• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

六堡茶渥堆与蒸压工艺真菌多样性研究

吴新惠, 杜金杰, 刘晓纯, 廖楷滨, 覃玉娜, 梁炜杰, 邱瑞瑾, 张灵枝

吴新惠,杜金杰,刘晓纯,等. 六堡茶渥堆与蒸压工艺真菌多样性研究[J]. 食品工业科技,2023,44(16):172−179. doi: 10.13386/j.issn1002-0306.2022100139.
引用本文: 吴新惠,杜金杰,刘晓纯,等. 六堡茶渥堆与蒸压工艺真菌多样性研究[J]. 食品工业科技,2023,44(16):172−179. doi: 10.13386/j.issn1002-0306.2022100139.
WU Xinhui, DU Jinjie, LIU Xiaochun, et al. Study on Fungal Diversity during the Pile-fermentation and Autoclaved Process of Liupao Tea[J]. Science and Technology of Food Industry, 2023, 44(16): 172−179. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100139.
Citation: WU Xinhui, DU Jinjie, LIU Xiaochun, et al. Study on Fungal Diversity during the Pile-fermentation and Autoclaved Process of Liupao Tea[J]. Science and Technology of Food Industry, 2023, 44(16): 172−179. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100139.

六堡茶渥堆与蒸压工艺真菌多样性研究

详细信息
    作者简介:

    吴新惠(1997−),女,硕士研究生,研究方向:茶叶生物化学与茶叶保健功效,E-mail:wuxinhui_scau@163.com

    通讯作者:

    张灵枝(1972−),女,博士,副教授,研究方向:茶叶生物化学与茶叶深加工综合利用,E-mail:lingzhi@scau.edu.cn

  • 中图分类号: TS272.5

Study on Fungal Diversity during the Pile-fermentation and Autoclaved Process of Liupao Tea

  • 摘要: 六堡茶独特的感官品质与保健功效与其后发酵过程微生物的参与具有密切联系。为探究六堡茶渥堆与蒸压工艺过程中真菌的多样性及分布规律,利用传统分离培养法与分子生物学鉴定技术对六堡茶毛茶、渥堆各个阶段以及蒸压后共14个样品中的真菌进行研究。结果表明:从研究样品中分离到13个属,39种真菌。其中,22种真菌为首次在六堡茶中报道,包括3种金花菌和6种酵母菌。研究发现六堡毛茶及渥堆茶样中Aspergillus(曲霉属)和Penicillium(青霉属)是主要的优势菌属,蒸压后,样品中只能分离出Aspergillus niger(黑曲霉)、Aspergillus sydowii(聚多曲霉)、Penicillium laevePenicillium gerundense四种真菌,其他曲霉属和青霉属真菌几乎无法检测到。蒸压后的样品中以Talaromyces(篮状菌属)为主要的优势菌属。在种水平上,所有茶样中,Aspergillus nigerArxula adeninivorans是主要的优势菌种。研究结果丰富了六堡茶加工过程真菌多样性的认知,并为进一步探究不同茶源真菌对六堡茶品质影响提供了材料基础和理论依据。
    Abstract: The unique sensory quality and health effect of Liupao tea are closely related to the participation of microorganisms in the pile-fermentation process. In order to explore the diversity and distribution of fungi in Liupao tea samples during the pile-fermentation and autoclaved process, traditional isolation and culture method and molecular biological identification technology were used to isolate and identify fungi from 14 samples including the Liupao raw tea, the samples of pile-fermentation process and those of autoclaved process in this study. The results were as follows: 13 genera and 39 species fungi were isolated and identified from the samples. Among them, 23 fungi were reported firstly in Liupao tea, including 3 species of golden flower fungi and 6 species of yeasts. Aspergillus and Penicillium were the dominant fungi genera in Liupao raw tea and the samples of pile-fermentation process. Only Aspergillus niger, Aspergillus sydowii, Penicillium laeve and Penicillium gerundense could be isolated from the samples after autoclaved, and other Aspergillus and Penicillium fungi were almost undetectable. Talaromyces was the dominant genus in the samples of autoclaved process. In terms of species, Aspergillus niger and Arxula adeninivorans were the dominant fungal in all tea samples. The results would enrich the cognition of fungal diversity during the processing of Liupao tea, and provide the material basis and theoretical basis for further exploring the effects of different tea source fungi on the quality of Liupao tea.
  • 六堡茶是广西特有的历史名茶,早在清嘉庆年间就以“红、浓、陈、醇”及其独特的槟榔香味而入选中国名茶之一[1]。六堡茶耐于久藏,且越陈越香[2],具有降血脂、降血糖、抗氧化、抗菌、保护肝脏、抗肿瘤等保健功效[3-4]。发酵食品的品质风味受众多因素影响,而发酵过程中的微生物是影响发酵食品品质风味最重要的因素[5-6]。六堡茶作为一种典型的后发酵茶,其微生物多样性及各种微生物对茶叶品质风味的影响一直以来都是黑茶研究的热点[7]。渥堆过程大量微生物以茶叶为养料自发性的生长并分泌多种胞外酶。茶叶在湿热作用和胞外酶作用下,内部发生了茶多酚类物质的氧化聚合,蛋白质、纤维素等大分子物质水解,各种产物进一步产生聚合、裂解、甲基化、糖基化、脱羧、脱氨等一系列反应[8],从而形成六堡茶独特的感官品质。因此,探明六堡茶渥堆过程微生物的多样性及其分布规律,对进一步探究不同微生物对六堡茶感官品质和保健功效的影响以及改善六堡茶加工工艺具有重要意义。

    温志杰等[9-10]研究发现,酵母菌是六堡茶渥堆过程中的优势种群,而其中的优势酵母菌Arxula adeninivorans能够参与多种糖的同化作用,对茶叶成分转化、风味形成起着重要作用。黄紫衡等[11]从不同渥堆阶段的六堡茶中分离到真菌13个属23个种,其中有9种真菌是首次在六堡茶中分离并报道的微生物,发现黑曲霉、塔宾曲霉、Blastobotrys adeninivorans在整个渥堆过程中都有检出,渥堆前期优势真菌主要为酵母、曲霉、青霉和根毛霉。毛彦等[12]从成品六堡茶中分离到一株金花菌,名为Eurotium niveoglaucum(雪黄散囊菌)。欧惠算[13]对12种不同年份、不同茶厂的六堡茶茶样进行研究,分离到8个属22种微生物,发现不同茶厂茶样的微生物虽然差异很大,但都以曲霉属、青霉属以及酵母属为主,还发现存放年限为3、6、9年的茶样几乎分离不到微生物。徐书泽[14]利用高通量测序技术从梧州茶厂4个成品六堡茶中鉴定得到3个门,7个纲,9个目,6个科及8个属的真菌类群,其中曲霉属和散囊菌属在4个样品中相对丰度最高,为优势菌属;还利用传统分离培养技术从3个不同茶厂中鉴定得到5个属18种微生物,其中以曲霉属和青霉属为优势菌属。陈庆金等[15]利用Miseq测序技术对陈化初期六堡茶真菌进行研究,发现,随着陈化进行,真菌多样性先降低后升高,优势菌群为曲霉属和散囊菌属。陈然等[16]对六堡茶产品真菌进行分析发现,优势菌种为散囊菌属真菌,不同厂家真菌种类各有差异,都检测出不同含量的金花菌。胡沛然[17]利用传统培养法从六堡茶渥堆茶样中首次分离鉴定出嗜热菌,并筛选出伞状毛霉菌、塔宾曲霉和烟曲霉三株产多酚氧化酶的嗜热菌。前人研究发现黑茶发酵过程中对茶多酚物质转化影响最大的是微生物中的霉菌,其次是酵母,细菌对其影响最小[18],表明真菌是影响黑茶发酵过程的关键因素。目前关于六堡茶真菌的研究主要集中在渥堆阶段与成品茶。对毛茶及蒸压工艺前后真菌多样性的研究相对较少。蒸压工艺是六堡茶结束渥堆后的一道重要工序。高温蒸汽会杀死部分真菌,而留下来的真菌与陈放环境中的真菌一起参与了六堡茶陈化,对六堡茶“红、浓、陈、醇”的品质形成具有重要影响。

    因此,本研究利用传统分离培养和分子生物学技术相结合的方法,对六堡茶毛茶、渥堆以及汽蒸后共14个茶样可培养真菌进行分离鉴定,探究六堡茶渥堆过程与蒸压工艺后真菌多样性及分布规律,为进一步探究不同茶源真菌对六堡茶品质影响提供了材料基础和理论依据。

    马铃薯葡萄糖琼脂培养基(PDA)、查氏琼脂培养基(CA) 广东环凯微生物科技有限公司,培养基配制后用高压灭菌锅灭菌20 min、121 ℃备用。

    GXZ-250A恒温光照培养箱 宁波江南仪器厂;SW-CJ-2F双人双面净化工作台 苏州净化设备有限公司;DM750光学显微镜 徕卡显微系统(上海)有限公司;WACS-1060自动高压蒸汽灭菌锅 韩国DAIHAN科学有限公司。

    茶样取自广西中茶茶厂2020年渥堆发酵茶样,茶堆翻堆时温度不超过60 ℃,发酵时控制茶堆含水量为18%~28%。取样包括毛茶、翻堆6次(分为堆表DB和堆内DN)及汽蒸后(汽蒸温度160~180 ℃,2~3 min)茶样共14个茶样,编号为毛茶、DN1~DN6、DB1~DB6以及汽蒸后茶样。其中,样品取样采用五点取样法,每次取300 g左右,每个样品3个重复,样品取出后于−80 ℃保存待用。

    参照欧惠算的方法[19]并稍作修改,具体如下:

    分离:称取茶样25 g放入500 mL三角瓶,加入无菌水225 mL后置于摇床上摇振15 min,制得10−1倍菌悬液,再将其稀释为10−2~10−7倍菌悬液备用。用移液枪吸取1 mL菌悬液均匀涂布在提前备好的PDA和CA平板上,每个样品三个重复,对照组(CK)为无菌水。将样品密封后放到28 ℃恒温培养箱内培养7 d,每天观察并拍照记录。

    菌株纯化后编号,三点接种于CA培养基上,28 ℃培养7 d,拍摄菌株在平板上的正反面,观察并记录菌株形态特征;利用光学显微镜观察菌株产孢结构、菌丝形态,孢子大小、形状及颜色等特征。

    DNA序列分析:将活化好的菌株用平板划线法划线生长7 d后送往上海生工技术有限公司进行测序分析。应用引物ITS1和ITS4进行分析,测定序列。

    图片拼接采用Photoshop,系统发育树绘制采用MEGA-X软件。将得到的序列上传至NCBI数据库用Blast软件进行同源序列比对分析,选择相似性大于99%的序列作为菌种鉴定参考,用MEGA-X软件进行邻接法(neighbor-joining)聚类构建参考菌与鉴定菌种的系统发育树。

    从毛茶、渥堆阶段及汽蒸后六堡茶样品中分离出的81株菌,在28 ℃恒温培养箱中培养7 d后,利用光学显微镜观察菌株的菌落、菌丝、分生孢子梗、分生孢子头和分生孢子,所有菌株的形态特征如图1所示,参照《真菌鉴定手册》和《中国真菌志》,再根据所示的ITS序列鉴定结果,用邻接法构建系统发育树,如图2所示。去重后鉴定为13个属39种真菌。渥堆过程中真菌种类最丰富,分离到9个属33种真菌,其次为毛茶5个属10种真菌,蒸后6个属9种真菌。在属水平上,曲霉属、篮状菌属和酵母属真菌在所有茶样中均检测到,六堡毛茶和渥堆过程中主要为曲霉属和青霉属的真菌,且毛茶中分离到的10种真菌大多数在翻堆前期和中期仍然存在,推测发酵过程中的大部分真菌是来自于茶原料。蒸后茶样中以篮状菌属真菌为主,曲霉属和青霉属大量消失,几乎检测不到,推测部分真菌已被高温蒸汽杀死。Penicillium commune(团青霉)、Aureobasidium pullulans(出芽短梗霉)、Aureobasidium melanogenum(产黑色素短梗霉)只在毛茶中检测到,Aspergillus chevalieri(谢瓦氏曲霉)、Aspergillus niger(黑曲霉)、Aspergillus tubingensis(塔宾曲霉)、Aspergillus sydowii(聚多曲霉)、Aspergillus ruber(赤曲霉)、Aspergillus versicolor(杂色曲霉)、Aspergillus amstelodami(阿姆斯特丹曲霉)、Aspergillus fumigatus(烟曲霉)、Aspergillus keratitidis、Aspergillus montevidensis、Aspergillus intermedius、Aspergillus flavus、Penicillium chermesinum(鲜红青霉)、Penicillium manginiiPenicillium citrinum(桔青霉)、Penicillium mallochii(马洛奇青霉)、Penicillium sumatraensePenicillium senticosum(刺青霉)、Penicillium griseofulvum(灰黄青霉)、Penicillium brocae、Talaromyces pinophilus、Talaromyces cellulolyticus、Talaromyces amestolkiae、Cladosporium sphaerospermumCladosporium tenuissimumMicroascus trigonosporusPseudocercosporella fraxiniArxula adeninivoransRhodotorula diobovataSakaguchia dacryoideaTrichomonascus ciferriiMoesziomyces antarcticus只在渥堆过程中检测到,而Triodiomyces crassus、Penicillium laeve(无绒毛青霉)、Penicillium gerundense、Talaromyces siamensis只在蒸后茶样中检测到。在所有分离到的真菌中还包括6种金花菌,分别为Aspergillus chevalieri、Aspergillus ruber、Aspergillus amstelodamiAspergillus montevidensisAspergillus intermediusPenicillium manginii,以及7种酵母菌,Arxula adeninivoransAureobasidium pullulansAureobasidium melanogenumRhodotorula diobovataSakaguchia dacryoideaTrichomonascus ciferriiMoesziomyces antarcticus

    图  1  菌株的形态分析
    注:菌株在CA培养基平板上正面(A)、反面(B);菌株在光学显微镜下菌丝形态(C)、分生孢子头形态(D)。
    Figure  1.  Morphological analysis of strains
    图  2  分离到的真菌与Blast比对结果的系统发育树
    Figure  2.  Phylogenetic tree of the isolated fungi and Blast comparison results

    表1可知,酵母菌Arxula adeninivorans在所有样品中均出现,Aureobasidium pullulansAureobasidium melanogenum只在毛茶中分离到,Rhodotorula diobovataSakaguchia dacryoideaTrichomonascus ciferriiMoesziomyces antarcticus 4种酵母菌出现在渥堆中后期。6种金花菌只在渥堆前中期出现。篮状菌属真菌主要分布于渥堆中后期,其中Talaromyces pinophilus只在第六次翻堆中未分离到。枝孢属真菌出现于翻堆中期及蒸后茶样中。渥堆前期,随着茶堆温度逐渐升高,喜温喜湿的曲霉属和青霉属真菌迅速增加,成为发酵前期的主要真菌;渥堆后期,随着茶堆含水量的降低,曲霉属和青霉属真菌种类骤减,酵母属和篮状菌属真菌大量出现。第三次翻堆时分离到的真菌种类最多,且在所有渥堆样品中堆表的真菌种类都比堆内多。在第六次翻堆时分离到的黑曲霉和Talaromyces amestolkiae在汽蒸后仍然出现,说明其耐高温,为嗜热菌。

    表  1  渥堆及蒸压过程六堡茶真菌分布情况
    Table  1.  Distribution of fungi in Liupao tea during the pile-fermentation and autoclaved process
    毛茶NB1DN1NB2DN2NB3DN3NB4DN4NB5DN5NB6DN6蒸后频率
    曲霉属Aspergillus chevalieri+++++++7
    Aspergillus tubingensis++++++++++10
    Aspergillus niger++++++++++++++14
    Aspergillus sydowii++2
    Aspergillus keratitidis+1
    Aspergillus montevidensis+++3
    Aspergillus ruber+++3
    Aspergillus intermedius+1
    Aspergillus versicolor+++3
    Aspergillus amstelodami++2
    Aspergillus fumigatus++++++6
    Aspergillus flavus+1
    青霉属
    Penicillium chermesinum++++4
    Penicillium manginii+1
    Penicillium citrinum++2
    Penicillium commune+1
    Penicillium mallochii+1
    Penicillium sumatraense+1
    Penicillium senticosum+1
    Penicillium griseofulvum++2
    Penicillium brocae+1
    Penicillium laeve+1
    Penicillium gerundense+1
    蓝状菌属Talaromyces pinophilus++++++++++10
    Talaromyces cellulolyticus++2
    Talaromyces amestolkiae+++++5
    Talaromyces siamensis+1
    枝孢属Cladosporium sphaerospermum+1
    Cladosporium tenuissimum++2
    短梗霉属Aureobasidium pullulans+1
    Aureobasidium melanogenum+1
    ArxulaArxula adeninivorans++++++++++++++14
    红酵母属Rhodotorula diobovata+1
    TrichomonascusTrichomonascus ciferrii+1
    TriodiomycesTriodiomyces crassus+1
    微球菌属Microascus trigonosporus+1
    PseudocercosporellaPseudocercosporella fraxini+1
    SakaguchiaSakaguchia dacryoidea+++3
    MoesziomycesMoesziomyces antarcticus+1
    注:“+”表示“有分离到”,“−”表示“未分离到”。
    下载: 导出CSV 
    | 显示表格

    黑曲霉、Talaromyces amestolkiaeArxula adeninivorans在汽蒸前后均分离到,这与欧惠算等[20]的研究结果有一定差异,可能由于不同厂家生产的六堡茶原料及渥堆环境中所含微生物群落结构不同,汽蒸处理后,参与后期陈化阶段的微生物也不一样,从而导致不同厂家六堡茶风味不同。本研究分离到22种真菌,为首次在六堡茶中发现并报道,其中, Aspergillus keratitidis、Aspergillus montevidensis、Aspergillus intermedius、Penicillium sumatraense、Penicillium senticosum、Talaromyces cellulolyticus、Talaromyces amestolkiae、Cladosporium tenuissimumMicroascus trigonosporusPseudocercosporella fraxini、Rhodotorula diobovataSakaguchia dacryoideaMoesziomyces antarcticusTrichomonascus coferrii在渥堆过程中分离到,Penicillium manginiiPenicillium communeTalaromyces pinophilusAureobasidium pullulansAureobasidium melanogenum在毛茶中分离到,Penicillium laeve、Talaromyces siamensisTriodiomyces crassus在汽蒸后茶样中分离到。

    首次分离到的曲霉属和青霉属真菌在其他研究中有报道,如,Aspergillus keratitidis是一株海洋真菌[21],能够在固体和液体两种介质中对合成染料进行脱色[22]Penicillium laeve曾在壁画中分离到[23]Penicillium senticosum是一种药用植物内生真菌[24]Penicillium commune从四川黑茶渥堆过程中分离到,是一株分泌纤维素酶、果胶酶效果较好的菌株[25],但其在六堡茶渥堆过程中的功效作用还有待进一步验证;Penicillium sumatraense是中国南海软珊瑚共附生真菌中的一种[26]

    本研究共分离到6种金花菌,其中Aspergillus montevidensisAspergillus intermediusPenicillium manginii首次在六堡茶中发现,而谢瓦氏曲霉、赤曲霉和阿姆斯特丹曲霉是六堡茶渥堆及陈化过程中曾报道过的金花菌[13,16,19,27-28]。苏赞等[27]从广西梧州六堡茶中分离到两株谢瓦氏曲霉,能分泌一定量的果胶酶、纤维素酶和淀粉酶;欧惠算[13]发现阿姆斯特丹曲霉液态发酵过程中能降低茶多酚、黄酮类、氨基酸以及可溶性糖的含量,使茶褐素含量总体增加。Aspergillus montevidensisAspergillus intermedius同为茯砖茶中的金花菌[29-30]Aspergillus montevidensis还是一种嗜盐真菌[31];杨苗等[32]通过研究NaCl浓度对“金花菌”菌株的影响发现Aspergillus intermediusAspergillus costiforme具有更强的耐盐特性;Penicillium manginii为金花普洱茶中曾报道过的优势菌,Zhou等[33]通过对比贮藏过程金花普洱茶和普洱茶的化学成分和真菌群落,发现Penicillium manginii与可溶性糖呈高度显著正相关(P<0.01)。

    本研究在所有样品中分离到7种酵母菌。其中,Arxula adeninivorans是六堡茶中发现并报道过的优势菌酵母菌,有研究证明,Arxula adeninivorans能分泌大量胞外酶,参与多种糖的同化作用,促进茶叶中多酚类物质的转化,对六堡茶发酵和品质的影响显著[10]。其他6种酵母菌为首次在六堡茶中分离。Rhodotorula diobovata是大棚果蔬的优势酵母菌[34],产油脂和胡萝卜素[35]Trichomonascus coferrii在曲霉型豆豉后发酵过程中也有分离得到,经鉴定为产香酵母,利用该菌株纯种发酵豆豉能高产脂类化合物,赋予豆豉更浓郁的酯香、花香和果香,可用于纯种发酵工业化生产豆豉[36];在一定的培养条件下Aureobasidium pullulan能产生胞外多糖,产生的短梗霉多糖不会影响茶叶品质,对绿茶中的茶多酚有较好的保护作用,同时还附加了茶叶的保健作用[37];张鹏等[38]从烟叶中筛选到的Aureobasidium melanogenum是一株产果香型菌株,可作为一种提高烟草品质的香料来源。酵母菌对于六堡茶的品质形成具有重要影响,因此,筛选鉴定六堡茶中的有益酵母菌可为未来开发六堡茶发酵菌种提供理论指导及菌种来源。

    本研究首次从黑茶中分离到4种篮状菌属真菌,Talaromyces sp.(篮状菌)广泛分布在食物、植物、土壤和海绵中,其代谢产物种类丰富且部分具有较好的生物活性[39]。分离到2株枝孢属真菌,Cladosporium tenuissimum首次在黑茶中被分离出,具有高产纤维素酶的能力[40]Cladosporium sphaerospermum菌株曾被从蜂巢珊瑚中分离出,其发酵液具有很强的抗氧化活性。

    本研究结果显示,六堡茶渥堆及蒸压过程中真菌种类丰富,存在多种酵母菌和金花菌。首次发现存在于六堡茶的22种真菌,其中部分真菌对黑茶品质的形成有重要影响[41],而未在黑茶中报道过的真菌在其他食品研发[36]和植物病原菌抑制[42]等方面也发挥着重要作用,但对其在六堡茶发酵过程中的功效及安全性还有待进一步研究。因此,筛选鉴定六堡茶有益菌并将其应用于六堡茶发酵对提升六堡茶品质具有积极意义。本研究可为改善六堡茶加工工艺提供材料基础和理论依据。

  • 图  1   菌株的形态分析

    注:菌株在CA培养基平板上正面(A)、反面(B);菌株在光学显微镜下菌丝形态(C)、分生孢子头形态(D)。

    Figure  1.   Morphological analysis of strains

    图  2   分离到的真菌与Blast比对结果的系统发育树

    Figure  2.   Phylogenetic tree of the isolated fungi and Blast comparison results

    表  1   渥堆及蒸压过程六堡茶真菌分布情况

    Table  1   Distribution of fungi in Liupao tea during the pile-fermentation and autoclaved process

    毛茶NB1DN1NB2DN2NB3DN3NB4DN4NB5DN5NB6DN6蒸后频率
    曲霉属Aspergillus chevalieri+++++++7
    Aspergillus tubingensis++++++++++10
    Aspergillus niger++++++++++++++14
    Aspergillus sydowii++2
    Aspergillus keratitidis+1
    Aspergillus montevidensis+++3
    Aspergillus ruber+++3
    Aspergillus intermedius+1
    Aspergillus versicolor+++3
    Aspergillus amstelodami++2
    Aspergillus fumigatus++++++6
    Aspergillus flavus+1
    青霉属
    Penicillium chermesinum++++4
    Penicillium manginii+1
    Penicillium citrinum++2
    Penicillium commune+1
    Penicillium mallochii+1
    Penicillium sumatraense+1
    Penicillium senticosum+1
    Penicillium griseofulvum++2
    Penicillium brocae+1
    Penicillium laeve+1
    Penicillium gerundense+1
    蓝状菌属Talaromyces pinophilus++++++++++10
    Talaromyces cellulolyticus++2
    Talaromyces amestolkiae+++++5
    Talaromyces siamensis+1
    枝孢属Cladosporium sphaerospermum+1
    Cladosporium tenuissimum++2
    短梗霉属Aureobasidium pullulans+1
    Aureobasidium melanogenum+1
    ArxulaArxula adeninivorans++++++++++++++14
    红酵母属Rhodotorula diobovata+1
    TrichomonascusTrichomonascus ciferrii+1
    TriodiomycesTriodiomyces crassus+1
    微球菌属Microascus trigonosporus+1
    PseudocercosporellaPseudocercosporella fraxini+1
    SakaguchiaSakaguchia dacryoidea+++3
    MoesziomycesMoesziomyces antarcticus+1
    注:“+”表示“有分离到”,“−”表示“未分离到”。
    下载: 导出CSV
  • [1] 李颖, 刘小玲. 六堡茶的水溶性成分分析与研究进展[J]. 广西质量监督导报,2010(10):45−47. [LI Y, LIU X L. Analysis and research progress of water-soluble constituents of Liupao tea[J]. Guangxi Quality Supervision Guide,2010(10):45−47. doi: 10.3969/j.issn.1009-6310.2010.10.017

    LI Y, LIU X L. Analysis and research progress of water-soluble constituents of Liupao tea[J]. Guangxi Quality Supervision Guide, 2010(10): 45-47. doi: 10.3969/j.issn.1009-6310.2010.10.017

    [2] 何志强. 弘扬六堡茶文化 做强六堡茶产业[J]. 中国茶叶,2007(4):32−38. [HE Z Q. Promote the tea culture and strengthen the tea industry[J]. China Tea,2007(4):32−38. doi: 10.3969/j.issn.1000-3150.2007.04.003

    HE Z Q. Promote the tea culture and strengthen the tea industry [J]. China Tea, 2007(4): 32-38. doi: 10.3969/j.issn.1000-3150.2007.04.003

    [3] 龚受基, 滕翠琴, 梁东姨, 等. 六堡茶茶褐素体外降脂功效研究[J]. 茶叶科学,2020,40(4):536−543. [GONG S J, TENG C Q, LIANG D Y, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science,2020,40(4):536−543. doi: 10.3969/j.issn.1000-369X.2020.04.012

    GONG S J, TENG C Q, LIANG D Y, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science, 2020, 40(4): 536-543. doi: 10.3969/j.issn.1000-369X.2020.04.012

    [4] 龙志荣, 邱瑞瑾, 马士成, 等. 六堡茶研究进展[J]. 中国茶叶加工,2017(1):40−45. [LONG Z R, QIU R J, MA S C, et al. Research progress of Liupao tea[J]. China Tea Processing,2017(1):40−45. doi: 10.15905/j.cnki.33-1157/ts.2017.01.007

    LONG Z R, QIU R J, MA S C, et al. Research progress of Liupao tea [J]. China Tea Processing, 2017(1): 40-45. doi: 10.15905/j.cnki.33-1157/ts.2017.01.007

    [5] 任聪, 杜海, 徐岩. 中国传统发酵食品微生物组研究进展[J]. 微生物学报,2017,57(6):885−898. [REN C, DU H, XU Y. Research progress on the microbiome of traditional fermented food in China[J]. Acta Microbiologica Sinica,2017,57(6):885−898.

    REN C, DU H, XU Y. Research progress on the microbiome of traditional fermented food in China[J]. Acta Microbiologica Sinica, 2017, 57(6): 885-898.

    [6] 刘飞翔, 董其惠, 吴蓉, 等. 不同国家和地区传统发酵食品及其发酵微生物研究进展[J]. 食品科学,2020,41(21):338−350. [LIU F X, DONG Q H, WU R, et al. Recent advances in traditional fermented foods and starter cultures for their production in different countries and regions[J]. Food Science,2020,41(21):338−350. doi: 10.7506/spkx1002-6630-20191121-254

    LIU F X, DONG Q H, WU R, et al. Recent advances in traditional fermented foods and starter cultures for their production in different countries and regions[J]. Food Science, 2020, 41(21): 338-350. doi: 10.7506/spkx1002-6630-20191121-254

    [7] 杜金杰, 刘晓纯, 吴新慧, 等. 六堡茶微生物多样性研究进展[J]. 广东茶业,2021(4):2−8. [DU J J, LIU X C, WU X H, et al. Research progress on microbial diversity of Liupao tea[J]. Guangdong Tea,2021(4):2−8. doi: 10.3969/j.issn.1672-7398.2021.04.001

    DU J J, LIU X C, WU X H, et al. Research progress on microbial diversity of Liupao tea[J]. Guangdong Tea, 2021(4): 2-8. doi: 10.3969/j.issn.1672-7398.2021.04.001

    [8] 张阳. 普洱茶发酵过程中微生物群落结构动态分析[D]. 天津: 天津科技大学, 2012

    ZHANG Y. Microbal community structure dynamics of Pu-er tea fermenting[D]. Tianjin: Tianjin University of Science and Technology, 2012.

    [9] 温志杰, 石荣强, 何勇强, 等. 六堡茶渥堆过程中微生物种群变化的研究[J]. 安徽农业科学,2012,40(2):1009−1011. [WEN Z J, SHI R Q, HE Y Q, et al. Research on variation of microbial communities of Liupao tea during pile fermentation[J]. Journal of Anhui Agri,2012,40(2):1009−1011. doi: 10.3969/j.issn.0517-6611.2012.02.144

    WEN Z J, SHI R Q, HE Y Q, et al. Research on variation of microbial communities of Liupao tea during pile fermentation[J]. Journal of Anhui Agri. 2012, 40(2): 1009-1011. doi: 10.3969/j.issn.0517-6611.2012.02.144

    [10] 温志杰, 卢洁, 曹璐璐, 等. 六堡茶渥堆过程中优势酵母菌的分离与鉴定[J]. 基因组学与应用生物学,2016,35(5):1149−1155. [WEN Z J, LU J, CAO L L, et al. The isolation and identification of the dominant yeast of Liupao tea during pile-fermentaion[J]. Genomics and Applied Biology,2016,35(5):1149−1155.

    WEN Z J, LU J, CAO L L, et al. The isolation and identification of the dominant yeast of Liupao tea during pile-fermentaion[J]. Genomics and Applied Biology, 2016, 35(5): 1149-1155.

    [11] 黄紫衡, 陈欢, 黄丽, 等. 六堡茶渥堆过程中可培养微生物的分离与鉴定[J]. 食品科学,2022,43(16):177−185. [HUANG Z H, CHEN H, HUANG L, et al. Isolation and identification of culturable microbes during the fermentation of Liupao tea[J]. Food Science,2022,43(16):177−185. doi: 10.7506/spkx1002-6630-20210830-389

    HUANG Z H, CHEN H, HUANG L, et al. Isolation and identification of culturable microbes during the fermentation of Liupao tea[J]. Food Science, 2022, 43(16): 177-185. doi: 10.7506/spkx1002-6630-20210830-389

    [12] 毛彦, 黄丽, 韦保耀, 等. 广西六堡茶“金花”菌的分离与分子鉴定[J]. 茶叶科学,2013,33(6):556−561. [MAO Y, HUANG L, WEI B Y, et al. Isolation and molecular identification of fungal colonization on Liupao tea in Guangxi[J]. Journal of Tea Science,2013,33(6):556−561.

    MAO Y, HUANG L, WEI B Y, et al. Isolation and molecular identification of fungal colonization on Liupao tea in Guangxi. Journal of Tea Science, 2013, 33(6): 556-561.

    [13] 欧惠算. 六堡茶微生物的分离鉴定及优势菌对茶叶成分的影响研究[D]. 广州: 华南农业大学, 2017

    OU H S. Isolation and identification of microbial from Liupao tea and study on the influence of superiority strains of tea compounds[D]. Guangzhou: South China Agricultural University, 2017.

    [14] 徐书泽. 六堡茶中真菌的多样性分析[D]. 南宁: 广西大学, 2014

    XU S Z. Fungal community analysls of Liupao tea[D]. Nanning: Guangxi University, 2014.

    [15] 陈庆金, 黄丽, 滕建文, 等. 基于Miseq测序分析六堡茶陈化初期真菌多样性[J]. 食品科技,2015,40(8):67−71. [CHEN Q J, HUANG L, TENG J W, et al. Fungal community of Liupao tea during the early aging process by high-throughput sequencing technologies with Miseq[J]. Food Science and Technology,2015,40(8):67−71.

    CHEN Q J, HUANG L, TENG J W, et al. Fungal community of Liupao tea during the early aging process by high-throughput sequencing technologies with Miseq[J]. Food science and technology, 2015, 40(8): 67-71.

    [16] 陈然, 郝彬秀, 田海霞, 等. 六堡茶真菌分布浅析及金花菌筛选鉴定[J]. 食品科技,2016,41(4):19−23. [CHEN R, HE B X, TIAN H X, et al. Distribution of fungal strains and molecular identifi cation of Eurotium cristatum in Liupao tea[J]. Food science and technology,2016,41(4):19−23.

    CHEN R, HE B X, TIAN H X, et al. Distribution of fungal strains and molecular identifi cation of Eurotium cristatum in Liupao tea[J]. Food science and technology, 2016, 41(4): 19-23.

    [17] 胡沛然. 六堡茶多酚氧化酶及其产生菌对茶叶品质的应用[D]. 南宁: 广西大学, 2019

    HU P R. Research on polyphenol oxidase in Liupao tea and the application of PPO producing microorganism to tea quality[D]. Nanning: Guangxi University, 2019.

    [18] 付秀娟, 宋文军, 徐咏全, 等. 不同种类微生物对普洱茶发酵过程的影响[J]. 茶叶科学,2012,32(4):325−330. [FU X J, SONG W J, XU Y Q, et al. Effects of different microorganisms on the fermentative process of Pu-erh tea[J]. Journal of Tea Science,2012,32(4):325−330. doi: 10.3969/j.issn.1000-369X.2012.04.007

    FU X J, SONG W J, XU Y Q, et al. Effects of different microorganisms on the fermentative process of Pu-erh tea[J]. Journal of Tea Science, 2012, 32(4): 325-330. doi: 10.3969/j.issn.1000-369X.2012.04.007

    [19] 欧惠算, 邓旭铭, 张灵枝, 等. 六堡茶中金花菌的分离与鉴定[J]. 南方农业学报,2017,44(2):129−135. [OU H S, DNEG X M, ZHANG L Z, et al. Isolation and Identification of Jinhua Fungi in Liubao Tea[J]. Journal of Southern Agriculture,2017,44(2):129−135.

    OU H S, DNEG X M, ZHANG L Z, et al. Isolation and Identification of Jinhua Fungi in Liubao Tea [J]. Journal of Southern Agriculture, 2017, 44(2): 129-135.

    [20] 欧惠算, 邓旭铭, 张灵枝, 等. 汽蒸前后六堡茶中优势微生物的分离鉴定[J]. 广东农业科学,2017,44(2):129−135. [OU H S, DNEG X M, ZHANG L Z, et al. Isolation and identification of dominant microorganisms of Liupao tea before and after steaming[J]. Guangdong Agricultural Sciences,2017,44(2):129−135.

    OU H S, DNEG X M, ZHANG L Z, et al. Isolation and identification of dominant microorganisms of Liupao tea before and after steaming[J]. Guangdong Agricultural Sciences, 2017, 44(2): 129-135.

    [21]

    WONG CHIN J M, PUCHOOA D, BAHORUN T, et al. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius[J]. International Biomechanics,2021,12(4):231−244.

    [22]

    IDRIS I, RAHMADHANI I, SUDIANA I M. Feasibility of Aspergillus keratitidis InaCC1016 for synthetic dyes removal in dyes wastewater treatment[J]. IOP Conference Series: Earth and Environmental Science,2020,439(1):12027. doi: 10.1088/1755-1315/439/1/012027

    [23] 武发思, 武光文, 刘岩, 等. 太原北齐徐显秀墓壁画真菌群落组成与菌害成因[J]. 微生物学通报,2016,43(3):479−487. [WU F S, WU G W, LIU Y, et al. Fungal community composition on normal and moldy mural in Xu Xianxiu's tomb of Northern Qi Dynasty, Taiyuan[J]. Microbiology China Tong Bao,2016,43(3):479−487.

    WU F S, WU G W, LIU Y, et al. Fungal community composition on normal and moldy mural in Xu Xianxiu’s tomb of Northern Qi Dynasty, Taiyuan[J]. Microbiology China Tong Bao, 2016, 43(3): 479-487.

    [24]

    ANITHA D, VIJAYA T, PRAGATHI D, et al. Isolation and characterization of endophytic funfi from endemic medicinal plants of tirumala hills[J]. International Journal of Life Sciences Biotechnology and Pharma Research,2013,2(3):367.

    [25] 刘婷婷. 四川黑茶渥堆过程中纤维素酶、果胶酶分泌菌株的筛选及其产酶条件优化[D]. 成都: 四川农业大学, 2015

    LIU T T. Screening of strains secreting cellulase and pretinase of Sichuan dark tea during post-fermentation and optimization of conditions producting cellulase[D]. Chengdu: Sichuan Agricultural University, 2015.

    [26] 沈恬安. 南海珊瑚共附生真菌抑菌活性及多样性分析[D]. 海口: 海南大学, 2020

    SHEN T A. Analysis of antifungal activity and diversity of coral symbiotic fungi from the south China sea[D]. Haikou: University Of Hainan, 2020.

    [27] 苏赞, 陈皓睿, 薛云, 等. 三株散囊菌属真菌的茶叶液态发酵与其成分分析[J]. 工业微生物,2020,50(1):14−19. [SU Z, CHEN H R, XUE Y, et al. Liquid fermentation of tea by three Eurotium spp. fungi and their corresponding content analyses[J]. Industrial Microbiology,2020,50(1):14−19. doi: 10.3969/j.issn.1001-6678.2020.01.003

    SU Z, CHEN H R, XUE Y, et al. Liquid fermentation of tea by three Eurotium spp. fungi and their corresponding content analyses[J]. Industrial Microbiology, 2020, 50(1): 14-19. doi: 10.3969/j.issn.1001-6678.2020.01.003

    [28] 周梦珍, 欧惠算, 邱瑞瑾, 等. 梧州茶厂六堡散茶真菌分离与鉴定[J]. 中国茶叶加工,2018(3):22−29. [ZHOU M Z, OU H S, QIU R J, et al. Isolation and identification of fungal species in Liupao loose tea from Wuzhou tea factory[J]. China Tea Processing,2018(3):22−29.

    ZHOU M Z, OU H S, QIU R J, et al. Isolation and identification of fungal species in Liupao loose tea from Wuzhou tea factory[J]. China Tea Processing, 2018(3): 22-29.

    [29] 吕嘉枥, 杨柳青, 孟雁南. 茯砖茶中金花菌群的研究进展[J]. 食品科学,2020,41(9):316−322. [LÜ J L, YANG L Q, MENG Y N. Development of golden flower fungus community in Fuzhuan brick tea: A review[J]. Food Science,2020,41(9):316−322.

    LÜ J L, YANG L Q, MENG Y N. Development of golden flower fungus community in Fuzhuan brick tea: A review[J]. Food Science, 2020, 41(09): 316-322.

    [30] 孟雁南. 陕西茯砖茶优势菌群及其功能性研究[D]. 西安: 陕西科技大学, 2019

    MENG Y N. Study on dominant flora and its function of Fuzhuan brick tea produced in Shaanxi[D]. Xi'an: Shaanxi University of Science and Technology, 2019.

    [31] 卢雨欣, 杨学英, 米洋, 等. 嗜盐真菌Aspergillus montevidensis生物特性研究[J]. 西南农业学报,2020,33(7):1441−1448. [LU Y X, YANG X Y, MI Y, et al. Biological characteristic research of halophilic fungus Aspergillus montevidensis[J]. Southwest China Journal of Agricultural Sciences,2020,33(7):1441−1448.

    LU Y X, YANG X Y, MI Y, et al. Biological characteristic research of halophilic fungus Aspergillus montevidensis[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1441-1448.

    [32] 杨苗, 张羽欣, 汪梦雯, 等. 模拟高渗条件对茯茶中“金花菌”生长特性的影响[J]. 陕西科技大学学报,2021,39(1):63−69. [YANG M, ZHANG Y X, WANG M W, et al. Effect of simulated hypertonic conditions on the growth characteristics of “Jinhua fungus” in fubrick tea[J]. Journal of Shaanxi University of Science and Technology,2021,39(1):63−69.

    YANG M, ZHANG Y X, WANG M W, et al. Effect of simulated hypertonic conditions on the growth characteristics of “Jinhua fungus” in fubrick tea[J]. Journal of Shaanxi University of Science and Technology, 2021, 39(1): 63-69.

    [33]

    ZHOU B, MA C, REN X, et al. Correlation analysis between filamentous fungi and chemical compositions in a pu-erh type tea after a long-term storage[J]. Food Science & Nutrition,2020,8(5):2501−2511.

    [34] 曹亚璞, 王豪杰, 白斌锦, 等. 拉萨市蔡公堂乡大棚果蔬酵母菌的分离与鉴定[J]. 保鲜与加工,2019,19(1):140−146. [CAO Y P, WANG H J, BAI B J, et al. Isolation and identification of yeasts from fruits and vegetables in greenhouses of caigongtang, Lhasa[J]. Storage and Process,2019,19(1):140−146. doi: 10.3969/j.issn.1009-6221.2019.01.024

    CAO Y P, WANG H J, BAI B J, et al. Isolation and identification of yeasts from fruits and vegetables in greenhouses of caigongtang, Lhasa[J]. Storage and Process, 2019, 19(1): 140-146. doi: 10.3969/j.issn.1009-6221.2019.01.024

    [35]

    FAKANKUN I, FRISTENSKY B, LEVIN D B. Genome sequence analysis of the oleaginous yeast, Rhodotorula diobovata, and comparison of the carotenogenic and oleaginous pathway genes and gene products with other oleaginous yeasts[J]. Journal of Fungi,2021,7(4):1−13.

    [36] 文鹤, 刘江崟, 胡祥飞, 等. 一株产香酵母Trichomonascus ciferrii的分离鉴定及其纯种发酵豆豉的挥发性成分分析[J]. 食品与发酵工业,2021,47(16):152−158. [WEN H, LIU J Y, HU X F, et al. Volatile compounds in Douchi fermented by an aromatic yeast Trichomonascus ciferrii isolated from Aspergillus-type Douchi[J]. Food and Fermentation Industries,2021,47(16):152−158.

    WEN H, LIU J Y, HU X F, et al. Volatile compounds in Douchi fermented by an aromatic yeast Trichomonascus ciferrii isolated from Aspergillus-type Douchi[J]. Food and Fermentation Industries, 2021, 47(16): 152-158.

    [37] 卢辉官. 出芽短梗霉的胞外多糖在氮源作用下的积累及其应用[D]. 扬州: 扬州大学, 2010

    LU H G. Accumulation and application of extracellular polysaccharides of Aureobasidium pullulans under nitrogen source[D]. Yangzhou: Yangzhou University, 2010.

    [38] 张鹏, 李炜, 师超, 等. 一株产果香型真菌的筛选、鉴定及在烟草增香中的应用[J]. 中国烟草科学,2021,42(5):95−101. [ZHANG P, LI W, SHI C, et al. Screening and identification of a fungus with a sweet fruit aroma and its application in flavoured tobacco[J]. Chinese Tobacco Science,2021,42(5):95−101.

    ZHANG P, LI W, SHI C, et al. Screening and identification of a fungus with a sweet fruit aroma and its application in flavoured tobacco[J]. Chinese Tobacco Science, 2021, 42(5): 95-101.

    [39]

    ZHAI M, LI J, JIANG C, et al. The bioactive secondary metabolites from Talaromyces species[J]. Natural products and bioprospecting,2016,6(1):1−24. doi: 10.1007/s13659-015-0081-3

    [40] 李豪, 邹伟, 白光剑, 等. 高产纤维素酶真菌的筛选及鉴定[J]. 食品与发酵工业,2019,45(6):54−58. [LI H, ZOU W, BAI G J, et al. Screening and identification of high-level cellulase-producing fungi[J]. Food and Fermentation Industries,2019,45(6):54−58.

    LI H, ZOU W, BAI G J, et al. Screening and identification of high-level cellulase-producing fungi[J]. Food and Fermentation Industries, 2019, 45(6): 54-58.

    [41] 李肖宏, 王潘, 李果, 等. 普洱茶贮藏过程中“金花”菌的鉴定及其对茶叶品质的影响[J]. 食品科技,2020,45(3):114−120. [LI X H, WANG P, LI G, et al. Identification of 'golden flower' fungi in Pu-erh tea storage and effects on tea quality[J]. Food science and technology,2020,45(3):114−120.

    LI X H, WANG P, LI G, et al. Identification of “golden flower” fungi in Pu-erh tea storage and effects on tea quality[J]. Food science and technology, 2020, 45(3): 114-120.

    [42] 朱绍志, 王芳, 孔珊珊, 等. 葡萄柚酵母菌分离鉴定及其对3株青霉属致病菌抑菌效果研究[J]. 中国南方果树,2021,50(2):8−14. [ZHU S Z, WANG F, KONG S S, et al. Isolation and identification of grapefruit yeast and its bacteriostatic effect on three Penicillium pathogenic fungi[J]. South China Fruits,2021,50(2):8−14.

    ZHU S Z, WANG F, KONG S S, et al. Isolation and identification of grapefruit yeast and its bacteriostatic effect on three Penicillium pathogenic fungi[J]. South China Fruits, 2021, 50(2): 8-14.

  • 期刊类型引用(2)

    1. 陈燕雨. 高光谱成像技术在食品掺假检测中的应用研究综述. 食品安全导刊. 2025(03): 144-147 . 百度学术
    2. 王冬,栾云霞,王欣然,贾文珅. 近红外光谱无损分析肉类品质的研究进展. 肉类研究. 2024(05): 61-70 . 百度学术

    其他类型引用(3)

图(3)  /  表(1)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  34
  • PDF下载量:  21
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-16
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-08-14

目录

/

返回文章
返回
x 关闭 永久关闭