Loading [MathJax]/jax/output/SVG/jax.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

硫酸化木聚糖的制备及其体外益生菌增殖作用研究

李霞, 张绮颖, 关媛, 李静, 陈海珊, 李丽芬

李霞,张绮颖,关媛,等. 硫酸化木聚糖的制备及其体外益生菌增殖作用研究[J]. 食品工业科技,2023,44(13):134−140. doi: 10.13386/j.issn1002-0306.2022080112.
引用本文: 李霞,张绮颖,关媛,等. 硫酸化木聚糖的制备及其体外益生菌增殖作用研究[J]. 食品工业科技,2023,44(13):134−140. doi: 10.13386/j.issn1002-0306.2022080112.
LI Xia, ZHANG Qiying, GUAN Yuan, et al. Preparation of Sulfated Xylans and Its in Vitro Proliferation of Probiotics[J]. Science and Technology of Food Industry, 2023, 44(13): 134−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080112.
Citation: LI Xia, ZHANG Qiying, GUAN Yuan, et al. Preparation of Sulfated Xylans and Its in Vitro Proliferation of Probiotics[J]. Science and Technology of Food Industry, 2023, 44(13): 134−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080112.

硫酸化木聚糖的制备及其体外益生菌增殖作用研究

基金项目: 国家自然科学基金(31860251);广西科学技术项目(AD20297088);广西电化学与磁化学重点实验室基金(EMFM20212202)。
详细信息
    作者简介:

    李霞(1981−),女,博士,教授,研究方向:生物大分子结构与活性,E-mail:biology754@163.com

    通讯作者:

    李丽芬(1984−),女,硕士,工程师,研究方向:天然产物提取和分析,E-mail:lifenml@163.com

  • 中图分类号: TS201.4

Preparation of Sulfated Xylans and Its in Vitro Proliferation of Probiotics

  • 摘要: 本研究旨在确定硫酸化木聚糖对益生菌生长的影响,根据氨基磺酸-N,N-二甲基甲酰胺法对木聚糖(xylan,Xyl)进行化学改性,产生硫酸化木聚糖(sulfated xylan,SXY)。采用傅里叶红外光谱、扫描电子显微镜和刚果红实验对SXY进行结构表征,利用德氏乳杆菌保加利亚亚种GIM1.155、植物乳杆菌GIM1.191、短乳杆菌GIM1.773和嗜热链球菌GIM1.540共4种肠道益生菌对其体外增殖作用进行研究。结果表明:红外光谱显示SXY在1243、1052和894 cm−1处分别出现由S=O伸缩振动、C—O拉伸和C—O—SO3基团对称C—O—S伸缩振动引起的特征吸收峰。扫描电镜显示得到表面结构平滑度增加的SXY。刚果红实验显示SXY具有三螺旋结构。采用BaCl2-明胶比浊法测得SXY取代度为0.341。体外实验结果显示SXY对益生菌体外增殖最佳浓度为2.0%,培养10 h后观察到快速生长和增殖增加。所获结果表明,SXY对益生菌的生长有促进作用,是维持肠道健康的益生元替代物。
    Abstract: This study aimed to determine the effect of sulfated xylans on the growth of probiotics. Xylan (Xyl) was chemically modified using the sulfamic acid-N,N-dimethylformamide method to produce sulfated xylan (SXY). The SXY was characterized by Fourier infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and Congo red experiment. The Xyl and SXY were tested for their in vitro prebiotic effects using four strains of intestinal microflora, including Lactobacillus delbrueckii subsp. bulgaricus (GIM1.155), L. plantarum (GIM1.191), L. brevis (GIM1.773), and Streptococcus thermophilus (GIM1.540). From the recorded infrared spectra, vibrational bands for SXY were observed at 894, 1052 and 1243 cm−1, they could be assigned to the C—O—S vibration of a C—O—SO3, C—O stretched and S=O stretching vibrations. The results of scanning electron microscopy showed that the surface structure of SXY increased smoothness. Congo red experiment revealed that SXY had a triple helix structure. The substitution degree of SXY measured using a BaCl2-gelatin turbidimeter was 0.341. In vitro experiment showed that the optimum concentration of SXY for the in vitro probiotic growth was 2.0%, rapid growth and increased proliferation were observed after 10 h of culture. The results obtained suggest that SXY could promote probiotic growth. It is an alternate source of prebiotics for maintaining gut health.
  • 肠道健康与肠道菌群平衡密切相关,肠道菌群失调会引起胃肠功能紊乱,甚至导致各类炎症[1]、与免疫系统有关的疾病[2]以及其他神经和精神疾病[3]。为解决胃肠道疾病日益年轻化的问题,具有恢复肠道菌群活性和多样性作用,且能选择性促进有益细菌生长的益生元[4],成为如今研究的热点。经有关研究报道,从海洋大型藻类和微生物[5]、菌类[6]、水果[7]、植物[8]及农作物[9]等提取获得的多糖,均具有益生元潜力。因此,研究和开发多糖的益生元活性具有重要意义。

    木聚糖(xylan,Xyl)存在于许多农作物和某些藻类中[10],是一种丰富的可再生资源,更是一种潜在的益生元。但目前对于Xyl的生物活性研究多数为抗炎[11]、抗氧化[12]和免疫调节[13]等,其益生元方面的研究大多是探究不同的酶促方法和木聚糖酶对生产新兴的益生元低聚木糖的影响[14-15],关于Xyl及其衍生物的益生元活性研究尚且较少。不同多糖的益生元活性与其化学结构息息相关,Chen等[16]发现竹笋多糖的分子量越低和粒径越小会诱导越多的益生菌增殖,而高粘度和低溶解度是Xyl特性,天然来源的Xyl需要在高浓度下才能展现较好的抗氧化[17]和抗肿瘤[18]等生物活性,较低的利用效率往往会造成严重的资源浪费。目前,关于改性Xyl以提高其益生元活性的研究仍未有报道。硫酸化反应为放热反应,有利于硫酸基与羟基结合,因此,通过多糖分子修饰中最常用的化学方法—硫酸化法[19],对Xyl进行分子修饰,改变它的分子量、官能团及空间构象,从而增强或赋予其生物活性,提高利用率以分担生产成本。本实验对木聚糖进行硫酸化修饰以获得硫酸化木聚糖(sulfated xylan,SXY),通过红外光谱、扫描电镜、刚果红实验和取代度测定,对其结构进行分析,并探究它对4种益生菌的益生元作用,对于充分开发和利用植物资源,降低益生元生产成本,满足人体不同健康需求具有重要的意义。

    木聚糖 广西植物所提供[20];低聚果糖(fructo-oligosaccharides,FOS) 生物试剂,上海源叶生物科技有限公司;2,7-二羟基萘、氨基磺酸、N,N二甲基甲酰胺、大豆蛋白胨、牛肉浸粉、酵母浸粉、L-半胱氨酸、柠檬酸二胺、吐温−80、磷酸氢二钾、硫酸锰、乙酸钠、碳酸钙、葡萄糖、硫酸镁、明胶等 分析纯,上海阿拉丁生化科技有限公司;实验菌株:德氏乳杆菌保加利亚亚种GIM1.155(Lactobacillus delbrueckii subsp. bulgaricus)、嗜热链球菌GIM1.540(Streptococcus thermophilus)、植物乳杆菌GIM1.191(Lactobacillus plantarum)、短乳杆菌GIM1.773(Lactobacillus brevis) 均为实验室(−80 ℃甘油冷冻保藏)菌种,广东省微生物菌种保藏中心。

    HH-S2型数显恒温水浴锅 金坛市医疗仪器有限公司;KQ-400KDE型高功率数控超声波清洗器 昆山市超声仪器有限公司;ALpHA1-2LD型冷冻干燥仪 德国Martin Christ公司;KQ-400KDE型立式压力蒸汽灭菌锅 上海申安医疗器械有限公司;LRH-250-Z型振荡培养箱 韶关市泰宏医疗器械有限公司;UV760CRT型紫外可见分光光度计 上海傲谱分析仪器有限公司;Nicolet is 10型傅里叶红外光谱仪 赛默飞世尔科技公司;A SU5000型扫描电子显微镜 日立公司。

    采用氨基磺酸-N,N-二甲基甲酰胺法[21]制备。称取6.0 g Xyl,溶于160 mL N,N-二甲基甲酰,室温下70 W超声30 min。搅拌升温至70 ℃,缓慢加入12.0 g氨基磺酸,80 ℃ 800 r/min 搅拌1 h。终止反应,冷却至室温,用0.1 mol/L NaOH溶液调节pH至7.0,加入3倍反应液体积的无水乙醇。4 ℃沉淀24 h,析出沉淀,4500 r/min离心15 min,收集沉淀物用蒸馏水复溶,流水透析48 h,浓缩,冷冻干燥,得到SXY。

    取2 mg干燥的SXY和Xyl与200 mg干燥的KBr混合,于玛瑙研钵中研磨,压片得均匀透明、无颗粒感薄片,于红外光谱仪(范围4000~400 cm−1)扫描,得红外光谱扫描图。

    取1 mg冷冻干燥制得的SXY与Xyl,喷金30 s,在20 ℃,5 kV加速电压,300×和1000×放大倍率下观察多糖样品的形态。

    取1 mL 80 μmol/L的刚果红溶液和1 mL 1 mg/mL的多糖样品液分别混合均匀,作为反应液。将2 mL浓度分别为0、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45和0.50 mol/L的NaOH溶液加入上述反应溶液中,静置10 min。在400~600 nm波长下进行扫描,记录最大吸收波长值λmax[22]

    取0.4 mL用1 mol/L HCl溶解的SXY水解液(100 ℃水解6 h),加蒸馏水至1.6 mL,与1.4 mL三氯乙酸(8%水溶液)和1.4 mL 0.5% BaCl2-明胶溶液混匀,室温静置15 min,测定其在360 nm处吸收值A1,平行测定三组[23]

    以0.5%明胶溶液替代0.5% BaCl2-明胶溶液为对照组,测定其在360 nm处吸收值A2

    用0.1 mg/mL K2SO4标准液替代多糖样品,SO42−含量(mg)为横坐标,吸收值为纵坐标,绘制标准曲线:y=1.3379x+0.0037,R2=0.9934,计算出K2SO4的质量。

    所求吸光度A0=A1−A2,A1−A2目的是消除水解液中所含自外吸收物质的影响。按以下公式,计算SXY取代度的值:

    DSs = 1.62×S321.02×S

    式中:DSs表示SXY的取代度;S表示样品中硫的质量分数,%。

    基础培养基:德氏乳杆菌保加利亚亚种GIM1.155、植物乳杆菌GIM1.191、短乳杆菌GIM1.773的基础培养基:大豆蛋白胨10.0 g,牛肉浸粉10.0 g,酵母浸粉5.0 g,柠檬酸二胺2.0 g,磷酸氢二钾2.0 g,硫酸锰0.05 g,硫酸镁0.30 g,吐温-80 1.0 mL,葡萄糖15.0 g,乙酸钠5.0 g,加热溶解后补加蒸馏水至1 L,调节pH至6.5;嗜热链球菌GIM1.540的基础培养基:大豆蛋白胨5.0 g,酵母浸粉10.0 g,碳酸钙1.0 g,磷酸氢二钾2.0 g,葡萄糖15.0 g,L-半胱氨酸0.5 g,吐温-80 1.0 mL,加热溶解后补加蒸馏水至1 L,调节pH至7.0。

    试验培养基:在保证与基础培养基其他营养成分不变的情况下,分别以SXY、Xyl和FOS作为唯一碳源,替代基础培养基中的葡萄糖。

    以上所有培养基均于121 ℃下高温灭菌20 min。

    在无菌操作台中,取100 μL甘油保存的菌种分别接种至100 mL按照1.2.6.1配制的基础培养基(冷却至室温)中,置于37 ℃培养箱中厌氧培养48 h。活化两次制成菌悬液备用。

    配制100 mL质量浓度分别为0.5%、1.0%、1.5%、2.0%、3.0%(W/V)的SXY、Xyl和FOS培养基,再分别接入100 μL菌株浓度为1×106 CFU/mL充分活化的菌种,在37 ℃培养48 h,取样测定各培养液在600 nm的OD值和培养基的pH。

    配制100 mL质量浓度为2.0%(W/V)的SXY培养基,再分别接入100 μL菌株浓度为1×106 CFU/mL充分活化的菌种悬液,在37 ℃培养48 h。培养时间为横坐标,OD600 nm为纵坐标,绘制4种益生菌的生长曲线[24]

    所有数据均为3次重复实验的平均值,表示为平均值±标准差(¯X±SD)。采用SPSS Statistics 26软件进行单因素方差分析,使用Origin 2021软件画图。

    SXY和Xyl的红外光谱如图1所示。Xyl在3438 cm−1处出现由O—H伸缩振动引起的宽峰,2952 cm−1处出现由C—H伸缩振动引起的吸收峰,1601、1365和897 cm−1处分别表示C=C、C=O和β-D糖苷键构型的BX分子骨架振动峰[25]。SXY在3443 cm−1处的O—H吸收峰强度减弱,说明O—H被硫酸基取代[26],1243、1052和894 cm−1处出现的吸收峰,分别是由S=O伸缩振动、C—O拉伸和C—O—SO3基团对称C—O—S伸缩振动[27]引起的。结果说明木聚糖的硫酸化修饰成功。

    图  1  SXY和Xyl的红外图谱
    Figure  1.  The infrared spectroscopy spectrum of SXY and Xyl

    用扫描电镜观察多糖的表面结构如图2。结果表明,Xyl呈椭圆、圆球状,且球体表面有细小颗粒粘附;硫酸化后,观察到SXY表面结构的变化,主要变化为:SXY多呈较薄片状和块状,有部分呈双凹圆盘状、圆柱体和圆球体的颗粒分布在片状(或块状)物的四周,这些颗粒表面光滑,也有部分颗粒聚团形成团粒。结果证实Xyl的硫酸化修饰成功,得到了表面结构平滑度增加[28]的SXY。

    图  2  SXY和Xyl的扫描电镜图
    注:Xyl(A)、SXY(B):300×;Xyl(C)、SXY(D):1000×。
    Figure  2.  SEM images of SXY and Xyl

    刚果红作为一种酸性染料,可在弱碱条件下与含三螺旋结构的多糖形成复合物,在强碱条件下使多糖的三螺旋结构破坏,引起最大吸收波长的偏移[29]。如图3所示,SXY、Xyl和刚果红溶液形成的复合物与刚果红溶液相比发生红移。在NaOH浓度为0~0.50 mol/L的范围内,SXY的最大吸收波长从初始值495.67 nm转移到最大值503.40 nm,表明刚果红-SXY复合物已经形成,随后最大吸收波长随着NaOH浓度的增加而逐渐减小至最小值494.53 nm(不含多糖样品的刚果红溶液波长从496.03 nm不断减小转移至484.27 nm),说明在NaOH浓度较高时,氢键的断裂会导致螺旋构象被破坏[25];刚果红-Xyl复合物的最大吸收波长从初始值495.73 nm增大至最大值498.20 nm,随后减小至最小值486.07 nm,其红移现象不如刚果红-SXY复合物明显,原因可能是硫酸化修饰后得到的SXY分子链间氢键被削弱[30],NaOH对SXY的氢键断裂影响更大。以上结果表明SXY具有三螺旋结构。

    图  3  刚果红-多糖复合物和刚果红溶液在不同浓度NaOH下的最大吸收波长
    Figure  3.  The maximum absorption wavelengths of Congo red-polysaccharide complex and Congo red solution at various concentrations of NaOH

    根据硫酸根标准曲线方程(硫酸根浓度在0~80 μg/mL范围内符合比耳定律):y=1.3379x+0.0037,R2=0.9934,和硫酸基取代度公式的计算结果,得到SXY硫酸基取代度(取代度用于指示羟基被硫酸基取代的程度)为0.341,硫酸根含量为6.72%。

    在一定的OD值范围内,菌液的OD值与活菌数呈线性关系,可以反映细菌的生长情况,以此判断待测样品中细菌的增殖状况[31]。如图4所示,随着多糖浓度增加,SXY对4种益生菌的生长均有一定的促进作用,在浓度增至2.0%时,德氏乳杆菌保加利亚亚种GIM1.155、嗜热链球菌GIM1.540和植物乳杆菌GIM1.191组的OD值达到最大,后趋于平缓,而短乳杆菌GIM1.773组在SXY浓度为1.5%时达到最大OD值,说明并不是多糖浓度越高,对益生菌的增殖效果就越好,可能是多糖浓度过高导致培养液的渗透压过大,进而导致菌体脱水死亡,抑制菌体的生长[32]。总体来看,在设定的多糖浓度范围内,浓度越高,益生菌的体外增殖情况越好,但SXY的促增殖效果不如Xyl和FOS(除短乳杆菌GIM1.773组),分析原因可能是多糖的益生元功效与其水溶性相关[33-35],硫酸基的引入削弱了Xyl分子链间的氢键,减少分子链间的聚集[30],使SXY更稳定,水溶性更小,水溶性大小:FOS>Xyl>SXY,故结果显示它们对益生菌的增殖效果:FOS>Xyl>SXY,与溶解度高的多糖更有利于益生菌消化利用[36]相符。对于短乳杆菌GIM1.773组,当SXY浓度达到1.5%时,此时的OD值达到最大值,大于Xyl和FOS,原因可能是短乳杆菌属于异型乳酸发酵细菌[37],发酵产物(除主要产物乳酸外,还有乙醇、乙酸和CO2等)使SXY水溶性增大,与SXY的促增殖作用产生协同效应[38]

    图  4  不同浓度的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长的影响
    注:不同小写字母表示同一浓度下差异显著(P<0.05)。
    Figure  4.  Effects of different concentrations of SXY sample on the growth of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)

    益生菌生长过程中会产生酸性代谢产物,引起菌液pH的变化,益生菌的产酸能力强弱反映其生长情况好坏[39]。如表1所示,随着多糖浓度的上升,各组的pH呈现不同程度的下降趋势,浓度达到2.0%后,下降趋势减缓并达到最小值。整体来看,除德氏乳杆菌保加利亚亚种GIM1.155(Xyl与FOS)组和植物乳杆菌GIM1.191(Xyl)组pH的降低幅度分别低于它们的SXY组外,其余各组pH的降低幅度均高于它们各自的SXY组。在浓度为2.0%时,SXY对德氏乳杆菌保加利亚亚种GIM1.155的产酸影响最明显,pH下降幅度最大,pH由初始值5.54下降达到最小值5.19(差值为0.35);嗜热链球菌GIM1.540的pH由5.80下降至5.46(差值为0.34);植物乳杆菌GIM1.191和短乳杆菌GIM1.773的pH均有下降,但下降趋势不明显(差值分别为0.14和0.09)。结合培养液的OD值变化情况,选择SXY的最佳培养浓度为2.0%。

    表  1  不同浓度SXY对4种益生菌pH的影响
    Table  1.  Effects of different concentrations of SXY on pH by four types of probiotics
    益生菌样品浓度(%)
    0.51.01.52.03.0
    德氏乳杆菌
    保加利亚亚
    种GIM1.155
    SXY5.54±0.01a5.31±0.01b5.29±0.01b5.19±0.01b5.21±0.01b
    Xyl5.49±0.01b5.41±0.01a5.37±0.00a5.29±0.01a5.30±0.00a
    FOS5.37±0.01c5.25±0.02c5.19±0.00c5.18±0.01b5.18±0.01c
    嗜热链球菌
    GIM1.540
    SXY5.80±0.02a5.78±0.02a5.54±0.01a5.46±0.02a5.46±0.02a
    Xyl5.76±0.01b5.66±0.02b5.41±0.01b5.34±0.01b5.34±0.02b
    FOS5.64±0.01c5.52±0.01c5.32±0.02c5.25±0.01c5.24±0.01c
    植物乳杆菌
    GIM1.191
    SXY5.51±0.00a5.43±0.00a5.41±0.00a5.37±0.01a5.36±0.01a
    Xyl5.45±0.02b5.42±0.01a5.36±0.02b5.32±0.01b5.32±0.01b
    FOS5.37±0.01c5.32±0.00b5.27±0.01c5.20±0.01c5.20±0.01c
    短乳杆菌
    GIM1.773
    SXY5.49±0.01a5.42±0.01a5.37±0.01a5.40±0.00a5.41±0.00a
    Xyl5.41±0.01b5.29±0.01c5.29±0.02b5.23±0.01b5.22±0.01b
    FOS5.37±0.01c5.32±0.01b5.18±0.01c5.12±0.01c5.12±0.01c
    注:同列不同小写字母表示同一菌种不同样品间差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图5所示为SXY在最佳浓度(2.0%)下对4种益生菌生长曲线的影响。SXY对4种益生菌均有促增殖作用,且均在培养10 h后进入菌体快速增殖期,48 h达到最大OD值:德氏乳杆菌保加利亚亚种GIM1.155和短乳杆菌GIM1.773培养32 h后菌体生长到达稳定期,最大OD值分别为1.319和1.506,其中SXY对短乳杆菌GIM1.773培养达到的最大OD值(1.506)大于Xyl(1.415);嗜热链球菌GIM1.540培养36 h后进入稳定期,最大OD值为1.014;植物乳杆菌GIM1.191快速增殖期为10~28 h,但28 h后OD值仍不断平缓地增长,在48 h达到最大OD值1.366。从生长曲线整体变化趋势来看,SXY和Xyl分别与FOS相比,前者均能缩短4种益生菌到达稳定期的时间:将Xyl作为唯一碳源培养4种益生菌,它们的快速增殖期分别为:10~40、10~36、18~32和10~40 h(按照图5-A、B、C、D排序,下同);将FOS作为唯一碳源培养4种益生菌,它们的快速增殖期分别为:18~44、24~44、24~44和14~44 h;对多糖促使益生菌进入生长稳定期的时间进行排序:FOS>Xyl>SXY,结果说明SXY可以缩短益生菌到达生长稳定期的时间。

    图  5  最佳浓度下的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长曲线的影响
    Figure  5.  Effects of optimal concentrations of SXY sample on the growth curve of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)

    从本团队已发表的论文[40]中得出羧甲基化木聚糖是一种潜在益生元的结论,它对4种益生菌(与本文中的4种益生菌相同)的增殖效果优于Xyl,次于FOS,原因可能是羧甲基化修饰在有机介质(低介电常数的异丙醇)中进行,增大了碱与Xyl的反应接触[41],反应稳定且得到的CXY取代度高;而益生菌(除短乳杆菌GIM1.773)对SXY的利用率和益生元效果虽不如Xyl和FOS显著(这可能与SXY的取代度有关[42]),但它能明显缩短益生菌到达生长稳定期的时间,这是羧甲基化木聚糖不具备的特点,对于后续优化SXY的制备工艺条件、提高取代度,从而提高其益生元活性具有重要意义。先前的报道还显示FOS对益生菌的促增殖作用优于Xyl,而本研究结果显示在益生菌到达生长稳定期前,Xyl的促增殖效果一直优于FOS,经过生长对数期后,达到平稳期时的FOS促增殖效果优于Xyl,原因可能是菌液的分布均匀度及折射、反射影响光吸收等问题均是干扰OD测量的因素[43],本文确定菌株初始浓度为1×106 CFU/mL,而不仅仅是以初始OD值确定菌落数目,这可能是导致益生菌生长曲线显示FOS与Xyl促增殖效果不同的主要原因。

    通过氨基磺酸-N,N-二甲基甲酰胺法制备得到SXY,研究SXY对4种益生菌的增殖效果,以确定其作为益生元的潜力。红外图谱显示SXY在1243、1052和894 cm−1处分别出现由S=O伸缩振动、C—O拉伸和C—O—SO3基团对称C—O—S伸缩振动引起的特征吸收峰;扫描电镜表明木聚糖硫酸化修饰成功,且其表面结构平滑度增加;刚果红实验证明SXY具有三螺旋结构;2.0%为SXY促增殖的最佳浓度,且SXY能加快益生菌进入生长对数期,培养10 h后观察到快速生长和增殖增加。益生菌对SXY的利用率和益生元效果不如Xyl和FOS显著,可能与SXY的取代度(DSs=0.341)有关。综上所述,SXY是潜在的益生元,本文为后续优化SXY的制备工艺条件、提高取代度,以提高其益生元活性提供了参考。

  • 图  1   SXY和Xyl的红外图谱

    Figure  1.   The infrared spectroscopy spectrum of SXY and Xyl

    图  2   SXY和Xyl的扫描电镜图

    注:Xyl(A)、SXY(B):300×;Xyl(C)、SXY(D):1000×。

    Figure  2.   SEM images of SXY and Xyl

    图  3   刚果红-多糖复合物和刚果红溶液在不同浓度NaOH下的最大吸收波长

    Figure  3.   The maximum absorption wavelengths of Congo red-polysaccharide complex and Congo red solution at various concentrations of NaOH

    图  4   不同浓度的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长的影响

    注:不同小写字母表示同一浓度下差异显著(P<0.05)。

    Figure  4.   Effects of different concentrations of SXY sample on the growth of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)

    图  5   最佳浓度下的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长曲线的影响

    Figure  5.   Effects of optimal concentrations of SXY sample on the growth curve of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)

    表  1   不同浓度SXY对4种益生菌pH的影响

    Table  1   Effects of different concentrations of SXY on pH by four types of probiotics

    益生菌样品浓度(%)
    0.51.01.52.03.0
    德氏乳杆菌
    保加利亚亚
    种GIM1.155
    SXY5.54±0.01a5.31±0.01b5.29±0.01b5.19±0.01b5.21±0.01b
    Xyl5.49±0.01b5.41±0.01a5.37±0.00a5.29±0.01a5.30±0.00a
    FOS5.37±0.01c5.25±0.02c5.19±0.00c5.18±0.01b5.18±0.01c
    嗜热链球菌
    GIM1.540
    SXY5.80±0.02a5.78±0.02a5.54±0.01a5.46±0.02a5.46±0.02a
    Xyl5.76±0.01b5.66±0.02b5.41±0.01b5.34±0.01b5.34±0.02b
    FOS5.64±0.01c5.52±0.01c5.32±0.02c5.25±0.01c5.24±0.01c
    植物乳杆菌
    GIM1.191
    SXY5.51±0.00a5.43±0.00a5.41±0.00a5.37±0.01a5.36±0.01a
    Xyl5.45±0.02b5.42±0.01a5.36±0.02b5.32±0.01b5.32±0.01b
    FOS5.37±0.01c5.32±0.00b5.27±0.01c5.20±0.01c5.20±0.01c
    短乳杆菌
    GIM1.773
    SXY5.49±0.01a5.42±0.01a5.37±0.01a5.40±0.00a5.41±0.00a
    Xyl5.41±0.01b5.29±0.01c5.29±0.02b5.23±0.01b5.22±0.01b
    FOS5.37±0.01c5.32±0.01b5.18±0.01c5.12±0.01c5.12±0.01c
    注:同列不同小写字母表示同一菌种不同样品间差异显著(P<0.05)。
    下载: 导出CSV
  • [1]

    TSAI Y L, LIN T L, CHANG C J, et al. Probiotics, prebiotics and amelioration of diseases[J]. Journal of Biomedical Science,2019,26:3. doi: 10.1186/s12929-018-0493-6

    [2]

    ONISZCZUK A, ONISZCZUK T, GANCARZ M, et al. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases[J]. Molecules,2021,26(4):1172. doi: 10.3390/molecules26041172

    [3]

    YANG H, LIU Y Q, CAI R, et al. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics[J]. Annals of Palliative Medicine,2021,10(2):2304−2313. doi: 10.21037/apm-20-1365

    [4]

    ENAM F, MANSELL T J. Prebiotics: Tools to manipulate the gut microbiome and metabolome[J]. Journal of Industrial Microbiology & Biotechnology,2019,46(9-10):1445−1459.

    [5]

    SARDARI R, KARLSSON E N. Marine poly- and oligosaccharides as prebiotics[J]. Journal of Agricultural and Food Chemistry,2018,66(44):11544−11549. doi: 10.1021/acs.jafc.8b04418

    [6]

    YANG Y, ZHAO C H, DIAO M X, et al. The prebiotic activity of simulated gastric and intestinal digesta of polysaccharides from the Hericium erinaceus[J]. Molecules,2018,23(12):3158. doi: 10.3390/molecules23123158

    [7]

    HUANG F, HONG R Y, ZHANG R F, et al. Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process[J]. International Journal of Biological Macromolecules,2019,132(1):915−921.

    [8]

    CRUZ-RUBIO J M, MUELLER M, VIERNSTEIN H, et al. Prebiotic potential and chemical characterization of the poly and oligosaccharides present in the mucilage of Opuntia ficus-indica and Opuntia joconostle[J]. Food Chemistry,2021,362:130167. doi: 10.1016/j.foodchem.2021.130167

    [9]

    LU X M, LI N Y, ZHAO R J, et al. In vitro prebiotic properties of garlic polysaccharides and its oligosaccharide mixtures obtained by acid hydrolysis[J]. Frontiers in Nutrition,2021,8:798450. doi: 10.3389/fnut.2021.798450

    [10]

    HETTRICH K, DRECHSLER U, LOTH F, et al. Preparation and characterization of water-soluble xylan ethers[J]. Polymers,2017,9(4):129.

    [11] 姜玉莹. 玉米麸皮阿拉伯木聚糖的提取、纯化及抗炎活性研究[D]. 长春: 吉林农业大学, 2019.

    JIANG Y Y. Extraction, purfication and anti-inflammatory activity of corn bran arabinoxylan[D]. Changchun: Jilin Agricultural University, 2019.

    [12] 田贝贝, 陈洁, 王远辉. 小麦淀粉加工废水中阿拉伯木聚糖的理化性质及抗氧化活性研究[J]. 食品工业科技,2017,38(15):40−44. [TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry,2017,38(15):40−44. doi: 10.13386/j.issn1002-0306.2017.15.009

    TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry, 2017, 38(15): 40-44. doi: 10.13386/j.issn1002-0306.2017.15.009

    [13]

    BHANJA S K, MAITY P, ROUT D, et al. A xylan from the fresh leaves of Piper betle: Structural characterization and studies of bioactive properties[J]. Carbohydrate Polymers,2022,291:119570. doi: 10.1016/j.carbpol.2022.119570

    [14]

    FUSO A, ROSSO F, ROSSO G, et al. Production of xylo-oligosaccharides (XOS) of tailored degree of polymerization from acetylated xylans through modelling of enzymatic hydrolysis[J]. Food Research International,2022,162:112019. doi: 10.1016/j.foodres.2022.112019

    [15]

    LIAN Z N, WANG Y N, LUO J, et al. An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan[J]. Bioresource Technology,2020,314:123685. doi: 10.1016/j.biortech.2020.123685

    [16]

    CHEN G J, CHEN X H, YANG B, et al. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity[J]. Food Hydrocolloids,2019,95:367−377. doi: 10.1016/j.foodhyd.2019.04.046

    [17]

    MAITY G N, MAITY P, DASGUPTA A, et al. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh)[J]. Carbohydrate Polymers,2019,212(1):297−303.

    [18]

    DENG Y N, LIU Q, DANG T T, et al. Preparation, structural characterization and bioactivity of 4-O-methylglucuronoxylan from Artemisia sphaerocephala Krasch[J]. Carbohydrate Polymers,2019,222:115009. doi: 10.1016/j.carbpol.2019.115009

    [19] 李和平, 何利霞. 木聚糖的化学修饰及其衍生物的应用研究进展[J]. 化工进展,2009,28(11):1955−1964, 1981. [LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress,2009,28(11):1955−1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014

    LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 1955-1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014

    [20] 苗露, 周玉恒, 张厚瑞, 等. 蔗渣木聚糖含量检测方法的比较[J]. 食品科学,2016,37(16):162−167. [MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science,2016,37(16):162−167. doi: 10.7506/spkx1002-6630-201616026

    MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science, 2016, 37(16): 162-167. doi: 10.7506/spkx1002-6630-201616026

    [21] 刘昱均. 发酵灵芝多糖的硫酸酯化及其生物活性的研究[D]. 无锡: 江南大学, 2013.

    LIU Y J. Studies of fermented Ganoderma lucidum polysaccharides modified by sulfuric acid and their biological acticity[D]. Wuxi: Jiangnan University, 2013.

    [22]

    XU X D, WANG Q, XUE S Y, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775

    [23] 刘玉凤, 贾淑颖, 刘飞飞, 等. 不同取代度的硫酸化肠浒苔多糖抗氧化活性研究[J]. 食品工业科技,2016,37(19):142−147, 152. [LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry,2016,37(19):142−147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019

    LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry, 2016, 37(19): 142-147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019

    [24]

    HUANG F, LIU H J, ZHANG R F, et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques[J]. Carbohydrate Polymers,2019,206:344−351. doi: 10.1016/j.carbpol.2018.11.012

    [25]

    QU Y, LI C X, ZHANG C, et al. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2016,148:345−353. doi: 10.1016/j.carbpol.2016.04.081

    [26]

    CHEN L, HUANG G L. Antioxidant activities of sulfated pumpkin polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261

    [27]

    PTAK S H, SANCHEZ L, FRETTE X, et al. Complementarity of Raman and infrared spectroscopy for rapid characterization of fucoidan extracts[J]. Plant Methods,2021,17:130. doi: 10.1186/s13007-021-00830-6

    [28]

    SIMKOVIC I, TRACZ A, KELNAR I, et al. Quaternized and sulfated xylan derivative films[J]. Carbohydrate Polymers,2014,99:356−364. doi: 10.1016/j.carbpol.2013.08.075

    [29]

    XIONG F, LI X, ZHENG L H, et al. Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods[J]. Carbohydrate Polymers,2019,218:46−52. doi: 10.1016/j.carbpol.2019.04.069

    [30]

    ZHONG L X, PENG X W, YANG D, et al. Long-chain anhydride modification: A new strategy for preparing xylan films[J]. Journal of Agricultural and Food Chemistry,2013,61(3):655−661. doi: 10.1021/jf304818f

    [31] 白长胜, 崔毅, 刘德会, 等. 运用OD值法快速进行乳酸菌活菌计数的研究[J]. 现代畜牧科技,2021,1(3):4−5, 10. [BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology,2021,1(3):4−5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002

    BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology, 2021, 1(3): 4-5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002

    [32] 刘小华, 李舒梅, 熊跃玲. 短链脂肪酸对肠道功效及其机制的研究进展[J]. 肠外与肠内营养,2012,19(1):56−58. [LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition,2012,19(1):56−58. doi: 10.16151/j.1007-810x.2012.01.001

    LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition, 2012, 19(1): 56-58. doi: 10.16151/j.1007-810x.2012.01.001

    [33]

    SINGH S P, JADAUN J S, NARNOLIYA L K, et al. Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity[J]. Applied Biochemistry and Biotechnology,2017,183(2):613−635. doi: 10.1007/s12010-017-2605-2

    [34]

    ABBASILIASI S, TAN J S, BELLO B, et al. Prebiotic efficacy of coconut kernel cake's soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro[J]. Biotechnology & Biotechnological Equipment,2019,33(1):1216−1227.

    [35] 别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76.

    BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76.

    [36]

    WANG X, HUANG M Y, YANG F, et al. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro[J]. Carbohydrate Polymers,2015,125(1):232−240.

    [37]

    RAZALI M F, FAUZI N A M, SULAIMAN A, et al. Effect of high-pressure processing on prebiotic potential of stingless bee (Kelulut) honey: Tested upon Lactobacillus acidophilus and Lactobacillus brevis[J]. Journal of Food Processing and Preservation,2019,43(7):13946.

    [38]

    KOK C R, QUINTERO D F G, NIYIRORA C, et al. An in vitro enrichment strategy for formulating synergistic synbiotics[J]. Applied and Environmental Microbiology,2019,85(16):e01073−01019.

    [39] 王新, 王利, 王青云, 等. 益生元对益生菌生长代谢的研究[J]. 食品安全导刊,2022,1(7):76−79. [WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine,2022,1(7):76−79. doi: 10.16043/j.cnki.cfs.2022.07.021

    WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine, 2022, 1(7): 76-79. doi: 10.16043/j.cnki.cfs.2022.07.021

    [40] 李霞, 陈海鸥, 韩淑芳, 等. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业,2021,47(2):45−50. [LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries,2021,47(2):45−50. doi: 10.13995/j.cnki.11-1802/ts.024603

    LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries, 2021, 47(2): 45-50. doi: 10.13995/j.cnki.11-1802/ts.024603

    [41]

    DE MATTOS N R, COLODETTE J L, DE OLIVEIRA C R. Alkaline extraction and carboxymethylation of xylans from corn fiber[J]. Cellulose,2019,26(3):2177−2189. doi: 10.1007/s10570-018-02236-5

    [42]

    YU Y, SONG Q Q, HUANG L X, et al. Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes[J]. Journal of Functional Foods,2020,64:103706. doi: 10.1016/j.jff.2019.103706

    [43] 张廷辉, 汤承浩, 王晓铭, 等. 腌韭菜根中五种腐败菌菌液OD值与其活菌数相关性研究[J]. 贵州科学,2021,39(6):17−21. [ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science,2021,39(6):17−21.

    ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science, 2021, 39(6): 17-21.

图(5)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 网络出版日期:  2023-04-22
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回