and Food Chemistry,2021,69(32):8929−8943. doi: 10.1021/acs.jafc.1c01369 [24] GOLDING M, WOOSTER T J. The influence of emulsion structure and stability on lipid digestion[J]. Current Opinion in Colloid and Interface Science,2010,15(1-2):90−101. doi: 10.1016/j.cocis.2009.11.006 [25] LAMOTHE S, CORBEIL M M, TURGEON S L, et al. Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment[J]. Food Function,2012,3(7):724−731. doi: 10.1039/c2fo10256k [26] LI Y, HU M, MCCLEMENTS D J. Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method[J]. Food Chemistry,2011,126(2):498−505. doi: 10.1016/j.foodchem.2010.11.027 [27] 叶展. 典型膳食油脂胃肠道消化吸收特性及其对肠道健康的影响研究[D]. 无锡: 江南大学, 2020YE Z. Studies on characteristics of typical dietary oil gastrointestinal digestion and absorption, and their influences on gut health[D]. Wuxi: Jiangnan University, 2020. [28] CALVO-LERMA J, ASENSIO-GRAU A, HEREDIA A, et al. Lessons learnt from MyCyFAPP Project: Effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods[J]. Food Research International,2020,133:109198. doi: 10.1016/j.foodres.2020.109198 [29] ASENSIO-GRAU A, CALVO-LERMA J, HEREDIA A, et al. Fat digestibility in meat products: Influence of food structure and gastrointestinal conditions[J]. International Journal of Food Sciences and Nutrition,2019,70(5):530−539. doi: 10.1080/09637486.2018.1542665 [30] ZHU X, YE A, VERRIER T, et al. Free fatty acid profiles of emulsified lipids during in vitro digestion with pancreatic lipase[J]. Food Chemistry,2013,139(1-4):398−404. doi: 10.1016/j.foodchem.2012.12.060 [31] JORIS P J, MENSINK R P. Role of cis-monounsaturated fatty acids in the prevention of coronary heart disease[J]. Current Atherosclerosis Reports,2016,18(7):1−7. [32] 晁红娟, 雷占兰, 刘爱琴, 等. Omega-3多不饱和脂肪酸性质、功能及主要应用[J]. 中国食品添加剂,2019,30(10):122−130. [CHAO H J, LEI Z L, LIU A Q, et al. Properties, functions and main applications of Omega-3 polyunsaturated fatty acids[J]. China Food Additives,2019,30(10):122−130. [33] KANNER J. Dietary advanced lipid oxidation endproducts are risk factors to human health[J]. Molecular Nutrition and Food Research,2007,51(9):1094−1101. doi: 10.1002/mnfr.200600303 [34] 刘秀妨, 刘胜男, 马云芳, 等. 胃肠道消化过程中脂质氧化的影响因素、健康危害及控制研究进展[J]. 食品工业科技,2017,38(21):330−335. [LIU X F, LIU S N, MA Y F, et al. Research progress on the influencing factors, health hazards, and control of lipid oxidation during gastrointestinal digestion[J]. Science and Technology of Food Industry,2017,38(21):330−335. [35] 田蒙蒙, 李娜, 魏富强, 等. 脂质体在体外消化过程中的氧化稳定性[J]. 食品工业科技,2016,37(22):154−158,163. [TIAN M M, LI N, WEI F Q, et al. Oxidative stability of liposomes during in vitro digestion[J]. Science and Technology of Food Industry,2016,37(22):154−158,163. [36] 王昊. 不同加工处理对糙米食用性、消化性和酸败的影响[D]. 杭州: 浙江大学, 2020WANG H. Effect of different treatments on edibility, digestibility and rancidity of brown rice[D]. Hangzhou: Zhejiang University, 2020. -