• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

金花藏茶醇提物不同极性部位的多酚成分及体外抗氧化和抗肿瘤活性研究

罗棵濒, 邓俊琳, 向卓亚, 朱柏雨, 夏陈, 朱永清, 李娟, 张盈娇, 陈建, 吕晓华, 施刘刚

罗棵濒,邓俊琳,向卓亚,等. 金花藏茶醇提物不同极性部位的多酚成分及体外抗氧化和抗肿瘤活性研究[J]. 食品工业科技,2023,44(13):383−389. doi: 10.13386/j.issn1002-0306.2022080161.
引用本文: 罗棵濒,邓俊琳,向卓亚,等. 金花藏茶醇提物不同极性部位的多酚成分及体外抗氧化和抗肿瘤活性研究[J]. 食品工业科技,2023,44(13):383−389. doi: 10.13386/j.issn1002-0306.2022080161.
LUO Kebin, DENG Junlin, XIANG Zhuoya, et al. Studies on Phenolic Profile, Antioxidant and Anticancer Effects of Different Polar Parts of Ethanol Extract of Jinhua Tibetan Tea[J]. Science and Technology of Food Industry, 2023, 44(13): 383−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080161.
Citation: LUO Kebin, DENG Junlin, XIANG Zhuoya, et al. Studies on Phenolic Profile, Antioxidant and Anticancer Effects of Different Polar Parts of Ethanol Extract of Jinhua Tibetan Tea[J]. Science and Technology of Food Industry, 2023, 44(13): 383−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080161.

金花藏茶醇提物不同极性部位的多酚成分及体外抗氧化和抗肿瘤活性研究

基金项目: 四川省农业科学院1+9揭榜挂帅项目-功能食品核心技术攻关(1+9KJGG007);四川省科技计划资助重点研发项目(2019YFN0178)。
详细信息
    作者简介:

    罗棵濒(1996−),女,硕士,研究方向:食品营养,E-mail:luokebin1996@163.com

    通讯作者:

    陈建(1968−),男,博士,研究员,研究方向:功能性食品,E-mail:1046652698@qq.com

    吕晓华(1971−),女,博士,教授,研究方向:食品安全,E-mail:luxiaohua@scu.edu.cn

  • 中图分类号: TS213.2

Studies on Phenolic Profile, Antioxidant and Anticancer Effects of Different Polar Parts of Ethanol Extract of Jinhua Tibetan Tea

  • 摘要: 研究金花藏茶醇提物不同极性部位多酚成分及其抗氧化和抗肿瘤活性。采用液-液萃取金花藏茶醇提物,得到乙酸乙酯层、正丁醇层和水层三个极性部位。采用福林酚法和AlCl3-乙酸钾比色法分别测量醇提物及三个极性部位的总多酚和总黄酮含量,通过高效液相色谱法(HPLC)分析醇提物及三个极性部位的主要多酚类单体含量,并采用DPPH、ABTS+自由基清除以及铁离子螯合三种方法比较各类部位的抗氧化作用,通过CCK8法检测不同极性部位对人宫颈癌HeLa细胞的增殖抑制作用。结果表明:金花藏茶乙酸乙酯层含有的多酚和黄酮含量较其它不同极性部位最多,分别为384.65 mg/g和188.82 mg/g,以没食子酸(GA)、没食子儿茶素(GC)和表没食子儿茶素(EGC)为主要酚类成分。抗氧化活性试验显示,对照维生素E,不同极性部位清除DPPH和ABTS+自由基能力的大小为,维生素E>乙酸乙酯层>正丁醇层>醇提物>水层,各样品间差异显著(P<0.05);对照EDTA,不同极性部位均有一定的亚铁离子螯和能力,EDTA(IC50为48.3 µg/mL)>乙酸乙酯层(332.4 µg/mL)>正丁醇(1332.0 µg/mL)>醇提物(1846.0 µg/mL)及水层(1952.0 µg/mL),除水相和醇提物间没有显著性差异(P>0.05)外,其他样品之间均差异显著(P<0.05)。结果表明抗氧化综合能力排序为乙酸乙酯层>正丁醇层>醇提物>水层。各极性部位对人宫颈癌HeLa细胞均具有一定的增殖抑制作用,且作用均存在剂量-效应关系,其中乙酸乙酯层对HeLa细胞的生长抑制作用最强(IC50为111.6 µg/mL)。相对其它各层分,乙酸乙酯层抗氧化活力及抑制HeLa细胞增殖能力均最强,这与其中多酚和黄酮含量最多有关。本研究为金花藏茶的抗氧化和抗肿瘤的健康功效提供了初步的科学依据。
    Abstract: The phenolic components, antioxidation, and anticancer effects of different polar parts of ethanol extract of Jinhua Tibetan tea were studied. Three polar fractions, i.e., ethyl acetate, n-butyl alcohol, and water fractions, of ethanol extract of Jinhua Tibetan tea were obtained via liquid-liquid extraction process. The contents of total polyphenols and total flavonoids of the three fractions and ethanol extract were determined using Folin-Ciocalteu and aluminum chloride-potassium acetate method, respectively. The contents of tea polyphenol monomers in all the parts were determined using high-performance liquid chromatography (HPLC) method. Their antioxidant activities of all the parts were tested and compared using DPPH radical scavenging, ABTS+ radical scavenging, and Fe2+ ion chelating methods. Their anti-proliferation effects on human cervical cancer HeLa cell were evaluated using cell counting Kit8. Results indicated that ethyl acetate fraction had the highest contents of total polyphenols and total flavonoids, as 384.65 mg/g and 188.82 mg/g, respectively, including gallic acid (GA), gallocatechin (GC), and epigallocatechin (EGC) as major phenolic monomers. Antioxidant activity test showed that compared with vitamin E, the DPPH and ABTS+ radical scavenging capacity of all the parts were as the sequence vitamin E>ethyl acetate fraction>n-butyl alcohol fraction>ethanol extract>water fraction, with P<0.05. When compared with EDTA, all parts possessed some Fe2+ ion chelating capacity, being EDTA (IC50=48.3 µg/mL)>ethyl acetate fraction (332.4 µg/mL)>n-butyl alcohol fraction (1332.0 µg/mL)>ethanol extract (1846.0 µg/mL) and water fraction (1952.0 µg/mL), with P<0.05 between the parts, but there was not significant difference between water fraction and ethanol extract with the P>0.05. All the results indicated that the general antioxidant ability sequence was ethyl acetate fraction>n-butyl alcohol fraction>ethanol extract>water fraction. All the parts showed anti-proliferation activity to human cervical cancer HeLa cell, and all with dose-effect relationship. Ethyl acetate fraction showed the strongest anti-proliferation activity (IC50 111.6 µg/mL) to the HeLa cell. In conclusion, ethyl acetate fraction possessed the strongest capacity of both antioxidation and anti-proliferation to HeLa cell, resulted from its highest contents of polyphenols and flavonoids. The studies provide some preliminary scientific evidence of the antioxidant and anticancer effects of Jinhua Tibetan tea.
  • 藏茶属于中国六大茶类之一的黑茶,产于四川雅安,经渥堆发酵工艺后发生一系列复杂的化学反应,从而形成独特的品质,具有抗氧化[1]、抗癌[2]、降血脂[3]、降血糖[4]等多种药理功效。Yuan等[5]发现藏茶通过调控抗氧化酶活性和肠道菌群而降低肥胖小鼠的血脂水平。吕晓华等[6]通过人群实验观察试饮藏茶3个月前后受试者的体重、血压、血清总胆固醇、甘油三脂、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、血糖和血尿酸,发现受试者体重、血清甘油三脂、低密度脂蛋白胆固醇、血糖、血尿酸下降、排便次数增加,说明藏茶具有调节血糖、减肥以及通便等功效。

    藏茶含有多种功能性物质,如茶多酚、茶褐素、茶多糖、蛋白质等。李解等[7]发现藏茶茶多糖能缓解60Coγ射线辐射引起的小鼠脏器损伤,以及提高血液超氧化物歧化物(SOD)和过氧化氢酶(CAT)浓度。Huang等[8]发现茶褐素通过增加回肠结合胆酸含量和抑制肠道FXR-FGF15信号通路降低肝胆固醇、减少脂肪生成。其中,多酚因其突出的抗氧化能力而受到国内外学者的大量关注,王昱筱等[3]发现普洱熟茶比绿茶和红茶具有更强的超氧阴离子自由基清除能力,且与多酚和黄酮含量呈正相关。同时,大量研究证明,茶多酚可以通过清除自由基、降低端粒酶活性、促进肿瘤细胞凋亡等具有较强的抗癌活性[9]

    目前藏茶研究主要集中在微生物分离鉴定及多样性等方面,关于多酚物质和生物活性的研究甚少,并且主要集中在水提物的相关研究。通过不同极性有机溶剂进行分级萃取,可以将活性成分进一步分离富集,从而有效发现天然产物的活性部位和成分,目前也尚无关于藏茶不同极性部位的相关活性研究[10]。因此,本研究采用藏茶为研究对象,旨在对藏茶醇提物及其不同极性部位的多酚成分进行分析,探讨各部位的抗氧化和抗肿瘤活性,寻找活性较强的极性部位,为以藏茶开发天然抗氧化和抗癌功能食品提供科学依据。

    金花藏茶(Camellia sinensis L.) 雅安市雅州恒泰茶业有限公司,采收于2016年;1,1-二苯基-2-三硝基苯肼(DPPH)、2,2'-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)、芦丁、乙二胺四乙酸(EDTA) 北京索莱宝公司;人宫颈癌细胞HeLa 中国科学院上海生命研究院细胞资源中心;胎牛血清(Fetal bovine serum,FBS)、DMEM培养基 HyClone;Cell Counting Kit-8 江苏凯基生物有限公司;没食子酸(GA)、表没食子儿茶素(EGC)、儿茶素(C)、表没食子儿茶素没食子酸酯(EGCG)、表儿茶素(EC)、没食子儿茶素没食子酸酯(GCG)、表儿茶素没食子酸酯(ECG)、没食子儿茶素(GC)、儿茶素没食子酸脂(CG) 对照品,纯度≥98%,北京索莱宝公司;乙醇、氯化亚铁、过硫酸钾、菲洛嗪、维生素E等试剂 成都市科龙化工试剂厂,均为分析纯。

    Synergy HTX型酶标仪 美国伯腾仪器有限公司;KQ-250DB型数控超声波清洗器 昆山市超声仪器有限公司;Gentrifuge 5180R型冷冻干燥机 德国Eppendorf公司;HR40-IIA2生物安全柜 青岛海尔特种电器有限公司;1290高效液相色谱仪 美国Agilent公司;5.0% CO2培养箱 赛默飞科技有限公司。

    50 g金花藏茶打粉,过60目筛,按料液比1:10 g/mL加入70%乙醇,60 ℃、30 min、100 kHz超声提取3次,收集滤液,旋蒸浓缩至一定体积,先用等体积的饱和乙酸乙酯萃取3次得到乙酸乙酯层和水层,得到的水层再用等体积的正丁醇萃取3次得到正丁醇层和水层。醇提物、乙酸乙酯层、正丁醇层、水层旋蒸浓缩后经冷冻干燥后得固体粉末,保存于−20 ℃备用[11]

    参照课题组前期建立的方法[12],仪器:1290高效液相色谱仪;色谱柱:Eclipse Plus C18柱(2.1 mm×50 mm,1.8 μm);流速:0.3 mL/min;检测波长:280 nm;柱温:35 ℃;进样量:1 μL;流动相为两相,1%甲酸的水溶液(A相),乙腈(B相);洗脱条件:0~2 min,B:5%~10%;2~10 min,B:10%~20%,10~15 min,B:20%~40%;15~17 min,B:40%~70%;17~20 min,B:70%~95%。

    标准品溶液的制备:取GA、ECG、C、EGCG等物质标准品20 mg,分别用甲醇溶解定容至5 mL,配制成质量浓度作为标准品溶液。将标准品溶液以二倍稀释法配制成系列质量浓度。以GA、ECG、C、EGCG等物质的质量浓度为横坐标(X),峰面积为纵坐标(Y),得标准回归方程,如表1所示。

    表  1  对照回归方程及线性范围(n=3)
    Table  1.  Contrast regression equation and linear range (n=3)
    多酚单体线性回归方程R2线性范围(μg/mL)
    GAy=5.5752x−12.0240.99961.72~440.00
    GCy=0.3784x−0.61640.998715.68~784.00
    EGCy=0.3229x+0.23760.999915.68~784.00
    Cy=1.0759x+0.00430.99997.84~784.00
    ECy=1.5819x−6.41820.99936.80~435.55
    EGCGy=2.8877x−15.2090.99926.80~435.50
    GCGy=2.9525x−15.2850.99926.80~435.55
    ECGy=3.483x−15.8130.99936.80~435.55
    CGy=3.266x−9.22890.99946.81~217.77
    下载: 导出CSV 
    | 显示表格

    采用福林酚法[12],取20 μL样品加入20 μL福林酚,室温放置5 min后加入160 μL 5% Na2CO3溶液,避光反应60 min,在765 nm处测定吸光度值。以没食子酸为标准品,绘制标准曲线,以没食子酸质量浓度为X轴坐标,吸光值为Y轴坐标,得回归方程y=0.0078x+0.0562(0~175 μg/mL,R2=0.9993)。

    采用AlCl3-乙酸钾比色法[13],取20 μL样品中加入10 μL 25% NaNO2,室温放置6 min后加入10 μL 10% AlCl3·6H2O,静置5 min后,加入30 μL NaOH后,再加入100 μL蒸馏水,在510 nm处测定吸光度值。以芦丁为标准品,绘制标准曲线,以芦丁质量浓度为X轴坐标,吸光值为Y轴坐标,得回归方程Y=0.0034X+0.0466(0~300 μg/mL,R2=0.9996)。

    取实验1.2.1中得到的金花藏茶醇提物各极性部位的粉末,分别配制成312.50、156.25、78.13、39.06、19.53、9.77、4.88 µg/mL不同浓度样品溶液,并取各样品溶液与0.2 mmol/L DPPH乙醇溶液按1:1比例混合,室温下避光反应30 min,在517 nm处测定吸光值,以维生素E为阳性对照,清除率按下式计算[14]

    (%)=(1A1A0)×100

    式中:A0:蒸馏水代替样品溶液的吸光值;A1:样品组的吸光值。

    取实验1.2.1中得到的金花藏茶醇提物各极性部位的粉末,分别配制成625.00、312.50、156.25、78.13、39.06、19.53、9.77 µg/mL不同浓度样品溶液,并取1000 μL各样品溶液与在734 nm的吸收值为0.70±0.02的1000 μL ABTS+工作液混合,避光反应6 min。在734 nm下测定吸光值,以维生素E为阳性对照,清除率按下式计算[15]

    (%)=(1A1A0)×100

    式中:A0:蒸馏水代替样品溶液的吸光值;A1:样品组的吸光值。

    取实验1.2.1中得到的金花藏茶醇提物各极性部位的粉末,分别配制成2500.00、1250.00、625.00、312.50、156.25、78.13 µg/mL不同浓度样品溶液,并取100 μL样液和40 μL氯化亚铁(2 mmol/L)混匀,反应10 min,再加入0.2 mL菲啰嗪(5 mmol/L),室温下反应20 min,在562 nm处测定吸光度。以EDTA为阳性对照,铁离子螯合率计算公式[16]

    (%)=(1A1A0)×100

    式中:A0:蒸馏水代替样品溶液的吸光值;A1:样品组的吸光值。

    人宫颈癌HeLa细胞常规培养于新鲜高糖DMEM培养基中,置于37 ℃、5.0% CO2培养箱中。取对数期生长的HeLa细胞以5×104/mL的密度种植于96孔板,培养24 h,待贴壁后加入100 μL 500.00、250.00、125.00、62.50、31.25 µg/mL不同浓度的样品溶液(溶解在双无培养液),24 h后,吸出培养液,用0.01 mol/L PBS洗1~2遍,每孔再加100 μL的双无培养液,每孔加入10 μL CCK-8,继续放在细胞培养箱里0.5 h,用酶标仪检测450 nm的吸光度值,计算抑制率[17]

    (%)=(1A0A1)×100

    式中:A0:实验孔(含有细胞的双无培养基,CCK-8、样品);A1:对照孔(含有细胞的双无培养基,CCK-8)。

    所有实验均重复三次,结果表示为均数±标准差(¯x±s)。采用SPPS软件计算显著性差异和计算IC50值。采用单因素方差分析计算统计学差异(P<0.05),组间数据比较用LSD法,采用Graphpad进行绘图。

    表2表3可知,金花藏茶不同极性部位均含有多酚和黄酮,其中,多酚和黄酮含量最高的部位是乙酸乙酯层,分别为384.65 mg/g和188.82 mg/g,这与Huang等[18]的研究结果相一致:普洱茶不同极性部位中乙酸乙酯层多酚和黄酮含量最高。叶琼仙等[19]发现白叶单纵黑茶醇提物的乙酸乙酯萃取物多酚和黄酮含量最高,其次是正丁醇。其余不同极性部位多酚含量依次为正丁醇层>醇提物>水层,黄酮含量依次为醇提物>正丁醇层>水层。乙酸乙酯为中等极性有机溶剂,正丁醇为极性有机溶剂,研究结果表明中等极性溶剂可有效富集酚类物质。本研究分析不同极性部位的多酚单体分布,发现GA、GC、EGC、GCG和EGCG主要富集于乙酸乙酯层,GA、GC和EGC含量较高,研究发现普洱茶在渥堆发酵过程中单宁可分解为GA,因此提取物中GA含量较其它多酚单体占比最高[20-21];Zheng等[22]研究发现GA、EGCG、GCG和ECG是藏茶主要的酚类物质,均与本次结果相似。虽然正丁醇层和醇提物多酚含量接近,但正丁醇层尚未检测出儿茶素类多酚,是因为茶多酚主要富集在乙酸乙酯萃取层[23]

    表  2  金花藏茶醇提物及不同极性部位多酚和黄酮含量(mg/g)
    Table  2.  Contents of polyphenols and flavonoids in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)
    不同极性部位醇提物乙酸乙酯层正丁醇层水层
    多酚200.06±9.96b384.65±23.62c228.37±4.38b166.25±10.33a
    黄酮127.72±9.98c188.82±8.48d109.82±4.44b49.81±10.65a
    注:同行不同字母表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格
    表  3  金花藏茶醇取物及不同极性部位多酚单体含量(mg/g)
    Table  3.  Contents of mono and caffeine in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)
    不同极性部位GAGCEGCCECEGCGGCGECGCG
    醇提物3.75±0.01c0.94±0.02a///0.50±0.01a0.55±0.00a0.34±0.00a0.38±0.00a
    乙酸乙酯层4.63±0.04d2.25±0.01b1.96±0.020.43±0.000.60±0.001.14±0.00b1.25±0.00b0.63±0.00b0.42±0.00b
    正丁醇层1.32±0.02b////////
    水层0.72±0.00a////////
    注:同列不同字母表示差异显著(P<0.05);/表示低于检出限。
    下载: 导出CSV 
    | 显示表格

    金花藏茶醇提物及不同极性部位对DPPH自由基清除率比较结果(图1)显示,维生素E、醇提物、乙酸乙酯层、正丁醇层、水层的IC50分别为6.2、134.1、30.4、66.7、211.2 µg/mL(P<0.05),不同极性部位清除DPPH自由基能力的大小为:维生素E>乙酸乙酯层>正丁醇层>醇提物>水层说明经过分级纯化后的乙酸乙酯层和维生素E在清除DPPH自由基具有较好效果。乙酸乙酯层对DPPH自由基清除能力最强,正丁醇次之。许多研究表明,抗氧化能力与多酚含量成正相关[24],高玉萍等[25]研究发现茶提取物儿茶素含量与DPPH自由基清除率呈线性相关,说明本次研究中乙酸乙酯层中茶多酚发挥了较强的抗氧化活性。随着金花藏茶不同极性部位的质量浓度逐渐增大,各物质对DPPH自由基的清除率均先增强最后趋于稳定,表明金花藏茶对DPPH自由基的清除能力与浓度呈显著的量效关系。

    图  1  金花藏茶醇提物及不同极性部位对DPPH自由基的清除作用
    Figure  1.  Scavenging effect of alcohol extracts of Jinhua Tibetan tea and different polar parts on DPPH free radicals

    金花藏茶醇提物及不同极性部位对ABTS+自由基清除率比较结果(图2)显示,维生素E、醇提物、乙酸乙酯层、正丁醇层、水层的IC50分别为33.6、125.7、51.0、110.8、265.1 µg/mL(P<0.05)。结果表明,乙酸乙酯清除ABTS+自由基的能力要强于其他不同极性部位,马慧等[26]将红茶、乌龙茶、茉莉花茶、绿茶的总酚和儿茶素单体含量与ABTS法测定抗氧化能力值进行相关性分析发现,抗氧化能力与GA和CG呈现较强的正相关。可能是乙酸乙酯层含有的多酚和黄酮最多,且多酚中含量较高的GA发挥了主要的抗氧化作用[27-28],表明抗氧化性与多酚和黄酮含量呈正相关。同样,不同极性部位的多酚和黄酮含量与ABTS自由基清除能力之间存在正相关。

    图  2  金花藏茶醇提物及不同极性部位对ABTS+自由基的清除作用
    Figure  2.  Scavenging effect of alcohol extracts of Jinhua Tibetan tea and different polar parts on ABTS+ free radicals

    金花藏茶醇提物及不同极性部位铁离子螯合率比较结果(图3)显示,不同极性部位均有一定的亚铁离子螯和能力,其IC50分别为48.3 µg/mL(EDTA)、332.4 µg/mL(乙酸乙酯层)、1332.0 µg/mL(正丁醇层)、1952.0 µg/mL(水层)、1846.0 µg/mL(醇提物),除水相和醇提物间没有显著性差异(P>0.05),其他样品之间均差异显著(P<0.05),同时,不同级别部位对铁离子的螯和能力也存在剂量依赖性,样品质量浓度越大,其铁离子螯合能力越强。国内外学者公认茶多酚是天然的抗氧化剂,除儿茶素外,乙酸乙酯层中其他多酚也具有较强的抗氧化活性[29-30]

    图  3  金花藏茶醇提物及不同极性部位铁离子螯合作用
    Figure  3.  Fe2+ ion chelating capacity of alcohol extracts of Jinhua Tibetan tea and different polar parts

    不同极性部位对人宫颈癌HeLa细胞均具有一定的增殖抑制作用,且作用均存在剂量-效应关系(如图4)。乙酸乙酯层对HeLa细胞的生长抑制作用最强,其IC50为111.6 µg/mL。其次是醇提物层,IC50为253.6 µg/mL。Sharifi-Rad等[31]研究发现EGCG阻滞细胞G1期,促进HepG2肝癌细胞凋亡。Jiang等[32]发现GA通过抑制癌细胞增殖、促进癌细胞凋亡、抗血管生成等发挥抗肿瘤活性。乙酸乙酯层较强的抑制人宫颈癌HeLa细胞生长活性可能与多酚含量和成分相关,特别是与儿茶素类多酚单体表现出显著抗肿瘤活性有关。

    图  4  金花藏茶醇提物及不同极性部位对HeLa细胞生长的抑制率
    Figure  4.  Inhibition rates of alcohol extracts of Jinhua Tibetan tea and different polar parts on HeLa cell

    研究利用不同极性溶剂萃取金花藏茶醇提物,得到乙酸乙酯层、正丁醇层和水层3个不同极性部位,从而分析不同极性部位抗氧化以及抗肿瘤活性。采用3种抗氧化能力检测方法(DPPH法、ABTS法和铁离子螯合法)研究体外抗氧化活性,通过检测抑制人宫颈癌HeLa细胞增殖活性观察各部位抗肿瘤活性。研究结果显示,虽然不同极性部位含有的多酚含量和种类有差异,萃取物均具有良好的抗氧化活性和抗癌活性,抗氧化活性能力大小依次为:乙酸乙酯层>正丁醇层>醇提物>水层,乙酸乙酯层对HeLa细胞的生长抑制作用最强(IC50为111.6 µg/mL),其次是醇提物(IC50为253.6 µg/mL),乙酸乙酯层的抗氧化活性和抗癌活性最强,结果提示可能跟乙酸乙酯层含有多酚含量最多相关(含量为384.65 mg/g),同时乙酸乙酯层较好的生物活性可能归因于其中含量较多的多酚单体,如GA、GC和EGC。本研究为金花藏茶的抗氧化和抗肿瘤的健康功效提供了初步的科学依据。

  • 图  1   金花藏茶醇提物及不同极性部位对DPPH自由基的清除作用

    Figure  1.   Scavenging effect of alcohol extracts of Jinhua Tibetan tea and different polar parts on DPPH free radicals

    图  2   金花藏茶醇提物及不同极性部位对ABTS+自由基的清除作用

    Figure  2.   Scavenging effect of alcohol extracts of Jinhua Tibetan tea and different polar parts on ABTS+ free radicals

    图  3   金花藏茶醇提物及不同极性部位铁离子螯合作用

    Figure  3.   Fe2+ ion chelating capacity of alcohol extracts of Jinhua Tibetan tea and different polar parts

    图  4   金花藏茶醇提物及不同极性部位对HeLa细胞生长的抑制率

    Figure  4.   Inhibition rates of alcohol extracts of Jinhua Tibetan tea and different polar parts on HeLa cell

    表  1   对照回归方程及线性范围(n=3)

    Table  1   Contrast regression equation and linear range (n=3)

    多酚单体线性回归方程R2线性范围(μg/mL)
    GAy=5.5752x−12.0240.99961.72~440.00
    GCy=0.3784x−0.61640.998715.68~784.00
    EGCy=0.3229x+0.23760.999915.68~784.00
    Cy=1.0759x+0.00430.99997.84~784.00
    ECy=1.5819x−6.41820.99936.80~435.55
    EGCGy=2.8877x−15.2090.99926.80~435.50
    GCGy=2.9525x−15.2850.99926.80~435.55
    ECGy=3.483x−15.8130.99936.80~435.55
    CGy=3.266x−9.22890.99946.81~217.77
    下载: 导出CSV

    表  2   金花藏茶醇提物及不同极性部位多酚和黄酮含量(mg/g)

    Table  2   Contents of polyphenols and flavonoids in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)

    不同极性部位醇提物乙酸乙酯层正丁醇层水层
    多酚200.06±9.96b384.65±23.62c228.37±4.38b166.25±10.33a
    黄酮127.72±9.98c188.82±8.48d109.82±4.44b49.81±10.65a
    注:同行不同字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  3   金花藏茶醇取物及不同极性部位多酚单体含量(mg/g)

    Table  3   Contents of mono and caffeine in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)

    不同极性部位GAGCEGCCECEGCGGCGECGCG
    醇提物3.75±0.01c0.94±0.02a///0.50±0.01a0.55±0.00a0.34±0.00a0.38±0.00a
    乙酸乙酯层4.63±0.04d2.25±0.01b1.96±0.020.43±0.000.60±0.001.14±0.00b1.25±0.00b0.63±0.00b0.42±0.00b
    正丁醇层1.32±0.02b////////
    水层0.72±0.00a////////
    注:同列不同字母表示差异显著(P<0.05);/表示低于检出限。
    下载: 导出CSV
  • [1] 褚剑轲, 曾茂, 陈晓芳, 等. PPARα在雅安藏茶水提物降脂活性中的功能研究[J]. 四川大学学报(自然科学版),2019,56(6):1177−1181. [CHU Jianke, ZENG Mao, CHEN Xiaofang, et al. Study on the function of PPARα in the lipid-lowering activity of Ya’an Tibetam tea aqueous extract[J]. Journal of Sichuan University (Natural Science Edition),2019,56(6):1177−1181. doi: 10.3969/j.issn.0490-6756.2019.06.029

    CHU Jianke, ZENG Mao, CHEN Xiaofang, et al. Study on the function of PPARα in the lipid-lowering activity of Ya’an Tibetam tea aqueous extract[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(6): 1177-1181. doi: 10.3969/j.issn.0490-6756.2019.06.029

    [2] 胡燕. 雅安藏茶的主要活性成分及保健功能研究进展[J]. 食品工业科技,2019,40(5):216−321. [HU Yan. Research progress on main active constituents and healthcare function of Ya’an Tibetan tea[J]. Science and Technology of Food Industry,2019,40(5):216−321. doi: 10.13386/j.issn1002-0306.2019.05.054

    HU Yan. Research progress on main active constituents and healthcare function of Ya’an Tibetan tea[J]. Science and Technology of Food Industry, 2019, 40(5): 216-321. doi: 10.13386/j.issn1002-0306.2019.05.054

    [3] 王昱筱, 周才琼. 红茶、绿茶和普洱熟茶体外抗氧化作用比较研究[J]. 食品工业,2016,37(4):64−68. [WANG Yuxiao, ZHOU Caiqiong. Comparative study of antioxidant effect on black tea, green tea and Pu’er ripe tea in vitro[J]. Food Industry,2016,37(4):64−68.

    WANG YuXiao, ZHOU Caiqiong. Comparative study of antioxidant effect on Black tea, Green ta and Pu’er ripe tea in vitro[J]. Food Industry, 2016, 37(4): 64-68.

    [4] 熊元元, 王云, 唐晓波, 等. 雅安藏茶的化学成分及生物活性研究进展[J]. 安徽农业科学,2022,50(13):14−17,26. [[XIONG Yuanyuan, WANG Yun, TANG Xiaobo, et al. Research progress on chemical composition and biological acivity of Ya’an Tibetan tea[J]. Journal of Anhui Agricultural Sciences,2022,50(13):14−17,26. doi: 10.3969/j.issn.0517-6611.2022.13.005

    [XIONG Yuanyuan, WANG Yun, TANG Xiaobo, et al. Research progress on chemical composition and biological acivity of Ya’an Tibetan tea[J]. Journal of Anhui Agricultural Sciences, 2022, 50(13): 14-17, 26. doi: 10.3969/j.issn.0517-6611.2022.13.005

    [5]

    YUAN Y, ZHANG B, HE J, et al. Combinations of Tibetan tea and medicine food homology herbs: A new strategy for obesity prevention[J]. Food Science & Nutrition,2023,11(1):504−515.

    [6] 吕晓华, 徐家玉, 孙冉, 等. 藏茶保健作用的人体试饮研究[J]. 食品研究与开发,2017,38(4):168−171. [LÜ Xiaohua, XU Jiayu, SUN Ran et al. Human trial health effects of Tibetan tea[J]. Food Research and Development,2017,38(4):168−171. doi: 10.3969/j.issn.1005-6521.2017.04.038

    LÜ Xiaohua, XU Jiayu, SUN Ran et al. Human trial health effects of Tibetan tea[J]. Food Research and Development, 2017, 38(04): 168-171. doi: 10.3969/j.issn.1005-6521.2017.04.038

    [7] 李解, 林莉岚, 谭晓琴, 等. 雅安藏茶对 60Coγ辐射损伤小鼠的防护作用[J]. 营养学报,2017,39(4):395−399. [LI Jie, LIN Lilan, TAN Xiaoqin, et al. Protection of Ya’an tea against 60Coγ radiation injury in mice[J]. Acta Nutrimenta Sinica,2017,39(4):395−399. doi: 10.3969/j.issn.0512-7955.2017.04.018

    LI Jie, LIN Lilan, TAN Xiaoqin, et al. Protection of Ya’an tea against 60Coγ radiation injury in mice[J]. Acta Nutrimenta Sinica, 2017, 39(4): 395-399. doi: 10.3969/j.issn.0512-7955.2017.04.018

    [8]

    HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications,2019,10(1):4971. doi: 10.1038/s41467-019-12896-x

    [9] 刘赛文, 罗斌, 陈佳煜. 黑茶抗癌作用的研究进展[J]. 广东化工,2019,46(13):81−82. [LIU Saiwen, LUO Bin, CHEN Jiayi. Research progress of dark tea anticancer effects[J]. Guangdong Chemical Industry,2019,46(13):81−82. doi: 10.3969/j.issn.1007-1865.2019.13.038

    LIU Saiwen, LUO Bin, CHEN Jiayi. Research progress of Dark tea anticancer effects[J]. Guangdong Chemical Industry, 2019, 46(13): 81-82. doi: 10.3969/j.issn.1007-1865.2019.13.038

    [10] 李怡. 柑橘果皮醇提物不同极性部位抗氧化、抗炎活性研究[D]. 重庆: 西南大学, 2015

    LI Yi. In vitro antioxidant and anti-inflammatory eddects of different polar fractions of ethanol ectraction from Citrus fruits peel[D]. Chongqing: Xinan University, 2015.

    [11]

    HONG X, LI X C, REN Z X, et al. Antioxidant and cytoprotective effects of Tibetan tea and its phenolic componets[J]. Molecules,2018,23(2):179. doi: 10.3390/molecules23020179

    [12] 朱柏雨, 夏陈, 罗棵濒, 等. 四川黑茶活性成分、抗氧化能力及品质评价[J]. 食品与机械,2021,37(8):24−32. [ZHU Baiyu, XIA Chen, LUO Kebin, et al. Active components, antioxidant capacity and quality evaluation of Sichuan dark tea[J]. Food & Machinery,2021,37(8):24−32. doi: 10.13652/j.issn.1003-5788.2021.08.004

    ZHU Baiyu, XIA Chen, LUO Kebin, et al. Active components, antioxidant capacity and quality evaluation of Sichuan dark tea[J]. Food & Machinery, 2021, 37(8): 24-32. doi: 10.13652/j.issn.1003-5788.2021.08.004

    [13] 夏陈, 罗棵濒, 向卓亚, 等. 雅安藏茶水提醇沉后各组分的物质含量、抗氧化和α-葡萄糖苷酶抑制活性对比分析[J]. 食品工业科技,2022,43(21):69−74. [XIA Chen, LUO Kebin, XIANG Zhuoya, et al. Comparative analysis of substance content, antioxidant and α-glucosidase inhibitory activity of each component of Tibetan tea after water extraction and alcohol precipitation[J]. Science and Technology of Food Industry,2022,43(21):69−74.

    XIA Chen, LUO Kebin, XIANG Zhuoya, et al. Comparative analysis of substance content, antioxidant and α-glucosidase inhibitory activity of each component of Tibetan tea after water extraction and alcohol precipitation[J]. Science and Technology of Food Industry, 2022, 43(21): 69-74. .

    [14]

    DONG X, HUANG Y, WANG Y, et al. Anti-inflammatory and antioxidant jasmonates and flavonoids from lychee seeds[J]. Journal of Functional Foods,2019,54:74−80. doi: 10.1016/j.jff.2018.12.040

    [15]

    DE SOUZA D R, WILLEMS J L, LOW N H. Phenolic composition and antioxidant activities of saskatoon berry fruit and pomace[J]. Food Chemistry,2019,290(30):168−177.

    [16] 沈刚. 乌骨鸡金属螯合肽的分离纯化及其金属螯合、抗氧化活性研究[D]. 南昌: 南昌大学, 2020

    SHEN Gang. Study on the isolation and purificant of mental chelating peptides from black-bone silky fowl and its metal chelating and antioxidant activities[D]. Nanchang: Nanchang University, 2020.

    [17] 徐一鸣, 郭秀兰, 李秋霞, 等. 汉源花椒总黄酮提取物的抗氧化及抗HeLa肿瘤细胞增殖活性研究[J]. 食品工业科技,2020,4(13):296−301, 314. [XU Yiming, GUO Xiulan, LI Qiuxia, et al. The study of anti-oxidative and anti-proliferative activities of total flavonoids extract from Hanyuan Zanthoxylum bungeanum[J]. Science and Technology of Food Industry,2020,4(13):296−301, 314. doi: 10.13386/j.issn1002-0306.2020.13.047

    XU Yiming, GUO Xiulan, LI Qiuxia, et al. The study of anti-oxidative and anti-proliferative activities of total flavonoids extract from Hanyuan Zanthoxylum bungeanum[J]. Science and Technology of Food Industry, 2020, 4(13): 296-301, 314. doi: 10.13386/j.issn1002-0306.2020.13.047

    [18]

    HUANG Q F, CHEN S H, CHEN H, et al. Studies on the bioactivity of aqueous extract of pu-erh tea and its fractions: In vitro antioxidant activity and α-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice[J]. Food & Chemical Toxicology,2013,53:75−83.

    [19] 叶琼仙, 刘静, 苗爱清, 等. 白叶单枞黑茶抗氧化及体外降血糖活性研究[J]. 食品工业科技,2014,35(16):153−157. [YE Qiongxian, LIU Jing, MIAO Aiqing, et al. Study on antioxidant and in vitro hypoglycemis activities of dark tea prepared from Camallia sinensis var. Baiye Dancong[J]. Science and Technology of Food Industry,2014,35(16):153−157. doi: 10.13386/j.issn1002-0306.2014.16.026

    YE Qiongxian, LIU Jing, MIAO Aiqing, et al. Study on antioxidant and in vitro hypoglycemis activities of dark tea prepared from Camallia sinensis var. Baiye Dancong[J]. Science and Technology of Food Industry, 2014, 35(16): 153-157. doi: 10.13386/j.issn1002-0306.2014.16.026

    [20]

    LÜ H P, ZHANG Y, SHI J, et al. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies[J]. Food Research International,2016,100(3):486−493.

    [21]

    BAI J, ZHANG Y, TANG C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases[J]. Biomedicine & Pharmacotherapy,2021,133:110985.

    [22]

    ZHENG Q, LI W, ZHANG H, et al. Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea (Camellia sinensis)[J]. Food Science and Nutrition,2020,8:489−499. doi: 10.1002/fsn3.1331

    [23] 刘娜, 徐亚文, 韩利艳, 等. 普洱熟茶不同溶剂萃取层中儿茶素及黄酮醇类化合物差异的研究[J]. 食品安全质量检测学报,2022,13(6):1718−1725. [LIU Na, XU Yawen, HAN LIyan, et al. Study on catechins and flavonols materials different solvent extracts of Pu-erh ripned tea[J]. Journal of Food Safety & Quality,2022,13(6):1718−1725. doi: 10.3969/j.issn.2095-0381.2022.6.spaqzljcjs202206003

    LIU Na, XU Yawen, HAN LIyan, et al. Study on catechins and flavonols materials different solvent extracts of Pu-erh ripned tea[J]. Journal of Food Safety & Quality, 2022, 13(6): 1718-1725. doi: 10.3969/j.issn.2095-0381.2022.6.spaqzljcjs202206003

    [24]

    MANHIVI V E, SULTANBAWA Y, SIVAKUMAR D. Enhancement of the phytonutrient content of a gluten-free soup using a composite of vegetables[J]. International Journal of Food Properties,2020,23(1):1051−1065. doi: 10.1080/10942912.2020.1778028

    [25] 高玉萍, 唐德松, 龚淑英. 茶提取物抗氧化活性与茶多酚、儿茶素关系探究[J]. 中国食品学报,2013,13(6):40−47. [GAO Yuping, TANG Desong, GONG Shuying. The research of the relationship between antioxidation of tea extractive and tes polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(6):40−47. doi: 10.16429/j.1009-7848.2013.06.013

    GAO Yuping, TANG Desong, GONG Shuying. The Research of the relationship between antioxidation of tea extractive and tes polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(6): 40-47. doi: 10.16429/j.1009-7848.2013.06.013

    [26] 马慧, 茹鑫, 王津, 等. 4种茶叶水提物及茶多酚的体外抗氧化性能研究[J]. 食品研究与开发,2019,40(8):65−70. [MA Hui, RU Xin, WANG Jin, et al. Study on the antioxidant capacity of four tea water extracts and tes polyphenols in vitro[J]. Food Research and Development,2019,40(8):65−70. doi: 10.3969/j.issn.1005-6521.2019.08.011

    MA Hui, RU Xin, WANG Jin, et al. Study on the antioxidant capacity of four tea water extracts and tes polyphenols in vitro[J]. Food Research and Development, 2019, 40(8): 65-70. doi: 10.3969/j.issn.1005-6521.2019.08.011

    [27]

    LÜ H P, ZHU Y, TAN J F, et al. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia[J]. Journal of Functional Foods,2015,19:194−203. doi: 10.1016/j.jff.2015.09.047

    [28]

    LIANG H, LIANG Y, DONG J, et al. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment[J]. Food Chemistry,2007,101(4):1451−1456. doi: 10.1016/j.foodchem.2006.03.054

    [29]

    WANG Y, SHAO S, PING X, et al. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides[J]. Food Research International,2012,46(1):158−166. doi: 10.1016/j.foodres.2011.11.027

    [30]

    ZHOU D D, SAIMAITI A, LUO M, et al. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in Kombucha beverages[J]. Antioxidants (Basel),2022,11(1):155. doi: 10.3390/antiox11010155

    [31]

    SHARIFI-RAD M, PEZZANI R, RADAELLI M, et al. Preclinical pharmacological activities of Epigallocatechin-3-gallate in signaling pathways: An update on cancer[J]. Molecules,2020,25(3):467. doi: 10.3390/molecules25030467

    [32]

    JIANG Y, PEI J, ZHENG Y, et al. Gallic acid: A potential anti-cancer agent[J]. Chinese Journal of Integrative Medicine,2022,28(7):661−671. doi: 10.1007/s11655-021-3345-2

  • 期刊类型引用(2)

    1. 陈素艳,卢妍,吴光斌,陈发河. 黄秋葵酒渣纳米纤维素的制备工艺及表征分析. 食品研究与开发. 2024(17): 113-120 . 百度学术
    2. 罗欣,周彦强,吴光斌,陈发河. 黄秋葵酒渣膳食纤维超微粉制备及特性研究. 食品与机械. 2021(08): 201-206 . 百度学术

    其他类型引用(1)

图(4)  /  表(3)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  65
  • PDF下载量:  33
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-08-17
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回
x 关闭 永久关闭