• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

茶树新品系‘606’乌龙茶在不同季节的品质分析

黄慧清, 杨云, 柳镇章, 方舟, 林佳琪, 湛水秀, 占鑫怡, 陈常颂, 孙云

黄慧清,杨云,柳镇章,等. 茶树新品系‘606’乌龙茶在不同季节的品质分析[J]. 食品工业科技,2023,44(14):272−281. doi: 10.13386/j.issn1002-0306.2022080303.
引用本文: 黄慧清,杨云,柳镇章,等. 茶树新品系‘606’乌龙茶在不同季节的品质分析[J]. 食品工业科技,2023,44(14):272−281. doi: 10.13386/j.issn1002-0306.2022080303.
HUANG Huiqing, YANG Yun, LIU Zhenzhang, et al. Quality Analysis of a New Tea Line '606' Oolong Tea in Different Seasons[J]. Science and Technology of Food Industry, 2023, 44(14): 272−281. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080303.
Citation: HUANG Huiqing, YANG Yun, LIU Zhenzhang, et al. Quality Analysis of a New Tea Line '606' Oolong Tea in Different Seasons[J]. Science and Technology of Food Industry, 2023, 44(14): 272−281. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080303.

茶树新品系‘606’乌龙茶在不同季节的品质分析

基金项目: 国家现代农业产业技术体系资助(CARS-19);福建农林大学茶产业链科技创新与服务体系建设项目(K1520005A06);福建张天福茶叶发展基金会科技创新基金(FJZTF01)。
详细信息
    作者简介:

    黄慧清(1999−),女,硕士研究生,研究方向:茶叶加工与品质研究,E-mail:hhq9959@163.com

    通讯作者:

    孙云(1964−),女,博士,教授,研究方向:茶叶加工与品质研究,E-mail:sunyun1125@126.com

  • 中图分类号: TS272

Quality Analysis of a New Tea Line '606' Oolong Tea in Different Seasons

  • 摘要: 为探究不同季节对茶树新品系‘606’乌龙茶品质的影响,本研究采用超高效液相色谱-三重四极杆串联质谱(UPLC-QqQ MS)靶向代谢组学、顶空固相微萃取法结合气相色谱-飞行时间质谱联用(HS-SPME-GC-TOF-MS)技术及电子鼻技术(Electronic nose)对新品系‘606’乌龙茶的品质成分进行定性定量测定,通过偏最小二乘-判别分析(PLS-DA)获取不同季节茶样组间差异。结果表明,氨基酸总量呈现春季>秋季>夏季,春季鲜味类氨基酸显著高于秋季与夏季(P<0.05),苦味类氨基酸在夏茶中相对含量较春、秋茶高。儿茶素总量呈现秋茶>夏茶>春茶的规律。氨基酸与儿茶素的差异是造成春、夏、秋茶不同风味品质特征的重要原因。3个季节新品系‘606’乌龙茶共鉴定86种主要特征挥发性成分,醇类和碳氢化合物挥发性组分含量较高,酮类物质是春茶的特征挥发性成分,α-法呢烯是夏茶的特征挥发性成分,反式-橙花叔醇、吲哚、己酸叶醇酯是秋茶的特征挥发性成分。通过建立PLS-DA模型可将3个季节的茶样明显区分,鉴定出23种区分不同季节新品系‘606’乌龙茶的差异挥发性化合物。电子鼻传感器S1, S2, S6, S7, S10在不同季节新品系‘606’乌龙茶的区分中起重要作用,含氮化合物与碳氢化合物是区分不同季节茶样的重要物质。
    Abstract: In order to better understand the impact of the different seasons on the characteristic of oolong tea '606', ultra-high performance liquid chromatography triple quadrupole tandem mass spectrometry (UPLC-QqQ MS) targeted metabonomics, headspace solid phase microextraction combined with gas chromatography time of flight mass spectrometry (HS-SPME-GC-TOF-MS) technology and electronic nose technology were used to determine qualitatively and quantitatively the new line '606' oolong tea's quality, and the group differences of tea samples in different seasons were obtained by partial least squares discriminant analysis (PLS-DA). Results had showed that the total amount of amino acids in tea samples made by different seasons had a downward trend from spring to autumn to summer. Flavor amino acid in oolong tea made by spring buds was especially higher-content than autumn and summer oolong tea (P<0.05), and high level of total bitter amino acid was observed in summer oolong tea. The autumn and summer oolong tea contained higher content of total catechin than spring oolong tea, which carried out that the differences of amino acids and catechins played a strong role in the formation of flavor and quality characteristics of spring, summer and autumn tea. 86 main characteristic volatile substances in total were identified in new line '606' oolong tea in spring, summer and autumn, and among these volatile components were the contents of alcohols and hydrocarbons higher. Ketones were the characteristic aroma components of spring tea. α- Farnesene was the characteristic aroma component of summer tea. Trans Neroli tertiary alcohol, indole and hexanoate were the characteristic aroma components of autumn tea. 23 key compounds for identifying the new line '606' oolong tea in different seasons were determined, which utilized the established PLS-DA model clearly differentiating the tea samples in these three seasons. Electronic nose sensors S1, S2, S6, S7 and S10 made a difference to distinguish the new line '606' oolong tea in different seasons. Nitrogen compound and hydrocarbons were the important material for identifying tea samples in different seasons.
  • 茶树新品系‘606’是黄旦自然杂交的后代,采用单株育种法育成,与亲本黄旦同为早生种,并且适合机械采摘,制优率高[1]。近年来,已有研究者对新品系‘606’的品质进行研究。林郑和等[1]的研究表明,轻晒青和重摇青的做青工艺制成的新品系‘606’乌龙茶品质较优;刘彬彬[2]对新品系‘606’呈味物质以及挥发性成分进行深入探究,并与其亲本黄旦对比分析,认为新品系‘606’的外形、香气、滋味和叶底得分都高于黄旦;杨云等[3]的研究表明,新品系‘606’与亲本黄旦相比,呈味物质更丰富,具有浓醇鲜厚的滋味特点。同时,对不同季节茶叶品质的研究也逐渐得到许多研究者的关注[4]。Liu等[5]通过GC-IMS技术对不同季节英德红茶挥发性成分进行分析,证实了茶叶的香气会随着季节的变化而变化,秋茶的香气最浓郁,其次是春茶和夏茶;Jiang等[6]测定了不同季节对发酵红茶茶黄素的影响,研究表明春季采摘的鲜叶当中产生的茶黄素含量最高;田甜等[7]对凌云白毫绿茶不同季节的香气成分进行了分析和总结,其春、夏和秋茶分别有不同的特征香气成分。目前,对不同季节传统品种茶叶品质的研究已取得重要的研究进展,但对不同季节茶树新品系‘606’乌龙茶的品质探究分析尚未见报道。

    超高效液相色谱-三重四极杆串联质谱(Ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry,UPLC-QqQ MS)靶向代谢组学、顶空固相微萃取法结合气相色谱—飞行时间质谱联用( HS-SPME-GC-TOF-MS) 技术已被广泛应用于医学、环境、植物及食品等领域[8-10],不仅可以对滋味物质和挥发物进行精确定性、定量,还能显著缩短分析时间[11-12]。电子鼻可以在短时间内对样品挥发性成分的整体情况做出评价[13],并具有测定评估范围广、重复性好及结果客观真实等特点[14-15]。本研究以不同季节新品系‘606’乌龙茶为研究对象,利用超高效液相色谱-三重四极杆串联质谱(UPLC-QqQ MS)靶向代谢组学、顶空固相微萃取法结合气相色谱-飞行时间质谱联用( HS-SPME-GC-TOF-MS) 技术[16]以及电子鼻(Electronic Nose)技术[17]对不同季节茶树新品系‘606’乌龙茶的呈味物质、挥发性成分进行对比分析。并采用偏最小二乘-判别分析(Partial Least Squares Discrimination Analysis, PLS-DA)等统计分析方法更好地获取组间差异的信息。旨在掌握该品系乌龙茶不同季节的突出特征,为茶树新品系的品质稳定、生产加工以及应用推广等提供一定的理论依据。

    新品系‘606’样品 均来自福建永生岩茶厂,分别采于春季4月9日、夏季5月28日、秋季10月2日, 选取无病虫害、大小均匀的春季、夏季、秋季鲜叶原料,以开面三四叶为采摘标准,通过闽北乌龙茶加工工艺加工成乌龙茶,每个季节样品设置3个重复样。

    XEVO TQ-S MS三重四极杆液质联用仪 美国Waters公司;FreeZone12冷冻干燥机 美国LABCONCO公司;5430台式高速冷冻离心机 德国Eppendorf公司;7890B气相色谱仪 美国安捷伦科技公司;Pegasus HT飞行时间质谱仪 美国力可公司;MPS多功能自动进样架 德国Gerstel公司;LCJ-25C冷冻干燥机 北京四环科学仪器有限公司;iNose型电子鼻 上海昂申智能科技有限公司。

    参照刘彬彬[2]的方法将新品系‘606’茶样分别置于研钵中研磨成粉末,取30(±5) mg于试管中,加入70%甲醇1 mL,放置4 ℃超声仪器中超声20 min,再通过12000 r/min离心机中离心10 min后取上清液,最后通过稀释过滤进行检测,每个样品设置3个重复样。

    分别称取春、夏、秋茶研磨样品各2.0000±0.0005 g于20 mL SPME瓶中,盖上瓶盖,密封储藏于超低温冰箱(−70 ℃)。

    氨基酸测定:Merck ZIC-HILIC色谱柱(100 mm×2.1 mm,5 µm);溶液A为含5 mmol/L乙酸铵去离子水;溶液B为含0.1%甲酸-乙腈溶液;流速0.4 mL/min;柱温40 ℃;梯度洗脱条件:5%A、95% B(0~12.99 min);41% A、59% B(13 min);60% A、40% B(13.01~15 min);5% A、95% B(15.01~20 min)。

    儿茶素测定:BEH C18色谱柱(100 mm×2.1 mm,1.7 µm);溶液A为0.1%甲酸水;溶液B为0.1%甲酸-乙腈溶液;流速0.3 mL/min;柱温40 ℃;梯度洗脱条件:0~11.99 min,95% A、5%B;12~12.99 min,83% A、17% B;13~16.5 min,0% A、100% B;16.6~20 min,95% A、5% B。

    分析条件参照刘彬彬等[18]的方法。萃取针:PDMS/DVB;孵化温度:80 ℃;孵化时间:31 min;萃取时间:60 min;解吸时间:3.5 min;光纤预烘烤温度:250 ℃;光纤预烘烤时间:30 min,色谱柱:Rxi-5silMS;模式:前进式模式,不分流;进样口温度:250 ℃;传输线温度:275 ℃;载气:氦气,流速:1 mL/min;程序升温:50 ℃保持5 min,以3 ℃/min的速率升至210 ℃,保持3 min,再以15 ℃/min的速率升至230 ℃;溶剂延迟时间:5 min;采集速率:10谱图/s;EI电离能量:70 eV;离子源温度:250 ℃。

    参照Wang等[19]的方法。采样时间为5 min;等待时间为15 s;样品清洗时间为180 s;气体流量为800 mL/min。

    由五位健康、受过专业训练并在茶叶相关领域学习或从业两年以上的感官审评员依据GB/T 23776-2018[20]对3个季节样品的品质进行描述和评分,并记录评分和评语,最终得分为五位审评员评分的平均分。

    单因素分析和显著性分析利用SPSS 26.0软件;计算和图表制作通过Excel、Graphpad Prism 7.0、TB-tools软件进行;并利用SIMCA 14.1软件进行偏最小二乘判别分析(PLS-DA)。

    根据本研究目的对不同季节新品系‘606’乌龙茶进行感官审评,最终评价结果如表1所示。新品系‘606’春茶综合得分为92.37分,夏茶为88.69分,秋茶为90.94分。不同季节间的感官品质差异较大,春季新品系‘606’乌龙茶的各项感官指标均具有优质乌龙茶的特点,滋味醇厚甘爽,具有浓郁花果香;夏茶滋味醇和略粗涩,香气较浓郁,但略带老火香,可能与加工时的火功强度有关。秋茶滋味醇和稍甘爽,香气得分是3个季节中得分最高的,清高持久,花香馥郁。感官品质综合排序依次为春季、秋季、夏季。

    表  1  不同季节新品系‘606’乌龙茶感官审评
    Table  1.  Sensory evaluation of new line '606' oolong tea in different seasons
    样品外形(20%) 汤色(5%) 香气(30%) 滋味(35%) 叶底(10%)综合得分
    评语得分评语得分评语得分评语得分评语得分
    春茶条索紧结,重实,乌褐尚润93.65 橙黄明亮92.53 花香显,较浓郁90.69 浓厚甘醇92.68 肥厚,软亮93.7192.37
    夏茶尚紧实,色泽乌褐90.67橙红欠亮88.92较浓郁,略带老火香89.84尚醇和,略粗涩86.73娇嫩,稍杂88.0588.69
    秋茶较紧结,色泽青褐90.89橙红,较明亮90.46清高持久,花香显93.28醇和尚爽89.41较软亮89.6790.94
    下载: 导出CSV 
    | 显示表格

    不同季节新品系‘606’乌龙茶共检测出20种氨基酸,氨基酸含量的变化与差异如表2所示。春季氨基酸总量最多,显著高于秋季与夏季(P<0.05)。春季多雨水,气候温和,有利于茶树氮代谢,而氮代谢影响着氨基酸的生成与积累,因此春季的氨基酸含量较高[21]。夏季的高温高湿有利于氨基酸分解,且夏茶加工时火功较高,因此夏茶的氨基酸含量相对最低。秋季鲜叶较为粗老,加之雨水不足,因此内含物质较少[22]

    表  2  新品系‘606’不同季节样品氨基酸组分含量(mg/100 g)
    Table  2.  Content of amino acid components of new tea line '606' in different seasons (mg/100 g)
    类型组分缩写春季夏季秋季
    鲜味类茶氨酸The136.59±0.80a61.47±5.34c111.76±7.82b
    谷氨酸Glu12.88±1.07a7.13±1.34b11.96±0.48a
    天冬氨酸Asp15.18±3.06a14.49±6.21a14.12±5.53a
    脯氨酸Pro2.95±0.20a2.16±0.25b2.63±0.15a
    γ-氨基丁酸GABA3.36±0.20a2.47±0.32b2.90±0.37ab
    总量170.96±5.33a87.72±13.46c143.37±14.35b
    甜味类丝氨酸Ser7.01±0.42a7.90±2.07a8.74±2.01a
    苏氨酸Thr0.45±0.08a0.59±0.03a0.52±0.10a
    天冬酰胺Asn1.25±0.14a1.87±0.44b1.43±0.14ab
    谷氨酰胺Gln3.39±1.20a1.81±0.55a3.45±0.71a
    丙氨酸Ala3.40±0.78a2.93±0.49a2.56±1.44a
    蛋氨酸Met0.06±0.02a0.02±0.00b0.09±0.01a
    总量15.56±2.64a15.12±3.58a16.79±4.41b
    苦味类精氨酸Arg0.93±0.14a1.32±0.27b0.82±0.05a
    组氨酸His0.91±0.15a0.98±0.25a0.90±0.04a
    亮氨酸Leu1.93±0.29a1.66±0.10a1.69±0.14a
    异亮氨酸Ile1.32±0.20a1.30±0.10a1.31±0.17a
    缬氨酸Val2.51±0.26a2.03±0.26b2.46±0.15ab
    总量7.60±1.04a7.29±0.98a7.18±0.55a
    芳香类苯丙氨酸Phe7.12±1.34a6.01±0.75a6.56±0.64a
    赖氨酸Lys1.14±0.24a1.08±0.35a1.09±0.16a
    酪氨酸Tyr5.95±0.65a4.72±0.52b5.42±0.51ab
    色氨酸Trp2.86±0.59a2.67±0.43a2.80±0.35a
    总量17.07±2.82a14.48±2.05b15.87±1.66b
    所有氨基酸总量211.19±11.83a124.61±20.06c183.21±20.97b
    注:表中同行不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    在春、夏和秋季茶样中,鲜味类氨基酸相对含量均居于首位,占总氨基酸含量的70.40%~80.95%,且均呈现春季>秋季>夏季的变化规律。春季鲜味类氨基酸相对含量为80.95%,显著高于夏季(70.40%)与秋季(78.25%)(P<0.05),其中以The、Glu为代表,The在春季中相对含量达到64.68%,比夏季和秋季分别高15.35%、3.68%,差异显著(P<0.05),Glu在春茶与秋茶间无显著差异,但其在夏茶中相对含量较低,与春、秋茶间存在显著差异(P<0.05)。

    甜味类氨基酸在秋茶中的相对含量较春茶与夏茶高,其中除夏茶中的Asn与春茶差异显著(P<0.05),以及夏茶中的Met与春、秋茶差异显著(P<0.05)外,其他氨基酸在3季茶样间均无显著性差异。苦味类氨基酸在春、夏、秋茶中的相对含量分别为3.60%、5.85%、3.92%,夏茶中的相对含量明显多于春茶和秋茶,这就导致夏季茶汤苦涩味增强。芳香类氨基酸以Phe、Tyr的含量较高,Phe在3个季节间的差异不显著,Tyr则在春季和夏季间存在显著性差异(P<0.05)。

    综上,不同季节间氨基酸含量呈现春季最多,秋季次之,夏季最少的规律,这与周喆等[23]关于不同季节茶叶活性成分的研究结果一致。春季鲜味类氨基酸显著高于夏季与秋季(P<0.05),使春季茶汤更加醇厚鲜爽,不同类别氨基酸的差异是造成春、夏、秋茶不同风味品质特征的重要原因。

    不同季节新品系‘606’乌龙茶儿茶素含量之间的变化与差异如图1所示。不同季节儿茶素总含量呈现春季<夏季<秋季的趋势。酯型儿茶素与非酯型儿茶素在热图分布中有较好的区分,非酯型儿茶素在夏茶中的相对含量最高,其次是秋茶,春茶中最低,酯型儿茶素总体呈现秋茶>春茶>夏茶的变化规律。EGCG、EGC、ECG和EGCG3"Me的相对含量分别达到49.89%~55.36%、20.53%~24.26%、10.36%~11.06%、7.17%~8.10%,是含量较高的儿茶素组分。EC、C、GC、EGC的含量表现为春茶低于夏茶和秋茶,且差异显著(P<0.05)。C、GC、CG、GCG在三个不同季节间都存在显著性差异(P<0.05)。

    图  1  不同季节新品系‘606’乌龙茶儿茶素组分热图
    注:图中C表示春茶,X表示夏茶,Q表示秋茶;同行不同小写字母(a,b,c)表示差异显著(P<0.05),标尺上从0.00~1.00对应颜色由蓝色到红色,颜色越偏向蓝色,表示儿茶素相对含量越少,越偏向红色表示儿茶素组分相对含量越高。
    Figure  1.  Heat map of catechin components of new line '606' oolong tea in different seasons

    EGCG3"Me是儿茶素的甲基化产物,其含量与季节、地域以及加工条件等相关,且有研究表明EGCG3"Me在秋季鲜叶中的含量比较高[24-25]。本研究中EGCG、EGCG3"Me的相对含量变化不同于其他儿茶素,表现为春季>秋季>夏季,在不同季节间差异不显著,这与吕海鹏等[26]、Chiu等[27]的研究结果较为一致。

    综上,春季儿茶素含量较夏、秋季低,使得春季茶汤苦涩味较夏季与秋季弱,这与感官审评结果一致。儿茶素种类与相对含量的差异是使三个季节茶汤苦涩味、收敛性强弱差异的重要原因。

    从3个季节新品系‘606’乌龙茶中共检测出528种挥发性成分,鉴别出199种已知化合物。通过OPLS-DA对不同季节茶样进行两两判别分析,以VIP>1以及P<0.05为筛选条件[28],共筛选出87种主要特征挥发性成分如表3所示。

    表  3  不同季节新品系‘606’乌龙茶主要特征挥发性成分相对含量(%)
    Table  3.  Relative contents of main characterisitic volatile components in new line '606' oolong tea in different seasons (%)
    编号香气成分春茶 夏茶 秋茶
    C1C2C3X1X2X3Q1Q2Q3
    醇类
    1橙花醇0.700.770.800.140.170.170.200.220.23
    2芳樟醇0.300.290.310.820.830.851.121.071.14
    31-辛烯-3-醇0.140.150.160.050.060.060.090.090.10
    4顺-2-戊烯醇0.430.440.430.140.170.160.270.250.26
    52-甲基-3-丁烯-2-醇0.280.320.370.160.200.180.180.180.21
    6苯甲醇0.410.420.440.110.140.140.150.160.19
    7苯乙醇2.212.222.271.401.531.511.801.781.93
    8反式-橙花叔醇29.8429.8929.6428.0827.7927.5534.3336.7833.86
    91-(4-甲基苯基)-乙醇0.320.330.350.070.090.080.130.130.14
    101-戊醇0.520.560.510.230.250.260.350.340.36
    113-异丙基-4-甲基-1-戊炔-3-醇0.330.330.330.130.140.130.190.200.21
    123,7-二甲基-1,5,7-三烯-3-庚醇1.091.051.100.340.370.360.390.420.44
    132,2,6-三甲基-6-四氢化乙烯基-吡喃-3-醇0.370.370.370.160.190.190.260.260.30
    醛类
    1正己醛0.470.440.460.380.410.390.700.640.68
    22-己烯醛0.020.020.030.020.020.020.040.040.04
    34-乙酰基-1H-吡咯-2-甲醛0.420.390.410.030.030.030.040.040.04
    4β-环柠檬醛0.110.100.120.050.060.060.090.090.10
    5苯甲醛0.500.490.500.160.180.160.250.250.27
    62-甲基-2-戊烯醛0.050.050.05
    7苯乙醛0.460.480.480.370.410.400.570.550.58
    82,3-二氢-2,2,6-三甲基苯甲醛0.070.060.070.030.030.030.030.030.03
    9(2E,4E)-2,4-辛二烯醛0.040.040.040.060.060.070.130.120.13
    酮类
    12-十四酮1.551.822.060.420.580.530.800.890.91
    22,2,5-三甲基-3,4-己二酮0.040.030.030.020.020.020.040.050.05
    32-庚酮0.350.340.350.090.090.080.150.140.15
    46-甲基-2-庚酮0.130.130.140.030.040.030.070.060.07
    5茉莉酮0.400.400.400.070.070.070.090.090.09
    6β-紫罗酮0.810.830.860.170.210.200.280.290.32
    74-甲基-3-戊烯-2-酮0.170.160.180.040.050.050.060.050.05
    84-[2,2,6-三甲基-7-氧杂二环]-3-丁烯-2-酮0.830.850.860.190.240.220.340.350.38
    9环己基甲乙酮0.110.110.110.030.040.040.060.060.06
    103-羟基-3-甲基-2-丁酮0.070.070.070.020.020.020.030.030.03
    111-辛烯-3-酮0.020.020.040.040.04
    126-甲基-6-庚烯-2-酮1.451.381.470.920.990.941.551.471.60
    135-甲基-1,2,5,6-四氢吡啶-2-酮0.450.460.57
    14Z-四氢-6-(2-戊烯基)-吡喃-2-酮9.769.899.372.622.822.692.973.483.01
    酯类
    1己酸叶醇酯3.773.633.765.045.235.286.165.806.18
    2己酸己酯0.710.670.690.210.210.210.270.250.26
    3水杨酸甲酯0.380.360.390.230.250.250.300.310.32
    4(Z)-己-2-烯基乙酸酯0.140.130.140.060.060.060.090.090.09
    5N-己酸(反-2-己烯基)酯0.580.560.590.350.350.360.440.430.44
    6二氢猕猴桃内酯1.101.111.120.230.280.240.510.490.51
    7异戊酸己酯0.080.070.070.020.010.010.020.020.02
    8异戊酸苯乙酯0.450.450.46 0.110.130.11 0.140.140.15
    9丁酸苯乙酯0.400.410.400.130.140.140.160.150.16
    10茉莉酸甲酯0.150.160.16
    11苯甲酸己酯1.071.061.070.360.400.350.440.440.44
    12乙酸叶醇酯0.050.060.050.060.050.05
    13乙酸苯乙酯0.070.060.080.100.100.100.120.120.12
    14辛酸己酯0.020.020.02
    152-甲基戊酸甲酯0.620.610.670.800.890.931.491.511.66
    16邻氨基苯甲酸甲酯0.140.160.150.130.140.150.130.130.13
    17(5Z,9Z)-十四烷二烯醋酸酯0.770.800.820.650.720.691.391.411.44
    18顺式-3-己烯醇苯甲酸酯1.631.601.621.711.801.682.061.982.07
    19γ-己内酯0.840.790.770.120.130.120.170.160.17
    碳氢化合物
    1α-罗勒烯0.050.050.050.040.040.040.060.060.06
    2α-法呢烯11.3811.2911.3427.7126.8027.049.738.448.98
    3(E)-柠檬烯0.070.060.060.030.030.020.030.030.03
    4α-姜黄烯0.030.030.03
    5罗勒烯0.110.110.120.530.510.490.800.730.74
    6联苯烯0.120.120.130.010.010.020.01
    7环庚三烯0.150.140.140.070.080.070.120.120.12
    8(3E)-4,8-二甲基-1,3,7壬三烯0.280.270.291.391.421.422.222.102.16
    9十三烷0.060.060.060.040.040.030.080.080.08
    10癸烷0.270.240.250.190.180.170.330.310.35
    11β-硝基苯乙烷0.710.730.730.140.150.150.170.170.18
    122,4-二甲基己烷0.170.160.170.080.070.070.140.140.16
    131-碘-2-甲基十一烷0.530.510.520.300.280.280.550.540.57
    142,6,10-三甲基十二烷0.070.070.070.020.020.020.040.040.04
    152,6,8-三甲基癸烷0.210.210.210.060.070.050.270.270.29
    163,3-二甲基已烷0.270.250.210.180.200.190.360.380.40
    17环丙烷0.130.130.110.040.050.040.070.070.07
    186-氮杂双环[3.2.1]辛烷1.251.431.450.780.820.870.860.860.92
    19邻二甲苯0.050.050.050.050.060.050.110.100.10
    202-甲基萘0.020.010.020.010.010.010.030.030.04
    含氮化合物
    1吲哚9.699.799.1817.6817.0717.6017.9216.8817.62
    2茶吡咯0.810.760.800.260.240.240.370.370.37
    31-(2-呋喃甲基)-1H-吡咯0.750.710.730.200.230.210.230.240.26
    4N-乙基琥珀酰亚胺0.690.620.650.110.100.090.170.160.17
    52-乙基-6-甲基吡嗪0.480.460.480.090.150.150.16
    62,5-二甲基吡嗪2.372.222.220.760.710.751.111.081.14
    72,3-二甲基吡嗪0.110.100.110.020.030.020.040.050.05
    83-乙基-2,5-甲基吡嗪0.320.290.300.060.060.050.090.090.09
    杂氧化合物
    12-乙酰基呋喃0.630.650.670.140.170.140.240.230.25
    酚类
    1异丁香酚0.030.040.040.060.090.090.070.070.07
    酸类
    1正戊酸0.951.101.201.751.932.18
    2反式-3-己烯酸0.060.090.100.110.190.200.130.130.14
    注:“−”表示未检测出该物质。
    下载: 导出CSV 
    | 显示表格

    不同季节新品系‘606’乌龙茶的挥发性组分基本一致,包括醇类13种、醛类9种、酮类14种、酯类19种、碳氢化合物20种、含氮化合物8种、杂氧化合物1种、酚类1种以及酸类2种,主要以醇类、酮类、酯类、含氮化合物和碳氢化合物为主。其中醇类物质的相对含量在3个季节中的挥发性成分中占据首位,达到31.68%~41.88%;其次是碳氢化合物,相对含量在14.49%~31.67%之间,其挥发性组分数量最多;含氮化合物相对含量在14.46%~20.08%之间;酮类和酯类的相对含量分别为4.64%~16.48%、10.31%~14.21%之间。在醇类中,反式-橙花叔醇、苯乙醇、橙花醇、3,7-二甲基-1,5,7-三烯-3-庚醇的相对含量较高,并均表现为花香、果香等香气[18, 29];其中,反式-橙花叔醇的相对含量最高,在春、夏、秋季中分别达到30.50%、28.54%、37.20%。醛类中苯甲醛、正己醛、苯乙醛的相对含量较高,具有杏仁香、花香、甜香及鲜爽气味[30-31];酮类中的Z-四氢-6-(2-戊烯基)-吡喃-2-酮、β-紫罗酮、2-十四酮,具花香、木质香、脂肪香等香气[32];酯类中的己酸叶醇酯、苯甲酸己酯、二氢猕猴桃内酯、顺式-3-己烯醇苯甲酸酯,具清果香、花香等香气[33];碳氢化合物中的α-法呢烯、(3E)-4,8-二甲基-1,3,7壬三烯、β-硝基苯乙烷、6-氮杂双环[3.2.1]辛烷,具花果香[34];含氮化合物中的吲哚、2,5-二甲基吡嗪、茶吡咯(具花香)[35-36]。上述这些物质的存在构成了新品系‘606’乌龙茶花香馥郁、清幽持久的香气特征。

    表4可知,春、夏、秋茶的主导挥发性组分分别有17、5、10种,其中3个季节共有的主导挥发性组分有反式-橙花叔醇、α-法呢烯、Z-四氢-6-(2-戊烯基)-2H-4-吡喃-2-酮、吲哚和己酸叶醇酯,这些物质均属于花果香型挥发性成分。春季茶样中的主导成分以酮类和酯类数量较多,结合图2可知,春季新品系‘606’乌龙茶中酮类挥发性组分含量平均达到16.36%,明显高于夏季(4.90%)与秋季(6.75%),其中的2-十四酮、β-紫罗酮、Z-四氢-6-(2-戊烯基)-吡喃-2-酮等主导成分显著高于夏茶与秋茶(P<0.05),这些物质具有木香、花香,而感官审评春茶茶样花香浓郁,并带有令人愉悦的木质香。因此,推测酮类物质是新品系‘606’乌龙茶春茶区别于夏、秋茶的特征挥发性组分。夏季茶样中的主导挥发性组分种类最少,但每一主导组分的相对含量均较高,其中α-法呢烯的相对含量高达27.18%,相比春茶与秋茶高15.84%~18.13%,差异显著(P<0.05),而碳氢化合物在夏茶中相对含量达到31.17%,显著(P<0.05)高于春茶(15.96%)和秋茶(15.24%),因此,推测α-法呢烯是构成新品系‘606’乌龙茶夏茶花香高显的特征挥发性组分。秋茶主导挥发性组分中反式-橙花叔醇(34.99%)、己酸叶醇酯(6.04%)、吲哚(17.47%)相较于春茶与夏茶相对含量较高,而这些组分均具有花香、清果香。感官审评秋茶的香气清高持久,花香馥郁,这可能与反式-橙花叔醇、己酸叶醇酯、吲哚相对含量高有关。

    表  4  不同季节新品系‘606’乌龙茶主导挥发性组分(%)
    Table  4.  New line '606' oolong tea dominated the volatile components in different seasons (%)
    序号挥发性组分春季夏季秋季
    1反式-橙花叔醇29.7927.8034.99
    2α-法呢烯11.3427.189.05
    3Z-四氢-6-(2-戊烯基)-
    2H-4吡喃-2-酮
    9.672.713.16
    4吲哚9.5617.4517.47
    5己酸叶醇酯3.725.186.04
    62,5-二甲基吡嗪2.27
    7苯乙醇2.231.84
    82-十四酮1.81
    9顺式-3-己烯醇苯甲酸酯1.622.04
    10正戊酸1.95
    116-甲基-6-庚烯-2-酮1.43
    122-甲基戊酸甲酯1.55
    136-氮杂双环[3.2.1]辛烷1.38
    14二氢猕猴桃内酯1.11
    153,7-二甲基-1,5,7-辛烯-3-醇1.08
    16苯甲酸己酯1.07
    174-[2,2,6-三甲基-7-氧杂二环]-
    3-丁烯-2-酮
    0.84
    18β-紫罗酮0.83
    19γ-己内酯0.80
    主导挥发性组分含量总和80.5680.3280.26
    主导挥发性组分的数量17510
    注:主导挥发性组分中的“主导”指占总挥发性成分相对含量80%所包括的相对含量排序在前的各组分;“−”代表该挥发性物质不是所对应茶样的主导挥发性组分。
    下载: 导出CSV 
    | 显示表格
    图  2  不同季节新品系‘606’乌龙茶主要特征挥发性成分类型及含量
    Figure  2.  Types and contents of main characteristic volatile components of new line '606' oolong tea in different seasons

    利用SIMCA-P 14.1软件对3个季节样品主要特征挥发性组分进行PLS-DA分析,探究每个特征挥发性成分对3个季节样品分类的贡献度和丰度情况,其多元统计分析结果如图3所示。

    图  3  不同季节新品系‘606’乌龙茶挥发性组分多元统计分析
    注:A为PLS-DA得分图;B为PLS-DA验证模型;C为PLS-DA模型VIP值(红色区域表示VIP>1)。
    Figure  3.  Multivariate statistical analysis of volatile components of new line '606' oolong tea in different seasons

    如PLS-DA得分图(图3A)所示,3个季节样品在第一、二主成分空间均具有相对独立的空间。第一、二主成分的贡献率分别为79.5%、16.8%,贡献率之和为96.3%。由此说明PLS-DA分析能够显著区分新品系‘606’乌龙茶不同季节的茶样及其挥发性成分相对含量。

    图3B的验证模型显示,置换检验得到R2=0.291,Q2=−0.715,且回归线在Y轴的截距为负,所以该模型可信度高。

    图3C可知,2-甲基萘、α-法呢烯、邻氨基苯甲酸甲酯、癸烷、反式-橙花叔醇、吲哚、己酸叶醇酯、异丁香酚等23种挥发性组分的VIP值大于1,VIP值体现了不同挥发性组分对不同结果分类的贡献大小,VIP值越大,则表示挥发性组分在不同季节间的差异越显著[37]。结合多元分析,这23种挥发性组分的组内组间均存在显著性差异,且对PLS-DA模型的贡献较大,表明这23种差异挥发性组分构成了新品系‘606’乌龙茶在不同季节的独特香气特征,也是新品系‘606’乌龙茶香气浓郁持久,花果香明显的重要物质基础。

    采用电子鼻技术对春季、夏季、秋季新品系606’乌龙茶进行挥发性成分的探究,其结果如表5所示。10个传感器中,S1、S3、S4、S5和S8传感器响应值在三个不同季节间差异不显著;S2、S9两个传感器则在夏茶与秋茶间存在显著性差异(P<0.05);S6、S7、S10三个传感器在夏茶与春茶、秋茶间差异显著(P<0.05)。S1、S2、S6和S10,表明这4个传感器对新品系‘606’乌龙茶样香气中的对应敏感物质反应灵敏。

    表  5  不同季节新品系‘606’乌龙茶电子鼻响应值
    Table  5.  Electronic nose response of new line '606' oolong tea in different seasons
    传感器
    编号
    对应敏感的挥发性气体电子鼻响应值
    春茶夏茶秋茶
    S1胺类、氨气1.95±0.08a1.86±0.08a1.81±0.01a
    S2硫化物、硫化氢2.29±0.13ab2.47±0.07b2.15±0.10a
    S3氢气1.08±0.01a1.08±0.03a1.08±0.01a
    S4有机溶剂、酒精1.05±0.02a1.04±0.01a1.04±0.02a
    S5食物烹饪过程中的
    挥发性气体
    1.15±0.03a1.18±0.01a1.15±0.02a
    S6沼气、碳氢化合物、甲烷1.91±0.11a2.07±0.03b1.82±0.08a
    S7可燃性气体1.33±0.05a1.41±0.03b1.31±0.04a
    S8VOC1.22±0.02a1.18±0.03a1.22±0.01a
    S9汽油、煤油、氢氧化合物1.08±0.01ab1.09±0.01b1.07±0.00a
    S10可燃性气体、烷烃1.64±0.07a1.76±0.02b1.59±0.05a
    总和14.70±0.53a15.14±0.32b14.24±0.34a
    下载: 导出CSV 
    | 显示表格

    新品系‘606’的主要挥发性组分包括醇类、醛类、酮类、酯类、碳氢化合物及含氮化合物等。其中,有机溶剂中包含醛类、酯类、醇类、酮类,含氮化合物包含在胺类中,这些物质大多具有花果香、清香,而感官审评新品系‘606’乌龙茶春、夏、秋季均具有较浓郁花香。因此,S1(对铵类、氨气敏感)、S4(对有机溶剂、酒精敏感)、S6(对沼气、碳氢化合物和甲烷敏感)是新品系‘606’的特征性传感器,构成新品系‘606’乌龙茶花香浓郁的香气特点。夏茶的S2、S6、S7、S10传感器响应值均高于春、秋茶,且差异显著,这些传感器的敏感物质包含硫化物、可燃性气体和烷烃类物质,这些物质可能是夏茶加工过程中由于火功过高产生的,使得夏茶带有老火香。

    表6可知,5 个传感器(S1, S2, S10, S6, S7)的VIP值大于1.0,表明它们在区分3个季节茶样挥发性组分中的贡献较大。而这5个传感器对应的敏感物质主要为含氮化合物和碳氢化合物,故在区分不同季节新品系‘606’香气成分中,含氮化合物和碳氢化合物起重要作用。不同季节新品系‘606’乌龙茶电子鼻PLS-DA得分图如图4所示,3个季节茶样在95%的置信区间上分布于不同区域,区分较明显。

    表  6  10个传感器的变量权重值
    Table  6.  VIP of 10 sensors
    传感器编号VIP值传感器编号VIP值
    S11.64S90.97
    S21.07S80.92
    S101.07S50.82
    S61.06S40.61
    S71.02S30.03
    下载: 导出CSV 
    | 显示表格
    图  4  不同季节新品系‘606’乌龙茶电子鼻PLS-DA得分图
    Figure  4.  PLS-DA score of electronic nose of new line '606' oolong tea in different seasons

    本研究以3个不同季节新品系‘606’乌龙茶为试验材料,研究表明新品系‘606’乌龙茶滋味浓醇甘爽,花香馥郁,不同季节新品系‘606’乌龙茶品质特征区别明显,滋味和香气共同影响不同季节茶样品质。氨基酸、儿茶素含量的差异构成不同季节茶样的滋味特点,反式-橙花叔醇、α-法呢烯、己酸叶醇酯、吲哚等花果香型挥发性成分是新品系‘606’乌龙茶花香馥郁,清高幽长的关键物质。电子鼻实验结果表明,含氮化合物和碳氢化合物是区别3个季节茶样的重要香气组分。春茶无论是滋味或香气均表现优质茶叶的特征,浓厚甘醇,花香浓郁;其次是秋茶,滋味虽不及春茶般浓醇,但香气清高持久;夏茶的综合品质最低,略有苦涩味和老火香。

    在实际生产中,可以从产品茶的滋味、香气与生产成本等方面综合考虑,利用新品系‘606’乌龙不同季节茶样的特点进行拼配,更好地进行产品的应用和推广。春茶的综合品质最好,但成本较高,在一些优级茶类的拼配中可起到至关重要的作用。夏茶的综合品质相对较差,但原料成本低,可用于口粮茶等的拼配。秋茶香气特征突出,适用于高香型产品的应用。

  • 图  1   不同季节新品系‘606’乌龙茶儿茶素组分热图

    注:图中C表示春茶,X表示夏茶,Q表示秋茶;同行不同小写字母(a,b,c)表示差异显著(P<0.05),标尺上从0.00~1.00对应颜色由蓝色到红色,颜色越偏向蓝色,表示儿茶素相对含量越少,越偏向红色表示儿茶素组分相对含量越高。

    Figure  1.   Heat map of catechin components of new line '606' oolong tea in different seasons

    图  2   不同季节新品系‘606’乌龙茶主要特征挥发性成分类型及含量

    Figure  2.   Types and contents of main characteristic volatile components of new line '606' oolong tea in different seasons

    图  3   不同季节新品系‘606’乌龙茶挥发性组分多元统计分析

    注:A为PLS-DA得分图;B为PLS-DA验证模型;C为PLS-DA模型VIP值(红色区域表示VIP>1)。

    Figure  3.   Multivariate statistical analysis of volatile components of new line '606' oolong tea in different seasons

    图  4   不同季节新品系‘606’乌龙茶电子鼻PLS-DA得分图

    Figure  4.   PLS-DA score of electronic nose of new line '606' oolong tea in different seasons

    表  1   不同季节新品系‘606’乌龙茶感官审评

    Table  1   Sensory evaluation of new line '606' oolong tea in different seasons

    样品外形(20%) 汤色(5%) 香气(30%) 滋味(35%) 叶底(10%)综合得分
    评语得分评语得分评语得分评语得分评语得分
    春茶条索紧结,重实,乌褐尚润93.65 橙黄明亮92.53 花香显,较浓郁90.69 浓厚甘醇92.68 肥厚,软亮93.7192.37
    夏茶尚紧实,色泽乌褐90.67橙红欠亮88.92较浓郁,略带老火香89.84尚醇和,略粗涩86.73娇嫩,稍杂88.0588.69
    秋茶较紧结,色泽青褐90.89橙红,较明亮90.46清高持久,花香显93.28醇和尚爽89.41较软亮89.6790.94
    下载: 导出CSV

    表  2   新品系‘606’不同季节样品氨基酸组分含量(mg/100 g)

    Table  2   Content of amino acid components of new tea line '606' in different seasons (mg/100 g)

    类型组分缩写春季夏季秋季
    鲜味类茶氨酸The136.59±0.80a61.47±5.34c111.76±7.82b
    谷氨酸Glu12.88±1.07a7.13±1.34b11.96±0.48a
    天冬氨酸Asp15.18±3.06a14.49±6.21a14.12±5.53a
    脯氨酸Pro2.95±0.20a2.16±0.25b2.63±0.15a
    γ-氨基丁酸GABA3.36±0.20a2.47±0.32b2.90±0.37ab
    总量170.96±5.33a87.72±13.46c143.37±14.35b
    甜味类丝氨酸Ser7.01±0.42a7.90±2.07a8.74±2.01a
    苏氨酸Thr0.45±0.08a0.59±0.03a0.52±0.10a
    天冬酰胺Asn1.25±0.14a1.87±0.44b1.43±0.14ab
    谷氨酰胺Gln3.39±1.20a1.81±0.55a3.45±0.71a
    丙氨酸Ala3.40±0.78a2.93±0.49a2.56±1.44a
    蛋氨酸Met0.06±0.02a0.02±0.00b0.09±0.01a
    总量15.56±2.64a15.12±3.58a16.79±4.41b
    苦味类精氨酸Arg0.93±0.14a1.32±0.27b0.82±0.05a
    组氨酸His0.91±0.15a0.98±0.25a0.90±0.04a
    亮氨酸Leu1.93±0.29a1.66±0.10a1.69±0.14a
    异亮氨酸Ile1.32±0.20a1.30±0.10a1.31±0.17a
    缬氨酸Val2.51±0.26a2.03±0.26b2.46±0.15ab
    总量7.60±1.04a7.29±0.98a7.18±0.55a
    芳香类苯丙氨酸Phe7.12±1.34a6.01±0.75a6.56±0.64a
    赖氨酸Lys1.14±0.24a1.08±0.35a1.09±0.16a
    酪氨酸Tyr5.95±0.65a4.72±0.52b5.42±0.51ab
    色氨酸Trp2.86±0.59a2.67±0.43a2.80±0.35a
    总量17.07±2.82a14.48±2.05b15.87±1.66b
    所有氨基酸总量211.19±11.83a124.61±20.06c183.21±20.97b
    注:表中同行不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  3   不同季节新品系‘606’乌龙茶主要特征挥发性成分相对含量(%)

    Table  3   Relative contents of main characterisitic volatile components in new line '606' oolong tea in different seasons (%)

    编号香气成分春茶 夏茶 秋茶
    C1C2C3X1X2X3Q1Q2Q3
    醇类
    1橙花醇0.700.770.800.140.170.170.200.220.23
    2芳樟醇0.300.290.310.820.830.851.121.071.14
    31-辛烯-3-醇0.140.150.160.050.060.060.090.090.10
    4顺-2-戊烯醇0.430.440.430.140.170.160.270.250.26
    52-甲基-3-丁烯-2-醇0.280.320.370.160.200.180.180.180.21
    6苯甲醇0.410.420.440.110.140.140.150.160.19
    7苯乙醇2.212.222.271.401.531.511.801.781.93
    8反式-橙花叔醇29.8429.8929.6428.0827.7927.5534.3336.7833.86
    91-(4-甲基苯基)-乙醇0.320.330.350.070.090.080.130.130.14
    101-戊醇0.520.560.510.230.250.260.350.340.36
    113-异丙基-4-甲基-1-戊炔-3-醇0.330.330.330.130.140.130.190.200.21
    123,7-二甲基-1,5,7-三烯-3-庚醇1.091.051.100.340.370.360.390.420.44
    132,2,6-三甲基-6-四氢化乙烯基-吡喃-3-醇0.370.370.370.160.190.190.260.260.30
    醛类
    1正己醛0.470.440.460.380.410.390.700.640.68
    22-己烯醛0.020.020.030.020.020.020.040.040.04
    34-乙酰基-1H-吡咯-2-甲醛0.420.390.410.030.030.030.040.040.04
    4β-环柠檬醛0.110.100.120.050.060.060.090.090.10
    5苯甲醛0.500.490.500.160.180.160.250.250.27
    62-甲基-2-戊烯醛0.050.050.05
    7苯乙醛0.460.480.480.370.410.400.570.550.58
    82,3-二氢-2,2,6-三甲基苯甲醛0.070.060.070.030.030.030.030.030.03
    9(2E,4E)-2,4-辛二烯醛0.040.040.040.060.060.070.130.120.13
    酮类
    12-十四酮1.551.822.060.420.580.530.800.890.91
    22,2,5-三甲基-3,4-己二酮0.040.030.030.020.020.020.040.050.05
    32-庚酮0.350.340.350.090.090.080.150.140.15
    46-甲基-2-庚酮0.130.130.140.030.040.030.070.060.07
    5茉莉酮0.400.400.400.070.070.070.090.090.09
    6β-紫罗酮0.810.830.860.170.210.200.280.290.32
    74-甲基-3-戊烯-2-酮0.170.160.180.040.050.050.060.050.05
    84-[2,2,6-三甲基-7-氧杂二环]-3-丁烯-2-酮0.830.850.860.190.240.220.340.350.38
    9环己基甲乙酮0.110.110.110.030.040.040.060.060.06
    103-羟基-3-甲基-2-丁酮0.070.070.070.020.020.020.030.030.03
    111-辛烯-3-酮0.020.020.040.040.04
    126-甲基-6-庚烯-2-酮1.451.381.470.920.990.941.551.471.60
    135-甲基-1,2,5,6-四氢吡啶-2-酮0.450.460.57
    14Z-四氢-6-(2-戊烯基)-吡喃-2-酮9.769.899.372.622.822.692.973.483.01
    酯类
    1己酸叶醇酯3.773.633.765.045.235.286.165.806.18
    2己酸己酯0.710.670.690.210.210.210.270.250.26
    3水杨酸甲酯0.380.360.390.230.250.250.300.310.32
    4(Z)-己-2-烯基乙酸酯0.140.130.140.060.060.060.090.090.09
    5N-己酸(反-2-己烯基)酯0.580.560.590.350.350.360.440.430.44
    6二氢猕猴桃内酯1.101.111.120.230.280.240.510.490.51
    7异戊酸己酯0.080.070.070.020.010.010.020.020.02
    8异戊酸苯乙酯0.450.450.46 0.110.130.11 0.140.140.15
    9丁酸苯乙酯0.400.410.400.130.140.140.160.150.16
    10茉莉酸甲酯0.150.160.16
    11苯甲酸己酯1.071.061.070.360.400.350.440.440.44
    12乙酸叶醇酯0.050.060.050.060.050.05
    13乙酸苯乙酯0.070.060.080.100.100.100.120.120.12
    14辛酸己酯0.020.020.02
    152-甲基戊酸甲酯0.620.610.670.800.890.931.491.511.66
    16邻氨基苯甲酸甲酯0.140.160.150.130.140.150.130.130.13
    17(5Z,9Z)-十四烷二烯醋酸酯0.770.800.820.650.720.691.391.411.44
    18顺式-3-己烯醇苯甲酸酯1.631.601.621.711.801.682.061.982.07
    19γ-己内酯0.840.790.770.120.130.120.170.160.17
    碳氢化合物
    1α-罗勒烯0.050.050.050.040.040.040.060.060.06
    2α-法呢烯11.3811.2911.3427.7126.8027.049.738.448.98
    3(E)-柠檬烯0.070.060.060.030.030.020.030.030.03
    4α-姜黄烯0.030.030.03
    5罗勒烯0.110.110.120.530.510.490.800.730.74
    6联苯烯0.120.120.130.010.010.020.01
    7环庚三烯0.150.140.140.070.080.070.120.120.12
    8(3E)-4,8-二甲基-1,3,7壬三烯0.280.270.291.391.421.422.222.102.16
    9十三烷0.060.060.060.040.040.030.080.080.08
    10癸烷0.270.240.250.190.180.170.330.310.35
    11β-硝基苯乙烷0.710.730.730.140.150.150.170.170.18
    122,4-二甲基己烷0.170.160.170.080.070.070.140.140.16
    131-碘-2-甲基十一烷0.530.510.520.300.280.280.550.540.57
    142,6,10-三甲基十二烷0.070.070.070.020.020.020.040.040.04
    152,6,8-三甲基癸烷0.210.210.210.060.070.050.270.270.29
    163,3-二甲基已烷0.270.250.210.180.200.190.360.380.40
    17环丙烷0.130.130.110.040.050.040.070.070.07
    186-氮杂双环[3.2.1]辛烷1.251.431.450.780.820.870.860.860.92
    19邻二甲苯0.050.050.050.050.060.050.110.100.10
    202-甲基萘0.020.010.020.010.010.010.030.030.04
    含氮化合物
    1吲哚9.699.799.1817.6817.0717.6017.9216.8817.62
    2茶吡咯0.810.760.800.260.240.240.370.370.37
    31-(2-呋喃甲基)-1H-吡咯0.750.710.730.200.230.210.230.240.26
    4N-乙基琥珀酰亚胺0.690.620.650.110.100.090.170.160.17
    52-乙基-6-甲基吡嗪0.480.460.480.090.150.150.16
    62,5-二甲基吡嗪2.372.222.220.760.710.751.111.081.14
    72,3-二甲基吡嗪0.110.100.110.020.030.020.040.050.05
    83-乙基-2,5-甲基吡嗪0.320.290.300.060.060.050.090.090.09
    杂氧化合物
    12-乙酰基呋喃0.630.650.670.140.170.140.240.230.25
    酚类
    1异丁香酚0.030.040.040.060.090.090.070.070.07
    酸类
    1正戊酸0.951.101.201.751.932.18
    2反式-3-己烯酸0.060.090.100.110.190.200.130.130.14
    注:“−”表示未检测出该物质。
    下载: 导出CSV

    表  4   不同季节新品系‘606’乌龙茶主导挥发性组分(%)

    Table  4   New line '606' oolong tea dominated the volatile components in different seasons (%)

    序号挥发性组分春季夏季秋季
    1反式-橙花叔醇29.7927.8034.99
    2α-法呢烯11.3427.189.05
    3Z-四氢-6-(2-戊烯基)-
    2H-4吡喃-2-酮
    9.672.713.16
    4吲哚9.5617.4517.47
    5己酸叶醇酯3.725.186.04
    62,5-二甲基吡嗪2.27
    7苯乙醇2.231.84
    82-十四酮1.81
    9顺式-3-己烯醇苯甲酸酯1.622.04
    10正戊酸1.95
    116-甲基-6-庚烯-2-酮1.43
    122-甲基戊酸甲酯1.55
    136-氮杂双环[3.2.1]辛烷1.38
    14二氢猕猴桃内酯1.11
    153,7-二甲基-1,5,7-辛烯-3-醇1.08
    16苯甲酸己酯1.07
    174-[2,2,6-三甲基-7-氧杂二环]-
    3-丁烯-2-酮
    0.84
    18β-紫罗酮0.83
    19γ-己内酯0.80
    主导挥发性组分含量总和80.5680.3280.26
    主导挥发性组分的数量17510
    注:主导挥发性组分中的“主导”指占总挥发性成分相对含量80%所包括的相对含量排序在前的各组分;“−”代表该挥发性物质不是所对应茶样的主导挥发性组分。
    下载: 导出CSV

    表  5   不同季节新品系‘606’乌龙茶电子鼻响应值

    Table  5   Electronic nose response of new line '606' oolong tea in different seasons

    传感器
    编号
    对应敏感的挥发性气体电子鼻响应值
    春茶夏茶秋茶
    S1胺类、氨气1.95±0.08a1.86±0.08a1.81±0.01a
    S2硫化物、硫化氢2.29±0.13ab2.47±0.07b2.15±0.10a
    S3氢气1.08±0.01a1.08±0.03a1.08±0.01a
    S4有机溶剂、酒精1.05±0.02a1.04±0.01a1.04±0.02a
    S5食物烹饪过程中的
    挥发性气体
    1.15±0.03a1.18±0.01a1.15±0.02a
    S6沼气、碳氢化合物、甲烷1.91±0.11a2.07±0.03b1.82±0.08a
    S7可燃性气体1.33±0.05a1.41±0.03b1.31±0.04a
    S8VOC1.22±0.02a1.18±0.03a1.22±0.01a
    S9汽油、煤油、氢氧化合物1.08±0.01ab1.09±0.01b1.07±0.00a
    S10可燃性气体、烷烃1.64±0.07a1.76±0.02b1.59±0.05a
    总和14.70±0.53a15.14±0.32b14.24±0.34a
    下载: 导出CSV

    表  6   10个传感器的变量权重值

    Table  6   VIP of 10 sensors

    传感器编号VIP值传感器编号VIP值
    S11.64S90.97
    S21.07S80.92
    S101.07S50.82
    S61.06S40.61
    S71.02S30.03
    下载: 导出CSV
  • [1] 林郑和, 钟秋生, 陈常颂, 等. 不同晒青和摇青程度对茶树新品系玉琼茶(606)制茶品质的影响[J]. 中国茶叶,2015,37(11):17−19. [LIN Z H, ZHONG Q S, CHEN C S, et al. Effects of different degrees of sun-drying and shake-greening on the quality of Yuqiong tea (606), a new tea tree strain[J]. China Tea,2015,37(11):17−19.

    LIN Z H, ZHONG Q S, CHEN C S, et al. Effects of different degrees of sun-drying and shake-greening on the quality of Yuqiong tea (606), a new tea tree strain[J]. China Tea, 2015, 37(11): 17-19.

    [2] 刘彬彬. 新品系“606”乌龙茶加工中主要呈味物质动态变化及FOMT基因表达研究[D]. 福州: 福建农林大学, 2020

    LIU B B. Study on the dynamic changes of main flavor substances and the expression of FOMT gene in the processing of a new line "606" Oolong tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.

    [3] 杨云, 刘彬彬, 周子维, 等. 新品系‘606’乌龙茶加工过程中呈味物质的变化与品质分析[J]. 食品工业科技,2021,42(23):311−318. [YANG Y, LIU B B, ZHOU Z W, et al. The change of flavor substance and quality analysis of new line '606' oolong tea during processing[J]. Science and Technology of Food Industry,2021,42(23):311−318.

    YANG Y, LIU B B, ZHOU Z W, et al. The change of flavor substance and quality analysis of new line '606' oolong tea during processing[J]. Science and Technology of Food Industry, 2021, 42(23): 311-318.

    [4] 付静. 不同采摘季节工夫红茶品质的研究[J]. 食品科技,2017,42(11):90−95. [FU J. Study on the quality of black tea in different picking seasons[J]. Food Science and Technology,2017,42(11):90−95.

    FU J. Study on the quality of black tea in different picking seasons[J]. Food Science and Technology, 2017, 42(11): 90-95.

    [5]

    LIU H C, XU Y J, W J J, et al. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons[J]. Food Research International, 202, 150: 110784.

    [6]

    JIANG Y W, HUA J J, WANG B, et al. Effects of variety, season, and region on theaflavins content of fermented Chinese congou black tea[J]. Journal of Food Quality, 2018: 5427302.

    [7] 田甜, 韦锦坚, 文金华, 等. 不同季节凌云白毫绿茶的香气成分差异分析[J]. 食品科学,2020,41(22):252−259. [TIAN T, WEI J J, WEN J H, et al. Analysis on aroma components of Lingyun bekoe green tea in different seasons[J]. Food Science,2020,41(22):252−259.

    TIAN T, WEI J J, WEN J H, et al. Analysis on aroma components of Lingyun bekoe green tea in different seasons[J]. Food science, 2020, 41(22): 252-259.

    [8] 王力, 蔡良绥, 林智, 等. 顶空固相微萃取-气质联用法分析白茶的香气成分[J]. 茶叶科学,2010,30(2):115−123. [WANG L, CAI L S, LIN Z, et al. Analysis of aroma components of white tea by headspace solid phase microextraction and GC-MS[J]. Journal of Tea Science,2010,30(2):115−123.

    WANG L, CAI L S, LIN Z, et al. Analysis of aroma components of white tea by headspace solid phase microextraction and GC-MS[J]. Journal of Tea Science, 2010, 30(02): 115-123.

    [9]

    WU Y H, JIANG X J, ZHANG X S, et al. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QqQ-MS/MS[J]. Journal of Chromatography B,2016(1017):10−17.

    [10]

    LI X Y, FU Y J, FU Y F, et al. Simultaneous quantification of fourteen characteristic active compounds in Eucommia ulmoides Oliver and its tea product by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS)[J]. Food Chemistry,2022,389:133106. doi: 10.1016/j.foodchem.2022.133106

    [11] 张妮, 肖作兵, 于海燕, 等. 顶空固相微萃取-气质联用测定樱桃酒中的挥发性成分[J]. 食品科学,2011,32(10):97−102. [ZHANG N, XIAO Z B, YU H Y, et al. Determination of volatile constituents in kirsch by headspace solid phase microextraction and GC-MS[J]. Food Science,2011,32(10):97−102.

    ZHANG N, XIAO Z B, YU H Y, et al. Determination of volatile constituents in kirsch by headspace solid phase microextraction and GC-MS[J]. Food science, 2011, 32(10): 97-102.

    [12]

    ZHONG J Y, CHEN N, HUANG S C, et al. Chemical profiling and discrimination of green tea and Pu-erh raw tea based on UPLC-Q-Orbitrap-MS/MS and chemometrics[J]. Food Chemistry, 2020, 326(prepublish).

    [13]

    SHARMILAN T, PREMARATHNE I, WANNIARACHCHI I, et al. Application of electronic nose to predict the optimum fermentation time for Low-Country Sri Lankan Tea[J]. Journal of Food Quality, 2022, 2022.

    [14]

    WANG J, ZHANG C, CHANG M Z, et al. Optimization of electronic nose sensor array for tea aroma detecting based on correlation coefficient and cluster analysis[J]. Sensors and Actuators: B Chemical, 2020(Prepublish).

    [15] 徐敏. 基于电子鼻、电子舌和电子眼的多源信息融合技术对龙井茶品质的检测[D]. 杭州: 浙江大学, 2020

    XU M. Detection of Longjing tea quality by multi-source information fusion technology based on electronic nose, electronic tongue and electronic eye[D]. Hangzhou: Zhejiang University, 2020.

    [16] 刘晓慧, 张丽霞, 王日为. 顶空固相微萃取-气相色谱-质谱联用法分析黄茶香气成分[J]. 食品科学,2010,16(31):239−243. [LIU X H, ZHANG L X, WANG R W. Analysis of aroma components of yellow tea by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2010,16(31):239−243.

    LIU X H, ZHANG L X, WANG R W. Analysis of aroma components of yellow tea by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Food Science, 2010, 16(31): 239-243.

    [17] 王宝怡, 王培强, 李晓晗, 等. 基于电子鼻技术对不同季节山东绿茶香气的分析[J]. 现代食品科技,2020,36(10):284−289. [WANG B Y, WANG P Q, LI X H, et al. Analysis of aroma of Shandong green tea in different seasons based on electronic nose technology[J]. Modern Food Science and Technology,2020,36(10):284−289.

    WANG B Y, WANG P Q, LI X H, et al. Analysis of aroma of Shandong green tea in different seasons based on electronic nose technology[J]. Modern Food Science and Technology, 2020, 36(10): 284-289.

    [18] 刘彬彬, 周子维, 胡娟, 等. 茶树新品系‘606’乌龙茶加工过程中挥发性成分的变化[J]. 福建农林大学学报(自然科学版),2019,48(6):746−752. [LIU B B, ZHOU Z W, HU J, et al. Changes of volatile components in the processing of a new tea plant strain '606' oolong tea[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2019,48(6):746−752.

    LIU B B, ZHOU Z W, HU J, et al. Changes of volatile components in the processing of a new tea plant strain "606" oolong tea [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(6): 746-752.

    [19]

    WANG S Y, ZHAO F, WU W X, et al. Comparison of volatiles in different jasmine tea grade samples using electronic nose and automatic thermal desorption-gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. Molecules,2020,25(2):380. doi: 10.3390/molecules25020380

    [20] 全国茶叶标准化技术委员会. GB/T 23776-2018 茶叶感官审评方法[Z]. 北京: 中国标准出版社, 2018

    National Technical Committee on Tea of Standardization Administration. GB/T 23776-2018 Sensory evaluation method of tea[S]. Beijing: Standards Press of China, 2018.

    [21] 黄彪, 刘文静, 吴建鸿, 等. 不同季节对金牡丹乌龙茶主要营养与活性成分影响[J]. 食品安全质量检测学报,2020,11(20):7418−7423. [HUANG B, LIU W J, WU J H, et al. Effects of different seasons on main nutrients and active ingredients of Jinmuan Oolong tea[J]. Journal of Food Safety and Quality Testing,2020,11(20):7418−7423.

    [HUANG B, LIU W J, WU J H, et al. Effects of different seasons on main nutrients and active ingredients of Jinmuan Oolong tea[J]. Journal of Food Safety and Quality Testing, 2020, 11(20): 7418-7423.

    [22] 周顺珍, 姚雍静, 郭灿, 等. 不同采收时期茶叶主要生化成分的变化[J]. 天津农业科学,2016,22(6):17−19. [ZHOU S Z, YAO Y J, GUO C, et al. Changes of main biochemical components of tea in different harvesting periods[J]. Tianjin Agricultural Sciences,2016,22(6):17−19.

    ZHOU S Z, YAO Y J, GUO C, et al. Changes of main biochemical components of tea in different harvesting periods[J]. Tianjin Agricultural Sciences, 2016, 22(06): 17-19.

    [23] 周喆, 孙威江, 唐秀华, 等. 紫芽茶树不同季节主要生化成分变化分析[J]. 热带作物学报,2018,39(5):888−893. [ZHOU Z, SUN W J, TANG X H, et al. Analysis on the changes of main biochemical components of Purple Bud Tea in different seasons[J]. Chinese Journal of Tropical Crops,2018,39(5):888−893.

    ZHOU Z, SUN W J, TANG X H, et al. Analysis on the changes of main biochemical components of Purple Bud Tea in different seasons [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 888-893.

    [24]

    FEI Q, GAO Y, ZHANG X. Effects of oolong tea polyphenols, EGCG, and EGCG3"Me on pancreatic α-amylase activity in vitro[J]. Journal of Agricultural and Food Chemistry,2014,39(62):9507−9514.

    [25]

    LUO Y, YU S, LI J, et al. Characterization of the transcriptional regulator CsbHLH62 that negatively regulates EGCG3"Me biosynthesis in Camellia sinensis[J]. Gene,2019(699):8−15.

    [26] 吕海鹏, 谭俊峰, 林智. 茶树种质资源EGCG3"Me含量及其变化规律研究[J]. 茶叶科学,2006(4):310−314. [LÜ H P, TAN J F, LIN Z. Study on the content of EGCG3"Me in tea germplasm[J]. Journal of Tea Science,2006(4):310−314.

    LV H P, TAN J F, LIN Z. Study on the content of EGCG3"Me in tea germplasm [J]. Journal of Tea Science, 2006(4): 310-314.

    [27]

    CHIU F L, LIN J K. HPLC analysis of naturally occurring methylated catechins, '3- and 4-methyl-epigallocatechin gallate', in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages[J]. Journal of Agricultural and Food Chemistry,2005,18(53):7035−7042.

    [28] 林冬纯, 林宏政, 魏子淳, 等. 不同干燥温度对萎凋叶压制白茶饼品质的影响[J]. 食品科学, 2021: 1−12

    LIN D C, LIN H Z, WEI Z C, et al. Effects of different drying temperatures on the quality of white tea cake pressed by withering leaves[J]. Food Science, 2021: 1−12.

    [29] 何加兴. 夏茶原料加工‘菌香紧压乌龙茶’关键工艺与品质成分动态变化研究[D]. 长沙: 湖南农业大学, 2021

    HE J X. Study on the key technology and dynamic change of quality components in the processing of 'Bacterial-fragrant Pressed Oolong Tea' from summer tea raw materials [D]. Changsha: Hunan Agricultural University, 2021.

    [30] 邓慧莉, 李鑫磊, 毛贻帆, 等. 不同做青温度对乌龙茶滋味与香气品质的影响[J]. 食品安全质量检测学报,2021,12(14):5766−5771. [DENG H L, LI X L, MAO Y F, et al. Effect of different temperature on taste and aroma quality of Oolong tea[J]. Journal of Food Safety and Quality Inspection,2021,12(14):5766−5771.

    DENG H L, LI X L, MAO Y F, et al. Effect of different temperature on taste and aroma quality of Oolong tea[J]. Journal of Food Safety and Quality Inspection, 2021, 12(14): 5766-5771.

    [31] 赖幸菲, 潘顺顺, 李裕南, 等. 不同季节和茶类的金萱品种茶叶香气成分分析[J]. 食品工业科技,2015,36(10):62−68. [LAI X F, PAN S S, LI Y N, et al. Analysis of aroma components of Jinxuan Tea in different seasons and tea types[J]. Science and Technology of Food Industry,2015,36(10):62−68.

    LAI X F, PAN S S, LI Y N, et al. Analysis of aroma components of Jinxuan Tea in different seasons and tea types[J]. Science and Technology of Food Industry, 2015, 36(10): 62-68.

    [32]

    MA L J, GAO M M, ZHANG L Q, et al. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis[J]. Food chemistry, 2022, 378.

    [33] 周子维, 游芳宁, 刘彬彬, 等. 摇青机械力对乌龙茶脂肪族类香气形成的影响[J]. 食品科学,2019,13(40):49−52. [ZHOU Z W, YOU F N, LIU B B, et al. Effect of shaking green mechanical force on the formation of fatty Aroma in Oolong Tea[J]. Food Science,2019,13(40):49−52.

    ZHOU Z W, YOU F N, LIU B B, et al. Effect of shaking green mechanical force on the formation of fatty Aroma in Oolong Tea [J]. Food Science, 2019, 13(40): 49-52.

    [34] 吴晴阳, 周子维, 武清扬, 等. 乌龙茶加工过程中α-法呢烯的形成关键调控基因的筛选与表达分析[J]. 食品工业科技,2020,41(15):135−142. [WU Q Y, ZHOU Z W, WU Q Y, et al. Screening and expression analysis of key regulatory genes for α-farnene formation in Oolong Tea processing[J]. Science and Technology of Food Industry,2020,41(15):135−142.

    WU Q Y, ZHOU Z W, WU Q Y, et al. Screening and expression analysis of key regulatory genes for α-farnene formation in Oolong Tea processing [J]. Science and Technology of Food Industry, 2020, 41(15): 135-142.

    [35]

    AN H M, OU X C, ZHANG Y B, et al. Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology[J]. Food Chemistry,2022,385:132718. doi: 10.1016/j.foodchem.2022.132718

    [36] 钟秋生, 李鑫磊, 林郑和, 等. ‘春闺’乌龙茶加工过程中香气成分的变化研究[J]. 茶业通报,2021,43(1):21−31. [ZHONG Q S, LI X L, LIN Z H, et al. Study on the change of aroma components of 'Chungui' oolong tea during processing[J]. Tea Industry Bulletin,2021,43(1):21−31. doi: 10.16015/j.cnki.jteabusiness.2021.0006

    ZHONG Q S, LI X L, LIN Z H, et al. Study on the change of aroma components of 'Chungui' oolong tea during processing[J]. Tea Industry Bulletin, 2021, 43(1): 21-31. doi: 10.16015/j.cnki.jteabusiness.2021.0006

    [37] 尹洪旭, 杨艳芹, 姚月凤, 等. 基于气相色谱-质谱技术与多元统计分析对不同栗香特征绿茶判别分析[J]. 食品科学,2019,40(4):192−198. [YIN H X, YANG Y Q, YAO Y F, et al. Discriminant analysis of green tea with different chestnut characteristics based on gas chromatography-mass spectrometry and multivariate statistical analysis[J]. Food Science,2019,40(4):192−198.

    YIN H X, YANG Y Q, YAO Y F, et al. Discriminant analysis of green tea with different chestnut characteristics based on gas chromatography-mass spectrometry and multivariate statistical analysis[J]. Food Science, 2019, 40(4): 192-198.

  • 期刊类型引用(5)

    1. 黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 . 百度学术
    2. 张媛婷,罗静,闫鹏,张志国,闫立地,刘畅,秦姝冕. 基于指纹图谱和化学计量学的茶叶种类鉴别和质量评价. 扬州大学学报(农业与生命科学版). 2024(01): 106-113+146 . 百度学术
    3. 占鑫怡,欧晓西,张雯萍,周晶晶,黄慧清,赵梦莹,李鑫磊,孙云. 不同烘焙程度‘春闺’闽北乌龙茶风味品质分析. 食品工业科技. 2024(10): 242-253 . 本站查看
    4. 李妍怡,文海若,杨颜榕,马双成,汪祺. 基于物质基础结合HepaRG细胞实验探究何首乌肝损伤成分. 中国药物警戒. 2024(12): 1377-1381 . 百度学术
    5. 陈凌芝,卫艺炜,陈义,王晶晶,尹鹏,郭桂义. 不同季节信阳毛尖茶主要生化成分及其矿质元素差异性分析. 食品安全质量检测学报. 2023(17): 87-94 . 百度学术

    其他类型引用(2)

图(4)  /  表(6)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  43
  • PDF下载量:  13
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-08-30
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-07-14

目录

/

返回文章
返回
x 关闭 永久关闭