• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李海飞,杨毅,亓雨芮,等. 超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素及其稳定性和抗氧化活性分析[J]. 食品工业科技,2023,44(8):259−269. doi: 10.13386/j.issn1002-0306.2022070145.
引用本文: 李海飞,杨毅,亓雨芮,等. 超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素及其稳定性和抗氧化活性分析[J]. 食品工业科技,2023,44(8):259−269. doi: 10.13386/j.issn1002-0306.2022070145.
LI Haifei, YANG Yi, QI Yurui, et al. Ultrasound-Assisted Extraction of Anthocyanins from Aronia melanocarpa with Acidic Natural Deep Eutectic Solvents and Its Stability and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(8): 259−269. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070145.
Citation: LI Haifei, YANG Yi, QI Yurui, et al. Ultrasound-Assisted Extraction of Anthocyanins from Aronia melanocarpa with Acidic Natural Deep Eutectic Solvents and Its Stability and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(8): 259−269. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070145.

超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素及其稳定性和抗氧化活性分析

Ultrasound-Assisted Extraction of Anthocyanins from Aronia melanocarpa with Acidic Natural Deep Eutectic Solvents and Its Stability and Antioxidant Activity

  • 摘要: 建立一种绿色、高效的超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素的新方法,利用人工神经网络和遗传算法优化提取条件,并研究花青素提取物的稳定性和抗氧化活性。以甜菜碱和有机酸为氢键受体和氢键供体,制备了一系列酸性天然低共熔溶剂,并对其密度、粘度、pH理化性质进行了测定,通过红外光谱研究了天然低共熔溶剂的结构和形成机理,利用人工神经网络结合遗传算法优化了最佳提取条件,并评价了花青素提取物的光稳定性、热稳定性和抗氧化活性。结果表明,甜菜碱和乳酸通过氢键相互作用形成的天然低共熔溶剂具有密度低(1.19)、粘度小(24.75 mPa·s)、pH低(2.89)的特点,其最佳提取条件为:以甜菜碱和乳酸制备天然低共熔溶剂,摩尔比1:3,含水量为32%,超声功率124 W,超声时间24 min,初始超声温度32 ℃。在此最佳条件下,花青素的提取率达到23.62 mg/g。与传统溶剂和其它方法相比,本方法绿色高效,操作简单。稳定性和抗氧化实验结果显示,光照会加速提取物中花青素的降解,当温度大于50 ℃时,花青素热降解加速,一级动力学降解常数k>0.0234。当质量浓度为200 μg/mL时,花青素提取物的DPPH自由基清除率和总抗氧化能力分别为62.30%和6.39 mmol/L FeSO4·7H2O当量,且在质量浓度为30 μg/mL时,花青素提取物的ABTS+自由基清除率为85.14%,显著(P<0.05)高于VC,且与浓度呈正比。因此,超声波辅助酸性天然低共熔溶剂法可有效提取黑果腺肋花楸花青素,该法绿色环保,操作简单,为黑果腺肋花楸资源的开发利用提供科学依据。

     

    Abstract: A green and efficient ultrasonic-assisted acidic natural deep eutectic solvents for the extraction of anthocyanins from Aronia Melanocarpa was developed. The extraction conditions were optimized by the artificial neural networks and genetic algorithms, and the stability and antioxidant activity of anthocyanins extracts were investigated. A series of acidic natural deep eutectic solvents were prepared using betaine and organic acids as hydrogen bond acceptor and hydrogen bond donor respectively. Their physical and chemical properties such as density, viscosity, pH value were measured. The structure and formation mechanism of natural deep eutectic solvents were studied by infrared spectroscopy. The optimal extraction conditions were optimized by artificial neural network combined with genetic algorithm. The photostability, thermal stability and antioxidant activity of anthocyanins extract were evaluated. The experimental results showed that the natural deep eutectic solvents formed by the hydrogen bond interaction between betaine and lactic acid had the characteristics of density as low as 1.19, viscosity as low as 24.75 mPa·s and pH as 2.89. The optimal extraction conditions were as follows: betaine and lactic acid were used to prepare natural deep eutectic solvents, molar ratio was 1:3, water content was 32%, ultrasonic power was 124 W, ultrasonic time was 24 min and initial ultrasonic temperature was 32 ℃. Under this condition, the anthocyanins extraction yield reached 23.62 mg/g. Compared with traditional solvents and other methods, the method is green, efficient and simple to operate. The results of stability and antioxidant experiments showed that light can accelerate the degradation of anthocyanins in the extract. When the temperature was higher than 50 ℃, the thermal degradation of anthocyanins accelerated with the first-order kinetic degradation constant k>0.0234. When the mass concentration was 200 μg/mL, the DPPH free radical scavenging rate and total antioxidant capacity of anthocyanins extracts were 62.30% and 6.39 mmol/L FeSO4·7H2O equivalent, and at a mass concentration of 30 μg/mL, the ABTS+ free radical scavenging rate of anthocyanins extracts was 85.14%. The antioxidant activity of anthocyanins extracts was significantly (P<0.05) higher than that of VC, and was proportional to the concentration. Therefore, the ultrasonic-assisted acidic natural deep eutectic solvents method can effectively improve the extraction yield of anthocyanins from Aronia Melanocarpa, and provide a scientific basis for the development and utilization of Aronia Melanocarpa resources.

     

/

返回文章
返回