Analysis on Antioxidant Activity and Composition of Eggshell Membrane Peptides Prepared by Extrution and Enzymatic Hydrolysis
-
摘要: 本文以蛋壳膜为研究对象,采用挤压膨化协同酶解工艺制备壳膜多肽。以总氮回收率、D-葡萄糖醛酸提取量及抗氧化性为指标,确定最佳工艺条件为:挤压膨化温度140 ℃,螺杆转速100 r/min,水分含量20%,酶解时间6 h,加酶量12000 U/g,温度55 ℃。在该条件下总氮回收率达60.8%,D-葡萄糖醛酸提取量达12.4 mg/g,壳膜多肽的ABTS自由基清除率为29.46%(0.1 mg/mL),OH自由基清除率为26.58%(5 mg/mL),Fe2+螯合能力为50.25%(0.4 mg/mL),细胞抗氧化活性达65%(10 μg/mL)。相对分子质量分布结果表明壳膜多肽中主要成分为低聚肽(252~2435 Da),占81.8%。氨基酸组成分析结果表明壳膜肽中Asp和Glu含量较高,与抗氧化活性有关的氨基酸含量为44.70 g/100 g蛋白。因此,蛋壳膜多肽有潜力作为天然抗氧化剂应用于食品、保健品或化妆品领域。Abstract: In this study, the eggshell membrane peptides were prepared using a two-step process involved extrution and enzymatic hydrolysis. The process parameters were determined by evaluation of the total nitrogen recovery, D-glucuronic acid yield and antioxidant activity. The optimum extrution process were 140 ℃ (temperature), 100 r/min (screw rotation speed) and 20% (moisture content). And the optimum conditions of enzymatic hydrolysis were 6 h (time), 12000 U/g (enzyme amount) and 55 ℃ (temperature). Under these conditions, the total nitrogen recovery and D-glucuronic acid yield were 60.8% and 12.4 mg/g, respectively. The ABTS, OH free radical scavenging ability and Fe2+ chelating ability of the shell membrane peptides were 29.46% (0.1 mg/mL), 26.58% (5 mg/mL) and 50.25% (0.4 mg/mL), respectively. And their cellular antioxidant activity reached 65% (10 μg/mL). Results on the molecular mass distribution indicated that the main components were oligopeptides (252~2435 Da), accounting for 81.8%. Analysis on the amino acid composition suggested a high level of Asp and Glu in the peptides, and the content of amino acids related with antioxidant activity was 44.70 g/100 g protein. And thus, the shell membrane peptides have great potentials as natural antioxidants in the field of food, healthy product and cosmetic.
-
表 1 蛋壳膜多肽的氨基酸分析
Table 1. Amino acid analysis of eggshell membrane polypeptide
氨基酸 蛋壳膜
(g/100 g蛋白)蛋壳膜多肽
(g/100 g蛋白)Asp 10.03±0.02 13.32±0.00 Glu 15.84±0.00 14.61±0.01 Ser 5.01±0.05 4.73±0.02 His 3.83±0.00 3.24±0.02 Gly* 6.09±0.01 6.47±0.04 Thr 5.25±0.04 3.53±0.07 Arg 7.22±0.04 6.23±0.06 Ala 3.77±0.01 5.35±0.05 Pro* 6.51±0.02 6.35±0.03 Tyr* 2.31±0.07 2.82±0.05 Cys-s 3.32±0.05 0.26±0.06 Val* 7.97±0.04 8.01±0.01 Met* 4.12±0.03 3.66±0.00 Phe* 3.01±0.01 4.88±0.00 Ile* 4.47±0.02 4.64±0.02 Leu* 6.15±0.01 7.87±0.00 Lys 5.10±0.01 4.06±0.03 疏水性氨基酸 40.63 44.70 注:“*”表示疏水性氨基酸。 -
[1] KULSHRESHTHA G, DIEP T, HUDSON H A, et al. High value applications and current commercial market for eggshell membranes and derived bioactives[J]. Food Chemistry,2022,382:132270. doi: 10.1016/j.foodchem.2022.132270 [2] BALAZ M. Eggshell membrane biomaterial as a platform for applications in materials science[J]. Acta Biomaterialia,2014,10(9):3827−3843. doi: 10.1016/j.actbio.2014.03.020 [3] KAWEEWONG K, GARNJANAGOONCHORN W, JIRAPAKKUL W, et al. Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach[J]. The Protein Journal,2013,32(4):297−308. doi: 10.1007/s10930-013-9487-0 [4] SHI Y, ZHOU K, LI D, et al. Avian eggshell membrane as a novel biomaterial: A review[J]. Foods,2021,10(9):2178. doi: 10.3390/foods10092178 [5] ANDRESSA R, JANDLER S, MAURÍCIO Z, et al. Hyaluronic acid production and purification techniques: A review[J]. Preparative Biochemistry & Biotechnology, 2022. https://doi.org/10.1080/10826068.2022.2042822. [6] AHMED M, HUARD B. Inhibition of chondroitin sulfate proteoglycans by APRIL[J]. Methods in Molecular Biology,2021,2248:43−61. [7] SHAVLOVSKAYA O, ZOLOTOVSKAYA I, PROKOFYEVA Y. Anti-inflammatory and anti-aging effects of chondroitin sulfate[J]. Psihosomatika,2020,12(5):111−116. [8] SHARMA R, KUCHE K, THAKOR P. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering[J]. Carbohydrate Polymers,2022,286:119305. doi: 10.1016/j.carbpol.2022.119305 [9] CHI Y, LIU R, LIN M, et al. A novel process to separate the eggshell membranes and eggshells via flash evaporation[J]. Food Science and Technology,2022:42. [10] ZHU L, XIONG H, HUANG X, et al. Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study[J]. Food Research International,2022,157:111266. doi: 10.1016/j.foodres.2022.111266 [11] SHI Y, RUPA P, JIANG B, et al. Hydrolysate from eggshell membrane ameliorates intestinal inflammation in mice[J]. International Journal of Molecular Sciences,2014,15(12):22728−22742. doi: 10.3390/ijms151222728 [12] 牛明福, 张婷婷, 万鹏, 等. 蛋壳内膜酶解液抑菌活性的工艺研究[J]. 食品科技,2017,42(4):78−83. [NIU M F, ZHANG T T, WAN P, et al. Antibacterial activity of eggshell membrane enzymatic hydrolysate[J]. Food Science and Technology,2017,42(4):78−83. doi: 10.13684/j.cnki.spkj.2017.04.017 [13] SHI Y, KOVACS J, JIANG B, et al. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells[J]. Journal of Functional Foods,2014,10(11):35−45. [14] ZHAO Q, ZHAO J, AHA D, et al. Separation and identification of highly efficient antioxidant peptides from eggshell membrane[J]. Antioxidants,2019,8(10):495. doi: 10.3390/antiox8100495 [15] PHILIPP C, EMIN M, BUCKOW R. Pea protein-fortified extruded snacks: Linking melt viscosity and glass transition temperature with expansion behaviour[J]. Journal of Food Engineering,2018,217:93−100. doi: 10.1016/j.jfoodeng.2017.08.022 [16] RYU G, GU B. Effects of moisture content and screw speed on physical properties of extruded soy protein isolate[J]. Journal of the Korean Society of Food Science and Nutrition,2017,46(6):751−758. [17] 胡徐登, 陈有亮, 马萍. 鸭蛋壳膜双酶水解提取黏多糖的工艺研究[J]. 中国家禽,2015,37(3):34−37. [HU X D, CHEN Y L, MA P. Optimization of extraction conditons of mucopolysaccharides from duck eggshell membrane by hydrolyzing with double enzyme[J]. China Poultry,2015,37(3):34−37. [18] JUN H I, WIESENBORN D P, KIM Y S. Antioxidant activity of phenolic compounds from canola (Brassica napus) seed[J]. Food Science and Biotechnology,2014,23(6):1753−1760. doi: 10.1007/s10068-014-0240-z [19] LI Y, JIANG B, ZHANG T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106(2):444−450. doi: 10.1016/j.foodchem.2007.04.067 [20] ZHU C, ZHANG W, ZHOU G, et al. Isolation and identification of antioxidant peptides from Jinhua ham[J]. Journal of Agricultural and Food Chemistry,2013,61(6):1265−1271. doi: 10.1021/jf3044764 [21] 张晶, 张怡一, 徐斐然, 等. 菜籽多肽体外和细胞内抗氧化性评价及氨基酸分析[J]. 食品科学,2016,37(13):36−41. [ZHANG J, ZHANG Y Y, XU F R. Antioxidant activities in vitro and in cells and amino acid composition of rapeseed peptides[J]. Food Science,2016,37(13):36−41. doi: 10.7506/spkx1002-6630-201613007 [22] 李杰, 罗志刚, 肖志刚, 等. 挤压超声联用提取米糠多糖工艺优化[J]. 农业机械学报,2013,44(3):174−179. [LI J, LUO Z G, XIAO Z G, et al. Optimization of extraction technology of rice bran polysaccharide by extrusion in conjunction with ultrasound[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(3):174−179. doi: 10.6041/j.issn.1000-1298.2013.03.032 [23] 闫征, 李双石, 杨国伟, 等. 挤压膨化预处理技术对灵芝多糖提取的影响[J]. 食品工业科技,2017,38(8):280−283. [YAN Z, LI S S, YANG G W, et al. Effect of twin-screw extrusion conditions on polysaccharide extraction from ganoderma lucidum spore powder[J]. Food Science,2017,38(8):280−283. [24] 王若兰, 岳佳, 黄南. 薏苡仁玉米果膨化制作工艺优化[J]. 食品科技,2016,41(1):130−135. [WANG R L, YUE J, HUANG N. Optimization on the puffing technology of Coix seed and corn[J]. Food Science and Technology,2016,41(1):130−135. doi: 10.13684/j.cnki.spkj.2016.01.027 [25] 于殿宇, 王彤, 王旭, 等. 挤压膨化预处理工艺优化提高大豆蛋白粉品质[J]. 农业工程学报,2018,34(4):285−292. [YU D Y, WANG T, WANG X, et al. Optimal extrusion pretreatment process improving quality of soybean protein powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(4):285−292. doi: 10.11975/j.issn.1002-6819.2018.04.035 [26] 朱文婷, 吴士筠, 杨惠, 等. 酶法提取鸡蛋壳膜中透明质酸的工艺优化[J]. 食品科技,2016,41(1):204−209. [ZHU W T, WU S J, YANG H, et al. Optimization of the process of extracting hyaluronic acid from egg shell membrane by enzymatic method[J]. Food Science and Technology,2016,41(1):204−209. [27] VO T, PHAM K, LE V, et al. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides[J]. Process Biochemistry,2020,91:374−386. doi: 10.1016/j.procbio.2020.01.007 [28] ZHANG X, ZHANG H, JIAO P, et al. Preparation and evaluation of antioxidant activities of bioactive peptides obtained from cornus officinalis[J]. Molecules,2022,27(4):1232. doi: 10.3390/molecules27041232 [29] GU L, SU Y, ZHANG M, et al. Protection of beta-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates[J]. Food Research International,2017,96:84−93. doi: 10.1016/j.foodres.2017.03.015 [30] LIANG G, CHEN W, QIE X, et al. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties[J]. Food Hydrocolloids,2020,105:105764. doi: 10.1016/j.foodhyd.2020.105764 [31] MICAEL G, RICCARDO D, VALERIA B, et al. Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels[J]. LWT-Food Science & Technology,2020,118:10884. [32] 王艳红, 张丽娜, 牛思思, 等. 亚麻籽多肽制备工艺优化及生物活性研究[J]. 食品研究与开发,2022,43(13):66−76. [WANG Y H, ZHANG L N, NIU S S, et al. Optimization of the preparation process and biological activity of flaxseed polypeptide[J]. Food Research and Development,2022,43(13):66−76. doi: 10.12161/j.issn.1005-6521.2022.13.010 [33] HORIMOTO Y, TAN R, LIM L. Enzymatic treatment of pork protein for the enhancement of iron bioavailability[J]. International Journal of Food Sciences & Nutrition,2019,70(1):41−52. [34] CHEN H, MURAMOTO K, YAMAUCHI F. Structural analysis of antioxidative peptides from soybean beta-conglycinin[J]. Journal of Agricultural and Food Chemistry,1995,43(3):574−578. doi: 10.1021/jf00051a004 -