• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

小麦麸皮多糖提取、结构及生物活性研究进展

石松业, 温纪平, 刘远晓

石松业,温纪平,刘远晓. 小麦麸皮多糖提取、结构及生物活性研究进展[J]. 食品工业科技,2023,44(13):466−473. doi: 10.13386/j.issn1002-0306.2022090208.
引用本文: 石松业,温纪平,刘远晓. 小麦麸皮多糖提取、结构及生物活性研究进展[J]. 食品工业科技,2023,44(13):466−473. doi: 10.13386/j.issn1002-0306.2022090208.
SHI Songye, WEN Jiping, LIU Yuanxiao. Recent Advances in Wheat Bran Polysaccharides: Extraction, Structure and Bioactivities[J]. Science and Technology of Food Industry, 2023, 44(13): 466−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090208.
Citation: SHI Songye, WEN Jiping, LIU Yuanxiao. Recent Advances in Wheat Bran Polysaccharides: Extraction, Structure and Bioactivities[J]. Science and Technology of Food Industry, 2023, 44(13): 466−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090208.

小麦麸皮多糖提取、结构及生物活性研究进展

基金项目: “十四五”国家重点研发计划课题(2021YFD2100901)。
详细信息
    作者简介:

    石松业(1997−),女,硕士研究生,研究方向:小麦加工理论与应用,E-mail:2021920049@stu.haut.edu.cn

    通讯作者:

    温纪平(1968−),男,硕士,教授,研究方向:谷物科学与工程技术,E-mail:wjp1380@163.com

  • 中图分类号: TS210.9

Recent Advances in Wheat Bran Polysaccharides: Extraction, Structure and Bioactivities

  • 摘要: 小麦麸皮是小麦加工过程中产生的副产物,含有众多的营养成分,如蛋白质、维生素、膳食纤维、酚类和多糖等。研究表明,小麦麸皮多糖具有预防糖尿病、降低血糖、提高免疫力、抗肿瘤等作用,在日常用品、保健食品和医药用品方面具有广阔的开发前景。小麦麸皮多糖提取方法和纯化方法不同,均会造成麸皮多糖结构上的差异,然而结构影响其生物活性。因此,探究小麦麸皮多糖的结构特征对揭示其生物活性作用具有重要意义。本文主要对近年来小麦麸皮多糖的提取方法、分离纯化、结构表征及生理功能等方面的研究进行阐述,同时探讨了小麦麸皮多糖结构与其生物活性之间的构效关系,并对小麦麸皮多糖目前存在的问题和应用前景进行展望,旨在为小麦麸皮多糖在保健和医药等方面的利用和研究提供理论依据和新的思路。
    Abstract: Wheat bran is a by-product of wheat processing, which contains many nutrients, such as protein, vitamins, dietary fiber, phenols and polysaccharides. Studies have shown that wheat bran polysaccharide can prevent diabetes, lower blood sugar, improve immunity, anti-tumor and other effect. It has broad development prospects in daily necessities, health food and medical supplies. Different extraction and purification methods of wheat bran polysaccharides will cause differences in the structure of wheat bran polysaccharides, but the structure affects its biological activity. Therefore, it is of great significance to explore the structural characteristics of wheat bran polysaccharide to reveal its biological activity. In this paper, the extraction method, separation and purification, structure characterization and physiological function of wheat bran polysaccharide in recent years are described. At the same time, the structure-activity relationship between the structure of wheat bran polysaccharide and its biological activities is discussed. The present problems and application prospect of wheat bran polysaccharide are prospected in order to provide theoretical basis and new ideas for the utilization and research of wheat bran polysaccharide in health care and medicine.
  • 小麦(Triticum aestivum L.)属于禾本科小麦属植物,作为三大谷类植物之一,是人们日常生活中所需能量的主要来源[1]。小麦在加工过程中会产生大量的副产物麸皮[2],它是小麦在制粉时,提取胚芽和胚乳后剩余的残留物,含有较多的营养物质[3-4],如蛋白质、维生素、膳食纤维等有益成分和酚酸类、醛类、多糖等活性成分[5]。多糖是小麦麸皮中最重要的生物活性物质,因其各式各样的连接方式导致麦麸多糖具有多种功能活性,是该领域研究热点之一。小麦麸皮多糖由非淀粉多糖(麸皮细胞壁多糖)和淀粉多糖两部分组成,具有预防糖尿病、预防肥胖、防治结肠癌[6-7]、降低血糖、提高免疫力和抗肿瘤[8-10]等作用。小麦麸皮多糖具有价格低廉、应用前景广阔等优势,被广泛应用于食品、保健和医疗等领域。尽管如此,目前还没有研究对小麦麸皮多糖提取方法、纯化方式、结构表征以及生理功能进行全面阐述。

    提取方法和纯化方式影响小麦麸皮多糖的结构,结构通常会影响小麦麸皮多糖的生理功能。本文主要从小麦麸皮多糖的提取方法、分离纯化方式、结构表征和生理功能等方面进行全面的阐述,并进一步探讨小麦麸皮多糖结构和生物活性的关系,旨在为小麦麸皮多糖的进一步研究和在其他领域的应用提供理论支撑。

    表1表2对近几年小麦麸皮多糖的提取方法进行总结。目前,实验室热水浸提法是提取植物多糖最常用的方法[11],它的主要原理是利用多糖溶于水而不易溶于乙醇的特性。使用水作为溶剂,对设备要求不高,也比较安全经济。对于一些分子量较大的多糖物质,就需要采用酸碱提取剂、微波、超声波等辅助方法使植物细胞壁裂解,加速胞内有效成分的快速溶出,提取方法的选择主要与分子量的大小有关[12-13]

    表  1  小麦麸皮多糖提取条件
    Table  1.  The wheat bran polysaccharide extraction condition
    时间(h)温度(℃)料液比(g:mL)其他条件提取率(%)参考文献
    5.001001:3022.27[14]
    1.25801:251.40[15]
    0.421801:20乙酸浓度为0.006 mol/L18.96[16]
    0.671001:4pH=468.21[17]
    1.17501:20超声功率180 W,酶用量4.5 g/L14.26[18]
    2.00601:101% α-淀粉酶,pH=730.30[15]
    2.00851:20NaOH浓度0.5 mol/L,pH=4.332.80[19]
    1.00851:10提取三次13.24[20]
    5.00611:193pH=751.61[21]
    下载: 导出CSV 
    | 显示表格
    表  2  小麦麸皮多糖提取方法
    Table  2.  The wheat bran polysaccharide extraction method
    提取方法原理特点参考文献
    热水浸提法依据相似相溶的原理安全经济,操作简单,设备要求不高,时间较长,提取率较低[22]
    酸浸提法使糖苷键断裂获得单糖或低聚糖可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构[23]
    碱浸提法通过对水不溶性多糖的降解可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构[23]
    酶解提取法加入适当的酶来降解细胞壁条件比较温和,提取率高,提取时间短,成本低[24-25]
    超声波辅助提取法利用高的机械波破裂细胞壁提取方便,操作简单,对植物中化合物的结构,分子特性的损害较小[26]
    微波辅助提取法通过微波作用加剧分子间的碰撞,裂解细胞释放多糖缩短提取的时间,能耗较小,提取剂的用量小,符合环保的要求[27]
    下载: 导出CSV 
    | 显示表格

    朱翠玲等[14]采用Box-Behnken法设计试验提取小麦麸皮多糖,得到最佳提取条件为提取时间5 h、提取温度100 ℃、料液比为1:30 g/mL,在此条件下提取的小麦麸皮多糖的得率为22.27%,该方法和其他方法相比提取的时间较长,效率比较低。为了进一步提高小麦麸皮多糖的得率,还会采用一些现代技术辅助提取,如超声波和微波辅助来使细胞壁破裂,从而使细胞内的有效成分多糖释放出来。例如,张媛等[28]通过超声辅助-酶法制备小麦麸皮多糖的最佳工艺条件为超声功率1200 W、酶解温度为45 ℃、酶解时间为6 h、木聚糖酶添加量为10 U/g,得到低聚木糖质量浓度为14.13 g/L。另外,范玲等[29]通过响应面试验法优化水溶性酚基木聚糖提取的最佳工艺条件为:微波功率595 W,微波时间6 min,超声波功率300 W,超声波时间30 min,小麦麸皮中水溶性酚基木聚糖提取率为28.33%。综上所述,提取方法不同,多糖的得率不同,现代辅助技术不仅能减少提取时间和降低提取温度,还可以提高多糖的得率。

    无论使用何种方法提取得到的均为粗多糖,含有蛋白质、脂肪、色素等物质,这些物质在一定程度上会影响麸皮多糖的结构表征和生物活性,因此,需要对多糖进行除杂过程,常用的除杂方法是有机试剂(乙醇、石油醚、无水乙醚)脱脂、过氧化氢脱色法去除本身带有的色素、三氯乙酸和Sevag法进行脱蛋白的操作。经过除杂后,多糖里面还含有不同分子量和结构的多糖组分的混合物,为了进行后续的实验,需要对其进行分离纯化。分离纯化的方法通常有醇沉分级沉淀法、柱层析和膜过滤法。醇沉分级是使用不同浓度的乙醇对不同分子量多糖的溶解性不同而达到分离纯化的目的;柱层析法是利用不同的流动相在固定相中的保留性不同,从而达到分离纯化的目的。例如,SHANG等[30]通过Sephadex G-100柱层析分离纯化;王鑫等[15]用高效液相凝胶渗透色谱法(HPGPC)对多糖进行分离纯化得到其样品的相对分子量为112 kDa;LÜ等[22]用DEAE纤维素-52层析和Sephacryl S-400凝胶渗透层析从麦麸中分离得到2个多糖组分WXA-1和AXA-1。如图1

    图  1  小麦麸皮多糖提取、纯化、结构表征及生物活性
    Figure  1.  Extraction, purification, structure characterization and bioactivity of wheat bran polysaccharide

    多糖的结构影响其生物活性。包括单糖组成、分子量、碳链构型、糖苷键类型、有无分支和分支的位置等[31-32]。因此,研究多糖生物活性之前可以对多糖的结构进行一定的阐述和表征,同时也能为多糖的应用提供实验基础。

    麦麸多糖主要由单糖和糖醛酸组成(见表3)。单糖包括阿拉伯糖(Arabinose,Ara)、葡萄糖(Glucose,Glu)、甘露糖(Mannose,Man)、鼠李糖(Rhamnose,Rha)、半乳糖(Galactose,Gal)、木糖(Xylose,Xyl)等,糖醛酸包括半乳糖醛酸(Galacturonic acid,GalA)和葡萄糖醛酸(Glucuronic acid,GluA)。麦麸多糖的单糖组成和含量受小麦产地、种属、麸皮前处理方式和麦麸多糖制备纯化方式等多种因素的制约。

    表  3  小麦麸皮多糖中单糖和糖醛酸的组成
    Table  3.  Composition of monosaccharide and uronic acid of wheat bran polysaccharide
    多糖
    名称
    单糖摩尔组成(%)/摩尔比例
    阿拉伯糖(Ara)葡萄糖(Glu)甘露糖(Man)鼠李糖
    (Rha)
    半乳糖
    (Gal)
    木 糖(Xyl)核 糖
    (Rib)
    岩藻糖
    (Fuc)
    半乳糖醛酸(GalA)葡萄糖醛酸
    (GluA)
    参考
    文献
    WBAX30.31.62.80.51.9[15]
    EXy4025.6520.952.573.0643.783.99[37]
    EXy6037.979.155.985.8638.492.55[37]
    EXy8042.446.8312.908.3228.111.39[37]
    EXy9020.355.442.128.0012.942.02[37]
    WAX-11.005.304.472.30[35]
    AXA-11.000.050.082.35[35]
    WPBS−5012.8321.387.571.257.0342.540.720.804.621.26[33]
    WPBS−6017.662.441.506.7210.7719.9810.888.998.6712.39[33]
    WPBS−7012.7351.349.581.376.0515.381.330.311.210.71[33]
    WPBS−8024.133.600.968.971.5953.303.021.250.902.28[33]
    WBP7.68.912.5[38]
    WBP21.874.0630.153.5538.34[39]
    WBP5.902.061.004.746.25[30]
    WBP-118.3350.251.480.093.1426.130.120.030.43[40]
    FWBP-132.6617.432.651.202.1343.320.120.320.040.13[40]
    WBP2.0090.70.600.703.003.00[36]
    WBP-F2.6093.83.60[36]
    WBP46453.001.0017.0080.00[41]
    FWBP46465.004.009.0067.00[41]
    FWBP-1117.901.842.141.393.5718.800.29[41]
    FWBP-1211.148.920.900.110.8018.170.09[41]
    FWBP-2111.421.562.261.894.1813.460.15[41]
    FWBP-224.172.980.450.160.8211.120.09[41]
    注:−表示未检测出。
    下载: 导出CSV 
    | 显示表格

    将小麦麸皮经过发酵处理,其单糖的组成和含量也会存在差异。以酿酒酵母和枯草芽孢杆菌作为菌种,甘露糖和鼠李糖含量升高,半乳糖含量下降。与未发酵麸皮相比,发酵麸皮还检测出岩藻糖的存在。

    分级醇沉的浓度不同,单糖的组成相同,但含量不同。各醇沉浓度均含有阿拉伯糖、葡萄糖、甘露糖、鼠李糖、半乳糖、木糖、核糖、岩藻糖、半乳糖醛酸、葡萄糖醛酸。但是,醇沉浓度为80%,相对于其他组分,阿拉伯糖、鼠李糖、木糖含量较高;葡萄糖为70%时大量存在;半乳糖、核糖、岩藻糖、半乳糖醛酸、葡萄糖醛酸均在醇沉浓度为60%时单糖含量达到最高[33]

    纯化方式影响多糖中的单糖组成和含量。用于多糖分离纯化的方法有季铵盐络合法、膜分离、大孔树脂层析法、凝胶柱层析法及阴子交换色谱纯化法[34]。其中用DEAE-52离子交换层析法和Sephacryl S-400凝胶透层析法分离出的麦麸多糖(WAX-1和AXA-1),AXA-1不含糖醛酸[35];用DEAE-Sepharose快速流动柱纯化WBP,发现纯化后的多糖中没有鼠李糖、甘露糖、半乳糖等单糖组分[36]

    小麦麸皮多糖糖链的结构包括有无分支、分支的位置、碳链结构以及糖苷键类型等。从表4中可以看出小麦麸皮多糖的主链多为葡萄糖(Glu)和木糖(Xyl)组成,而Glu最为常见,阿拉伯糖(Ara)有时位于主链的末端,侧链通过O-2/3、O-2、O-3、O-5、O-3/5位与主链连接。麦麸多糖的组分不同,糖苷键的连接方式和类型也不相同。比如,通过碱提法得到的多糖,侧链主要在O-2/3、O-2、O-3位被取代;通过加入木质素酶提取的多糖,侧链主要在O-2位被取代;通过加入纤维素酶提取的多糖,侧链主要在O-2/3、O-3/5、O-5被取代。因为提取方式的不同侧链也会发生单取代或双取代的差异[42]

    表  4  小麦麸皮多糖中的糖链结构
    Table  4.  Sugar chain structure in wheat bran polysaccharide
    多糖名称糖苷键类型参考
    文献
    骨架侧链
    WAX-1→4)-β-D-Xylp-(1→通过O-3与主链连接[22]
    AXA-1→4)-β-D-Xylp-(1→通过O-3与主链连接[22]
    AXβ-(1→4)- Xylp通过O-2、O-5与主链连接[23]
    AX-碱4-β-D-xylan通过O-2/3、O-2、O-3与
    主链连接
    [42]
    AX-木Ara位于4-β-D-xylan末端通过O-2与主链连接[42]
    AX-纤T-D-Xylp位于D-xylp末端通过O-2/3、O-3/5、O-5
    与主链连接
    [42]
    下载: 导出CSV 
    | 显示表格

    分子量较小的多糖物质在水中具有较好的溶解性,并且温度越高,溶解性越好,因此,热水浸提法是提取植物多糖最常用的方法[11]。对于一些分子量比较大的多糖物质,就需要采用酸碱提取剂、微波、超声波等辅助方法使植物细胞壁裂解,加速胞内有效成分的快速溶出,提取方法的选择主要与分子量的大小有关[43-44]

    目前用于测定分子量大小的方法有很多,具体的测定方法由所需的要求而定,分子量大小由重均分子量、数均分子量等表示。高效凝胶渗透色谱法(High Performance Gel Permeation Chromatography,HPGPC)的原理是先用各种已知的相对分子量多糖绘制标曲,再根据样品的保留时间求出样品的相对分子量,它是凝胶渗透色谱法(GPC)和高效液相色谱法(HPLC)结合的产物[24]。凝胶渗透色谱法(Gel Permeation Chromatography,GPC)是根据凝胶柱上不同分子量的多糖与洗脱量成一定关系的特点来测定分子量大小的方法[25]。由表5可知,同种方法测定不同种类的多糖,其分子量大小不同,这表明分子量大小与多糖的种类有关;另外,多糖经过进一步的纯化后,其分子量均在减小,这可能是由于纯化分级破坏了多糖的结构,使大分子物质变成小分子物质经过透析后流失,并且采用醇沉法分离多糖,分子量大小会随着乙醇浓度的升高而降低[37]

    表  5  小麦麸皮多糖中的分子量
    Table  5.  Molecular weight of wheat bran polysaccharides
    多糖名称多糖提取方法分子量测
    定方法
    分子量大
    小(ku)
    参考
    文献
    WBAX热水浸提法HPGPC112[15]
    WAX-1超声辅助加碱浸提法HPSEC193[22]
    AXA-1超声辅助加碱浸提法HPSEC107[22]
    EXy40热水浸提法GPC23.52[37]
    EXy60热水浸提法GPC31.19[37]
    EXy80热水浸提法GPC10.38[37]
    EXy90热水浸提法GPC4.54[37]
    AX-碱加碱浸提法HPSEC700[42]
    AX-木超声辅助加木聚
    糖酶浸提
    HPSEC23[42]
    AX-纤超声辅助加纤维素
    酶浸提
    HPSEC12.8[42]
    AEAXN超声辅助加
    碱浸提法
    HPLC118.19[26]
    AEAXN+H加碱浸提法HPLC34.87[26]
    AEAXB加碱浸提法HPLC32.87[26]
    AEAXB+N加碱浸提法HPLC46.71[26]
    WBP热水浸提法HPSEC-UV-MALLS-RI911.7[36]
    WBP-F热水浸提法HPSEC-UV-MALLS-RI510.2[36]
    注:HPGPC:高效凝胶渗透色谱法;HPSEC:高效分子排阻色谱;GPC:凝胶渗透色谱法;HPLC:高效液相色谱法;HPSEC-UV-MALLS-RI:高效凝胶尺寸排阻色谱-十八角激光散色仪-示差检测仪-紫外检测器联用技术。
    下载: 导出CSV 
    | 显示表格

    麦麸多糖具有预防糖尿病、降低血糖、提高免疫力、抗肿瘤[8-10]等作用,已在食品行业和药品领域被广泛应用。现如今,小麦麸皮多糖的体外评价和小鼠实验研究不断深入,明确其具体的作用机理(见图2)对小麦麸皮的深加工具有重要的指导意义。

    图  2  小麦麸皮多糖生理功能机制
    Figure  2.  Physiological function mechanism of wheat bran polysaccharide

    小麦麸皮多糖具有抗氧化活性,如果对多糖进行硒化会增强该活性。它主要是通过调节超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)活性,降低天冬氨酸转氨酶(AST)和丙氨酸转氨酶(ALT)活性来提高机体的抗氧化能力,从而达到延缓衰老的作用[45]

    多糖中可能存在亲电基团释放出氢原子来清除超氧阴离子自由基;而对于DPPH的清除可能与麸皮多糖中的单糖组成、糖苷键以及构型有关[46-49]。大量实验证明,小麦麸皮多糖通过清除DPPH自由基、ABTS自由基、羟基自由基和Fe2+还原力来提高体外的抗氧化活性,其清除自由基能力可以与VC持平[37]。多糖组分中多酚、蛋白的含量、多糖纯化的程度会影响其清除能力,即使多糖的纯化程度不高,但是多酚、蛋白含量较高,抗氧化性就较强[33]。MALUNGA等[50]发现阿魏酸和木糖的残留比例影响抗氧化能力,如果侧链含有较多的甘露糖,也会增强机体的抗氧化活性。MALUNGA等[50]通过研究发现,阿魏酸与木糖残留物的比例影响抗氧化活性,使用含有阿魏酸的阿拉伯木聚糖的食品会对胃肠道的氧化损伤起到保护作用。

    正常状态下,人体细胞是在进行自主有序的生长,当细胞基因发生异常改变时,细胞可能会产生癌变形成肿瘤细胞,而植物多糖可以有效的抑制肿瘤细胞的生长和增值过程,小麦麸皮多糖通过间接增强免疫调节,促进免疫细胞的增殖来使机体的免疫调节水平得到改善,从而间接地达到抗肿瘤的结果。免疫活性可以发挥抗癌细胞凋亡、抗肿瘤的作用。HU等[51]研究得出,麦麸多糖通过促进AKT和PDK1磷酸化,PI3K/AKT信号通路介导巨噬细胞,增加一氧化氮(NO)的浓度,诱导一氧化氮合酶(INOS)、白细胞介素1L-1β(1L-1β)、环氧合酶-2(COX-2)、肿瘤坏死因子-α(TNF-α)的表达来发挥免疫调节的作用。CAO等[8]通过研究得出阿拉伯木聚糖可增加DTH反应、脾细胞增殖、NK细胞和吞噬活性以及血清IL-2水平,从而起到改善肿瘤特异性和非特异性免疫反应的作用。

    麸皮多糖降血糖作用机理主要是通过保护胰岛细胞来促进胰岛素的分泌,进而起到降低血糖的作用。刘秀英等[52]通过研究证明,麸皮中含有丰富的膳食纤维及多种维生素和微量元素,构成葡萄糖耐量因子对的组成成分主要是微量元素中的铬,通过增强胰岛素的作用,来改善糖耐量,从而降低血糖含量。VOGEL等[53]通过实验发现阿拉伯木聚糖可以促进胰岛素的分泌,抑制胰岛细胞的凋亡,减少葡萄糖的摄入量,从而起到降低血糖的功能。

    多糖改性的方法有物理改性、化学改性和生物改性。生物改性常用的方法是微生物发酵,它是指在微生物适宜生长的环境下,将底物通过代谢途径分解或转化成令人满意的组分[54]。如用B. subtilis(CGMCC 1.892)和S. cerevisiae(CGMCC 2.119)为菌种对麦麸多糖进行发酵,发现发酵的麦麸多糖抗氧化功能优于未发酵的麦麸多糖[55]。化学改性主要包括硫酸化改性、硒化改性和磷酸化改性等。化学改性的原理是通过对多糖残基上的一些基团进行化学修饰来引入其他基团,从而改变多糖的链长和结构来达到增强活性的目的。硒是人体所必须的微量元素,参与人体生理功能活动,如对小麦麸皮多糖W2改性后制备的硒化多糖SeW2-3,具有更高的肝损伤保护活性[45]

    组成多糖的基本组成单元是单糖,它会以特定的结合方式形成特定的空间结构,从而影响多糖的活性[56-57],如酚类物质的结构和含量能明显影响多糖的活性。在小麦麸皮多糖中,酚类物质可以清除羟基自由基、DPPH自由基、超氧阴离子自由基,且清除能力随着酚类物质含量的增加而不断提高[58]。另外杜涓等[33]分别用不同浓度乙醇对发酵麸皮多糖进行分级醇沉,并研究其对体外的抗氧化活性发现,当乙醇浓度为80%时多酚含量显著增多,并且表现出最强的DPPH自由基清除活性及较强的还原力。

    分子量的大小与多糖的生物活性密切相关,分子量过小不易形成活性空间结构,分子量过大不利于多糖在生物体内发挥生物学活性,分子量在一个较合理的范围内会使生物活性最大化[56]。分别用挤压、微波-挤压、微波-挤压-酶解处理小麦麸皮后提取出的戊聚糖中,微波-挤压-酶解组分的相对分子质量最低,表现出来的益生活性最好[59]。同样对于分子量分别为21.19 kDa和52.02 kDa的小麦麸皮多糖(FWBP-1、WBP-1),FWBP-1的分子量最小,但其抗氧化能力明显高于WBP-1[40]。因此,分子量相对较小的小麦麸皮多糖其抗氧化活性相对较强。

    小麦麸皮多糖毒副作用小、组成复杂、结构独特,具有抗氧化、抗衰老、免疫和降血糖等多种生物活性,在食品、化妆品和医疗领域具有广阔的应用前景。目前对小麦麸皮多糖的研究多集中于多糖提取、单糖组成、分子量及一级结构,而对高级结构的研究较少,由于在提取过程中需要一个脱脂、脱蛋白过程,这个过程需要多次进行,这不仅造成了有机试剂的浪费,还会降低多糖的得率,因此,如何对使用后的有机试剂进行回收再利用成为研究的重点。并且小麦麸皮多糖高级结构的复杂性大大增加了其高级结构鉴定的难度,从而导致小麦麸皮多糖分子结构与其生物活性之间的关系仍不明确。另外,因为小麦麸皮多糖发挥生物活性的作用机制是复杂的,目前虽有大量文献均已研究,但大多报道的是抗氧化、抗衰老、免疫和降血糖等功能,对其他方面的生物活性研究还鲜有报道。

    为了进一步提高小麦麸皮多糖的得率,可以从提取工艺上进行创新、完善,比如最常用的热水浸提法,虽然比较经济实用、无毒害,但是考虑到时间等提取因素时,使用该方法提取小麦麸皮多糖不适用工业化生产。另外,小麦麸皮多糖高级结构与生物活性机制的关系也需要进一步研究。对于改性方面,可探究其他微生物菌种对小麦麸皮多糖改性对生物活性的影响。还可从分子结构层面探究小麦麸皮多糖与生物活性之间的作用机制,以此来得出小麦麸皮多糖的新活性,从而为开发相关功能性食品提供理论依据,提高小麦麸皮多糖的利用价值,将产品变废为宝。

  • 图  1   小麦麸皮多糖提取、纯化、结构表征及生物活性

    Figure  1.   Extraction, purification, structure characterization and bioactivity of wheat bran polysaccharide

    图  2   小麦麸皮多糖生理功能机制

    Figure  2.   Physiological function mechanism of wheat bran polysaccharide

    表  1   小麦麸皮多糖提取条件

    Table  1   The wheat bran polysaccharide extraction condition

    时间(h)温度(℃)料液比(g:mL)其他条件提取率(%)参考文献
    5.001001:3022.27[14]
    1.25801:251.40[15]
    0.421801:20乙酸浓度为0.006 mol/L18.96[16]
    0.671001:4pH=468.21[17]
    1.17501:20超声功率180 W,酶用量4.5 g/L14.26[18]
    2.00601:101% α-淀粉酶,pH=730.30[15]
    2.00851:20NaOH浓度0.5 mol/L,pH=4.332.80[19]
    1.00851:10提取三次13.24[20]
    5.00611:193pH=751.61[21]
    下载: 导出CSV

    表  2   小麦麸皮多糖提取方法

    Table  2   The wheat bran polysaccharide extraction method

    提取方法原理特点参考文献
    热水浸提法依据相似相溶的原理安全经济,操作简单,设备要求不高,时间较长,提取率较低[22]
    酸浸提法使糖苷键断裂获得单糖或低聚糖可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构[23]
    碱浸提法通过对水不溶性多糖的降解可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构[23]
    酶解提取法加入适当的酶来降解细胞壁条件比较温和,提取率高,提取时间短,成本低[24-25]
    超声波辅助提取法利用高的机械波破裂细胞壁提取方便,操作简单,对植物中化合物的结构,分子特性的损害较小[26]
    微波辅助提取法通过微波作用加剧分子间的碰撞,裂解细胞释放多糖缩短提取的时间,能耗较小,提取剂的用量小,符合环保的要求[27]
    下载: 导出CSV

    表  3   小麦麸皮多糖中单糖和糖醛酸的组成

    Table  3   Composition of monosaccharide and uronic acid of wheat bran polysaccharide

    多糖
    名称
    单糖摩尔组成(%)/摩尔比例
    阿拉伯糖(Ara)葡萄糖(Glu)甘露糖(Man)鼠李糖
    (Rha)
    半乳糖
    (Gal)
    木 糖(Xyl)核 糖
    (Rib)
    岩藻糖
    (Fuc)
    半乳糖醛酸(GalA)葡萄糖醛酸
    (GluA)
    参考
    文献
    WBAX30.31.62.80.51.9[15]
    EXy4025.6520.952.573.0643.783.99[37]
    EXy6037.979.155.985.8638.492.55[37]
    EXy8042.446.8312.908.3228.111.39[37]
    EXy9020.355.442.128.0012.942.02[37]
    WAX-11.005.304.472.30[35]
    AXA-11.000.050.082.35[35]
    WPBS−5012.8321.387.571.257.0342.540.720.804.621.26[33]
    WPBS−6017.662.441.506.7210.7719.9810.888.998.6712.39[33]
    WPBS−7012.7351.349.581.376.0515.381.330.311.210.71[33]
    WPBS−8024.133.600.968.971.5953.303.021.250.902.28[33]
    WBP7.68.912.5[38]
    WBP21.874.0630.153.5538.34[39]
    WBP5.902.061.004.746.25[30]
    WBP-118.3350.251.480.093.1426.130.120.030.43[40]
    FWBP-132.6617.432.651.202.1343.320.120.320.040.13[40]
    WBP2.0090.70.600.703.003.00[36]
    WBP-F2.6093.83.60[36]
    WBP46453.001.0017.0080.00[41]
    FWBP46465.004.009.0067.00[41]
    FWBP-1117.901.842.141.393.5718.800.29[41]
    FWBP-1211.148.920.900.110.8018.170.09[41]
    FWBP-2111.421.562.261.894.1813.460.15[41]
    FWBP-224.172.980.450.160.8211.120.09[41]
    注:−表示未检测出。
    下载: 导出CSV

    表  4   小麦麸皮多糖中的糖链结构

    Table  4   Sugar chain structure in wheat bran polysaccharide

    多糖名称糖苷键类型参考
    文献
    骨架侧链
    WAX-1→4)-β-D-Xylp-(1→通过O-3与主链连接[22]
    AXA-1→4)-β-D-Xylp-(1→通过O-3与主链连接[22]
    AXβ-(1→4)- Xylp通过O-2、O-5与主链连接[23]
    AX-碱4-β-D-xylan通过O-2/3、O-2、O-3与
    主链连接
    [42]
    AX-木Ara位于4-β-D-xylan末端通过O-2与主链连接[42]
    AX-纤T-D-Xylp位于D-xylp末端通过O-2/3、O-3/5、O-5
    与主链连接
    [42]
    下载: 导出CSV

    表  5   小麦麸皮多糖中的分子量

    Table  5   Molecular weight of wheat bran polysaccharides

    多糖名称多糖提取方法分子量测
    定方法
    分子量大
    小(ku)
    参考
    文献
    WBAX热水浸提法HPGPC112[15]
    WAX-1超声辅助加碱浸提法HPSEC193[22]
    AXA-1超声辅助加碱浸提法HPSEC107[22]
    EXy40热水浸提法GPC23.52[37]
    EXy60热水浸提法GPC31.19[37]
    EXy80热水浸提法GPC10.38[37]
    EXy90热水浸提法GPC4.54[37]
    AX-碱加碱浸提法HPSEC700[42]
    AX-木超声辅助加木聚
    糖酶浸提
    HPSEC23[42]
    AX-纤超声辅助加纤维素
    酶浸提
    HPSEC12.8[42]
    AEAXN超声辅助加
    碱浸提法
    HPLC118.19[26]
    AEAXN+H加碱浸提法HPLC34.87[26]
    AEAXB加碱浸提法HPLC32.87[26]
    AEAXB+N加碱浸提法HPLC46.71[26]
    WBP热水浸提法HPSEC-UV-MALLS-RI911.7[36]
    WBP-F热水浸提法HPSEC-UV-MALLS-RI510.2[36]
    注:HPGPC:高效凝胶渗透色谱法;HPSEC:高效分子排阻色谱;GPC:凝胶渗透色谱法;HPLC:高效液相色谱法;HPSEC-UV-MALLS-RI:高效凝胶尺寸排阻色谱-十八角激光散色仪-示差检测仪-紫外检测器联用技术。
    下载: 导出CSV
  • [1]

    ZHANG Yufeng, LOU Hongyao, GUO Dandan, et al. Identifying changes in the wheat kernel proteome under heat stress using iTRAQ[J]. The Crop Journal,2018,6(6):600−610. doi: 10.1016/j.cj.2018.04.003

    [2]

    BROUILLET-FOURMANN S, CARROT C, MIGNARD N. Gelatinization and gelation of corn starch followed by dynamic mechanical spectroscopy analysis[J]. Rheologica Acta,2003,42(1−2):110−117. doi: 10.1007/s00397-002-0261-z

    [3]

    ONIPE O O, JIDEANI A I O, BESWA D. Composition and functionality of wheat bran and its application in some cereal food products[J]. International Journal of Food Science & Technology,2015,50(12):2509−2518.

    [4]

    SAFA Y, BHATTI H N, SULTAN M, et al. Synthesis, characterization and application of wheat bran/zinc aluminium and tea leaves waste/zinc aluminium biocomposites: Kinetics and thermodynamics modeling[J]. Desalination and Water Treatment,2016,57(53):25532−25541. doi: 10.1080/19443994.2016.1160439

    [5]

    TAKAHASHI H, KASHIMURA M, KOISO H, et al. Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food[J]. Food Control,2013,33(1):244−248. doi: 10.1016/j.foodcont.2013.03.013

    [6]

    SARMA S M, SINGH D P, SINGH P, et al. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis[J]. International Journal of Biological Macromolecules,2018,106:994−1003. doi: 10.1016/j.ijbiomac.2017.08.100

    [7]

    ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774

    [8]

    CAO L, LIU X Z, QIAN T X, et al. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran[J]. International Journal of Biological Macromolecules,2010,48(1):160−164.

    [9]

    MORALES-BURGOS A M, CARVAJAL-MILLAN E, SOTELO-CRUZ N, et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,163:16−22. doi: 10.1016/j.ejpb.2021.02.014

    [10]

    LI W I, ZHANG S Y, SMITH C. The molecular structure features-immune stimulatory activity of arabinoxylans derived from the pentosan faction of wheat flour[J]. Journal of Cereal Science,2015,62:81−86. doi: 10.1016/j.jcs.2014.12.002

    [11]

    PARNIAKOV O, LEBOVKA N, VAN H E, et al. Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2014,7(1):174−183. doi: 10.1007/s11947-013-1059-y

    [12] 陈凤莲. 酶法制备小麦麸皮戊聚糖的研究[J]. 食品科学,2008,29(11):391−394. [CHEN F L. Enzymatic production of pentosan from wheat bran[J]. Food Science,2008,29(11):391−394. doi: 10.3321/j.issn:1002-6630.2008.11.089

    CHEN F L. Enzymatic production of pentosan from wheat bran[J]. Food Science, 2008, 29(11): 391-394. doi: 10.3321/j.issn:1002-6630.2008.11.089

    [13]

    VANGSØE C T, SØRENSEN J F, KNUDSEN K E B. Aleurone cells are the primary contributor to arabinoxylan oligosaccharide production from wheat bran after treatment with cell wall-degrading enzymes[J]. International Journal of Food Science & Technology,2019,54(10):2847−2853.

    [14] 朱翠玲, 顾正中, 沈婷, 等. 响应面分析优化小麦麸皮多糖的提取工艺[J]. 江苏农业科学,2017,45(13):169−172. [ZHU C L, GU Z Z, SHEN T, et al. Optimization of extraction process of polysaccharides from wheat bran by response surface methodology[J]. Jiangsu Agricultural Sciences,2017,45(13):169−172. doi: 10.15889/j.issn.1002-1302.2017.13.047

    ZHU C L, GU Z Z, SHEN T, et al. Optimization of extraction process of polysaccharides from wheat bran by response surface methodology[J]. Jiangsu Agricultural Sciences, 2017, 45(13): 169-172. doi: 10.15889/j.issn.1002-1302.2017.13.047

    [15] 王鑫, 陈什康, 张婷, 等. 小麦麸皮粗多糖的基本结构特征、流变特性及其对体外消化酶抑制初探[J]. 南昌大学学报(理科版),2022,46(3):334−341. [WANG X, CHEN S K, ZHANG T, et al. Physicochemical properties and digestive enzymes in vitro inhibitory activities of polysaccharides from wheat bran[J]. Journal of Nanchang University (Natural Science),2022,46(3):334−341. doi: 10.3969/j.issn.1006-0464.2022.03.008

    WANG X, CHEN S K, ZHANG T, et al. Physicochemical properties and digestive enzymes in vitro inhibitory activities of polysaccharides from wheat bran[J]. Journal of Nanchang University(Natural Science), 2022, 46(3): 334-341. doi: 10.3969/j.issn.1006-0464.2022.03.008

    [16] 丁长河, 阮文彬, 高雅君, 等. 小麦麸皮戊聚糖高温提取反应动力学及工艺优化[J]. 粮食与油脂,2017,30(7):88−93. [DING C H, RUAN W B, GAO Y J, et al. Research on reaction kinetics and process optimization of high temperature extraction of wheat bran pentosan[J]. Cereals & Oils,2017,30(7):88−93. doi: 10.3969/j.issn.1008-9578.2017.07.022

    DING C H, RUAN W B, GAO Y J, et al. Research on reaction kinetics and process optimization of high temperature extraction of wheat bran pentosan[J]. Cereals & Oils, 2017, 30(7): 88-93. doi: 10.3969/j.issn.1008-9578.2017.07.022

    [17] 张朵朵, 朱婷伟, 陈复生, 等. 小麦麸皮阿拉伯木聚糖/豌豆分离蛋白复合物的乳化性能研究[J]. 食品研究与开发,2022,43(4):1−8. [ZHANG D D, ZHU T W, CHEN F S, et al. Emulsifying properties of wheat bran arabinoxylan/pea protein isolate complex[J]. Food Research and Development,2022,43(4):1−8. doi: 10.12161/j.issn.1005-6521.2022.04.001

    ZHANG D D, ZHU T W, CHEN F S, et al. Emulsifying properties of wheat bran arabinoxylan/pea protein isolate complex[J]. Food Research and Development, 2022, 43(4): 1-8. doi: 10.12161/j.issn.1005-6521.2022.04.001

    [18]

    WANG J, SUN B, LIU Y, et al. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran[J]. Food Chemistry,2014,150:482−488. doi: 10.1016/j.foodchem.2013.10.121

    [19] 鲁振杰, 李娟, 陈正行, 等. 碱提条件对麸皮阿拉伯木聚糖组成、理化性质、流变学特性的影响[J]. 食品科学,2020,41(12):22−27. [LU Z J, LI J, CHEN Z X, et al. Effects of alkali extraction conditions on monosaccharide composition, physicochemical properties and rheological properties of arabinoxylan from wheat bran[J]. Food Science,2020,41(12):22−27. doi: 10.7506/spkx1002-6630-20190611-115

    LU Z J, LI J, CHEN Z X, et al. Effects of alkali extraction conditions on monosaccharide composition, physicochemical properties and rheological properties of arabinoxylan from wheat bran[J]. Food Science, 2020, 41(12): 22-27. doi: 10.7506/spkx1002-6630-20190611-115

    [20] 司晓静. 阿拉伯木聚糖及其酶解物影响面筋蛋白热诱导聚集的机制研究[D]. 无锡: 江南大学, 2021

    SI X J. Study on the mechanism of effect of arabinoxylan and its hydrolysates on heat-induced aggregation of gluten[D]. Wuxi: Jiangnan University, 2021.

    [21] 黎芳, 刘佳, 王冉冉, 等. 小麦麸皮水不溶性阿拉伯木聚糖提取及其酶解产物分析[J]. 中国酿造,2019,38(2):122−126. [LI F, LIU J, WANG R R, et al. Extraction of water insoluble arabinoxylan from wheat bran and analysis of its enzymatic hydrolyzed products[J]. China Brewing,2019,38(2):122−126. doi: 10.11882/j.issn.0254-5071.2019.02.023

    LI F, LIU J, WANG R R, et al. Extraction of water insoluble arabinoxylan from wheat bran and analysis of its enzymatic hydrolyzed products[J]. China Brewing, 2019, 38(2): 122-126. doi: 10.11882/j.issn.0254-5071.2019.02.023

    [22]

    LÜ Q Q, CAO J J, LIU R, et al. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran[J]. Food Chemistry, 2021, 341(Mar. 30 Pt. 1): 128218.1-11.

    [23]

    BIELY P, SINGH S, PUCHART V. Towards enzymatic breakdown of complex plant xylan structures: State of the art[J]. Biotechnology Advances: An International Review Journal,2016,34(7):1260−1274.

    [24] 景永帅, 马云凤, 李明松, 等. 植物多糖结构解析方法研究进展[J]. 食品工业科技,2022,43(3):411−421. [JING Y S, MA Y F, LI M S, et al. Research progress in analytical methods for structures of phytogenic polysaccharides[J]. Science and Technology of Food Industry,2022,43(3):411−421. doi: 10.13386/j.issn1002-0306.2021010181

    JING Y S, MA Y F, LI M S, et al. Research progress in analytical methods for structures of phytogenic polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(3): 411-421. doi: 10.13386/j.issn1002-0306.2021010181

    [25] 赵颖, 宋新波, 张丽娟, 等. 高效凝胶色谱法测定甘草多糖分子量及其分子量分布[J]. 天津中医药,2015,32(1):46−48. [ZHAO Y, SONG X B, ZHANG L J, et al. Determination of molecular weight and weight distribution in licorice polysaccharide by HPGPC[J]. Tianjin Journal of Traditional Chinese Medicine,2015,32(1):46−48.

    ZHAO Y, SONG X B, ZHANG L J, et al. Determination of molecular weight and weight distribution in licorice polysaccharide by HPGPC[J]. Tianjin Journal of Traditional Chinese Medicine, 2015, 32(1): 46-48.

    [26] 杨莎, 郭晓娜, 朱科学, 等. 碱提方法对小麦麸皮阿拉伯木聚糖结构及面团特性的影响[J]. 中国粮油学报,2017,32(11):8−13,33. [YANG S, GUO X N, ZHU K X, et al. Effect of arabinoxylan extracted by different methods on the dough thermo-mechanical and rheological properties[J]. Journal of the Chinese Cereals and Oils Association,2017,32(11):8−13,33. doi: 10.3969/j.issn.1003-0174.2017.11.002

    YANG S, GUO X N, ZHU K X, et al. Effect of arabinoxylan extracted by different methods on the dough thermo-mechanical and rheological properties[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 8-13, 33. doi: 10.3969/j.issn.1003-0174.2017.11.002

    [27]

    WANG J, BAI J, FAN M, et al. Cereal-derived arabinoxylans: Structural features and structure-activity correlations[J]. Trends in Food Science & Technology,2020,96:157−65.

    [28] 张媛, 冯新月, 常思源, 等. 超声-酶法水解小麦麸皮制备低聚木糖的研究[J]. 上海化工,2021,46(5):23−26. [ZHANG Y, FENG X Y, CHANG S Y, et al. Study on production of xylooligosaccharides from wheat bran by ultrasonic-enzymatic hydrolysis[J]. Shanghai Chemical Industry,2021,46(5):23−26. doi: 10.3969/j.issn.1004-017X.2021.05.009

    ZHANG Y, FENG X Y, CHANG S Y, et al. Study on production of xylooligosaccharides from wheat bran by ultrasonic-enzymatic hydrolysis[J]. Shanghai Chemical Industry, 2021, 46(5): 23-26. doi: 10.3969/j.issn.1004-017X.2021.05.009

    [29] 范玲, 马森, 王晓曦, 等. 微波-超声波辅助提取小麦麸皮中酚基木聚糖的研究[J]. 河南工业大学学报(自然科学版),2014,35(6):25−29. [FAN L, MA S, WANG X X, et al. Study on microwave-ultrasonic-assisted extraction of phenolic xylans from wheat bran[J]. Journal of Henan University of Technology (Natural Science Edition),2014,35(6):25−29.

    FAN L, MA S, WANG X X, et al. Study on microwave-ultrasonic-assisted extraction of phenolic xylans from wheat bran[J]. Journal of Henan University of Technology(Natural Science Edition), 2014, 35(6): 25-29.

    [30]

    SHANG X L, LIU C Y, DONG H Y, et al. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran[J]. Journal of Molecular Structure, 2021, 1233.

    [31]

    LI S Q, SHAH N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J]. Food Chemistry,2014,165:262−270. doi: 10.1016/j.foodchem.2014.05.110

    [32]

    XU Y Q, LIU N Y, FU X T, et al. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions,2019,132:109−118.

    [33] 杜涓, 安晓萍, 刘娜, 等. 分级醇沉发酵麸皮多糖的成分分析与抗氧化活性研究[J]. 食品工业科技,2020,41(5):58−62. [DU J, AN X P, LIU N, et al. Studies on composition analysis and antioxidant activities of bran polysaccharides by fractional alcohol submerged fermentation[J]. Science and Technology of Food Industry,2020,41(5):58−62. doi: 10.13386/j.issn1002-0306.2020.05.010

    DU J, AN X P, LIU N, et al. Studies on composition analysis and antioxidant activities of bran polysaccharides by fractional alcohol submerged fermentation[J]. Science and Technology of Food Industry, 2020, 41(5): 58-62. doi: 10.13386/j.issn1002-0306.2020.05.010

    [34] 陈红, 杨许花, 查勇, 等. 植物多糖提取、分离纯化及鉴定方法的研究进展[J]. 安徽农学通报,2021,27(22):32−35. [CHEN H, YANG X H, ZHA Y, et al. Research progress in extraction, purification and identification of plant polysaccharides[J]. Anhui Agricultural Science Bulletin,2021,27(22):32−35. doi: 10.3969/j.issn.1007-7731.2021.22.011

    CHEN H, YANG X H, ZHA Y, et al. Research progress in extraction, purification and identification of plant polysaccharides[J]. Anhui Agricultural Science Bulletin, 2021, 27(22): 32-35. doi: 10.3969/j.issn.1007-7731.2021.22.011

    [35] 吕青青. 小麦麸皮多糖的结构表征、硒化改性及生理活性研究[D]. 合肥: 合肥工业大学, 2020

    LÜ Q Q. Structural characterization, selenylation and physiological activities of polysaccharides from wheat bran[D]. Hefei: Hefei University of Technology, 2020.

    [36]

    CAO R A, JI R X, TABARSA M, et al. Extraction, structural elucidation and immunostimulating properties of water-soluble polysaccharides from wheat bran[J]. Journal of Food Biochemistry,2020,44(9):13364.

    [37] 曲鹏辉, 滕超, 鹿发展, 等. 小麦麸皮木聚糖理化性质及抗氧化活性研究[J]. 食品科学技术学报,2021,39(5):49−55. [QU P H, TENG C, LU F Z, et al. Study on physicochemical properties and antioxidant activity of xylan extracted from wheat bran[J]. Journal of Food Science and Technology,2021,39(5):49−55.

    QU P H, TENG C, LU F Z, et al. Study on physicochemical properties and antioxidant activity of xylan extracted from wheat bran[J]. Journal of Food Science and Technology, 2021, 39(): 49-55.

    [38]

    BELEN N O, JOSE A J, CARRIE W, et al. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients[J]. Animal Feed Science and Technology,2022,285:115214. doi: 10.1016/j.anifeedsci.2022.115214

    [39]

    YANG W W, WU J, LIU W M, et al. Structural characterization, antioxidant and hypolipidemic activity of Grifola frondosa polysaccharides in novel submerged cultivation[J]. Food Bioscience,2021,42:101187.

    [40]

    CHEN Q Y, WANG R F, WANG Y, et al. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation[J]. Journal of Cereal Science,2021,97:103157. doi: 10.1016/j.jcs.2020.103157

    [41] 李暄. 发酵麸皮多糖提取、分离纯化及生物活性研究[D]. 呼和浩特: 内蒙古农业大学, 2019

    LI X. Extraction, separation purification and biological activity analysis of fermented wheat bran polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University, 2019.

    [42] 张秀敏, 周增超, 乔晋丽, 等. 麦麸品种与提取方式对阿拉伯木聚糖结构及抗氧化性的影响[J]. 食品科学,2023,44(3):10. [ZHANG X M, ZHOU Z C, QIAO J L, et al. Effects of wheat bran varieties and extraction methods on the structure and antioxidant activity of arabinoxylan[J]. Food Science,2023,44(3):10. doi: 10.7506/spkx1002-6630-20220106-050

    ZHANG X M, ZHOU Z C, QIAO J L, et al. Effects of wheat bran varieties and extraction methods on the structure and antioxidant activity of arabinoxylan[J]. Food Science, 2023, 44(3): 10. doi: 10.7506/spkx1002-6630-20220106-050

    [43]

    MORALES D, SMIDERLE F R, VILLALVA M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from lentinula edodes[J]. Journal of Functional Foods,2019,60:103446. doi: 10.1016/j.jff.2019.103446

    [44]

    SUN H Y, LI C Y, NI Y J, et al. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity[J]. Carbohydrate Polymers,2018,206:557−564.

    [45] 吕青青, 陈寒青. 小麦麸皮硒化多糖的肝保护活性研究[J]. 合肥工业大学学报(自然科学版),2022,45(5):694−699. [LÜ Q Q, CHEN H Q. Hepatoprotective activities of wheat bran Se-polysaccharide[J]. Journal of Hefei University of Technology (Natural Science),2022,45(5):694−699. doi: 10.3969/j.issn.1003-5060.2022.05.020

    LV Q Q, CHEN H Q. Hepatoprotective activities of wheat bran Se-polysaccharide [J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(5): 694-699. doi: 10.3969/j.issn.1003-5060.2022.05.020

    [46]

    ZOETE V, VEZIN H, BAILLY F, et al. 4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 2. Computational and experimental approach of the radical scavenging mechanism[J]. Free Radical Research,2000,32(6):525−533. doi: 10.1080/10715760000300531

    [47]

    ESPIN J C, RIVAS C S, WICHERS H J, et al. Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff[J]. Journal of Agricultural and Food Chemistry,2000,48(5):1588−1592. doi: 10.1021/jf9911390

    [48]

    HUANG S Q, DING S, FAN L. Antioxidant activities of five polysaccharides from Inonotus obliquus[J]. International Journal of Biological Macromolecules,2012,50(5):1183−1187. doi: 10.1016/j.ijbiomac.2012.03.019

    [49]

    ZHAO Z Y, ZHANG Q, LI Y F, et al. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2015,119:101−109. doi: 10.1016/j.carbpol.2014.11.052

    [50]

    MALUNGA L N, IZYDORCZYK M, BETA T. Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity[J]. Bioactive Carbohydrates and Dietary Fibre,2017,10:20−26. doi: 10.1016/j.bcdf.2017.05.001

    [51]

    HU S Q, LI Y R, NIE C L, et al. Structure and pro-inflammatory activities of bran polysaccharides from a novel wheat kernel[J]. Journal of Food Biochemistry,2021,46(1):14008.

    [52] 刘秀英, 刘力, 张俊. 高纤维营养膳食对糖尿病血、尿糖与脂代谢的影响[J]. 中国慢性病预防与控制,2000(5):235. [LIU X Y, LIU L, ZHANG J. Effects of high fiber diet on blood, urine glucose and lipid metabolism in diabetes[J]. Chinese Journal of Prevention and Control of Chronic Diseases,2000(5):235. doi: 10.3969/j.issn.1004-6194.2000.05.022

    LIU X Y, LIU L, ZHANG J. Effects of high fiber diet on blood, urine glucose and lipid metabolism in diabetes[J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2000, (5): 235. doi: 10.3969/j.issn.1004-6194.2000.05.022

    [53]

    VOGEL B, GALLAHER D D, BUNZEL M. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats[J]. Journal of Agricultural and Food Chemistry,2012,60(15):3847−3852. doi: 10.1021/jf203930a

    [54] 刘袆帆, 林诺怡, 成坚, 等. 微生物发酵法制备活性多糖的研究概述[J]. 食品与发酵工业,2021,47(3):281−287. [LIU H F, LIN N Y, CHENG J, et al. Advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries,2021,47(3):281−287. doi: 10.13995/j.cnki.11-1802/ts.026004

    LIU H F, LIN N Y, CHENG J, et al. Advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries, 2021, 47(3): 281-287. doi: 10.13995/j.cnki.11-1802/ts.026004

    [55] 陈秋燕, 王瑞芳, 王园, 等. 基于斑马鱼模型评价发酵对麦麸多糖抗氧化活性的影响[J]. 中国粮油学报, 2022(12): 35-43.

    CHEN Q Y, WANG R F, WANG Y, et al. The effect of fermentation on antioxidant activity of wheat bran polysaccharide was evaluated using zebrafish model[J]. Journal of the Chinese Cereals and Oils Association, 2022(12): 35-43.

    [56] 王启龙. 基于免疫亲和色谱的中药多糖活性筛选与构效关系研究[D]. 镇江: 江苏大学, 2019

    WANG Q L. Activity screening and structure-activity relationship research of polysaccharides from traditional Chinese medicine via immunoaffinity chromatography[D]. Zhenjiang: Jiangsu University, 2019.

    [57] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science,2021,42(23):355−363. doi: 10.7506/spkx1002-6630-20200818-244

    YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science, 2021, 42(23): 355-363. doi: 10.7506/spkx1002-6630-20200818-244

    [58]

    PRABHU A A, GARG Y, CHITYALA S, et al. Improvement of phytonutrients and antioxidant properties of wheat bran by yeast fermentation[J]. Current Nutrition & Food Science,2016,12(4):249−255.

    [59] 田玉荣. 不同加工工艺条件下黑小麦麸皮戊聚糖的理化性质及益生活性研究[D]. 太原: 山西大学, 2021

    TIAN Y R. Study on the physicochemical properties and prebiotic activity of black wheat bran pentosan under different processing conditions[D]. Taiyuan: Shanxi University, 2021.

  • 期刊类型引用(3)

    1. 隋昕,孙绍春,孙猛,赵岩,孙佳彤,周晏起. 番石榴果实品质及其影响因素研究进展. 中国果树. 2024(07): 34-41 . 百度学术
    2. 彭丝兰,刘思思,易有金,刘汝宽,李昌珠,肖志红. 基于气相色谱-离子迁移谱技术分析不同预处理技术对压榨山茶油风味的影响. 中国油脂. 2024(08): 48-55 . 百度学术
    3. 姚力为,邓静,易宇文,刘阳,朱开宪,吴华昌. 烹饪熟度对牛排挥发性风味物质的影响研究. 中国调味品. 2024(09): 47-53 . 百度学术

    其他类型引用(0)

图(2)  /  表(5)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  63
  • PDF下载量:  32
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-09-21
  • 网络出版日期:  2023-05-07
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回
x 关闭 永久关闭