• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

挤压膨化协同酶解工艺制备蛋壳膜多肽及其抗氧化活性和组成分析

顾璐萍 张钰 李俊华 常翠华 杨严俊 苏宇杰

顾璐萍,张钰,李俊华,等. 挤压膨化协同酶解工艺制备蛋壳膜多肽及其抗氧化活性和组成分析[J]. 食品工业科技,2022,43(23):252−258. doi:  10.13386/j.issn1002-0306.2022060043
引用本文: 顾璐萍,张钰,李俊华,等. 挤压膨化协同酶解工艺制备蛋壳膜多肽及其抗氧化活性和组成分析[J]. 食品工业科技,2022,43(23):252−258. doi:  10.13386/j.issn1002-0306.2022060043
GU Luping, ZHANG Yu, LI Junhua, et al. Analysis on Antioxidant Activity and Composition of Eggshell Membrane Peptides Prepared by Extrution and Enzymatic Hydrolysis[J]. Science and Technology of Food Industry, 2022, 43(23): 252−258. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060043
Citation: GU Luping, ZHANG Yu, LI Junhua, et al. Analysis on Antioxidant Activity and Composition of Eggshell Membrane Peptides Prepared by Extrution and Enzymatic Hydrolysis[J]. Science and Technology of Food Industry, 2022, 43(23): 252−258. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060043

挤压膨化协同酶解工艺制备蛋壳膜多肽及其抗氧化活性和组成分析

doi: 10.13386/j.issn1002-0306.2022060043
基金项目: 国家自然科学基金(31901642)。
详细信息
    作者简介:

    顾璐萍(1989−),女,博士,助理研究员,研究方向:蛋制品加工与研究,E-mail:guluping@jiangnan.edu.cn

    通讯作者:

    苏宇杰(1982−),男,博士,副教授,研究方向:蛋制品加工与研究,E-mail: suyujie@jiangnan.edu.cn

  • 中图分类号: TS253.9

Analysis on Antioxidant Activity and Composition of Eggshell Membrane Peptides Prepared by Extrution and Enzymatic Hydrolysis

  • 摘要: 本文以蛋壳膜为研究对象,采用挤压膨化协同酶解工艺制备壳膜多肽。以总氮回收率、D-葡萄糖醛酸提取量及抗氧化性为指标,确定最佳工艺条件为:挤压膨化温度140 ℃,螺杆转速100 r/min,水分含量20%,酶解时间6 h,加酶量12000 U/g,温度55 ℃。在该条件下总氮回收率达60.8%,D-葡萄糖醛酸提取量达12.4 mg/g,壳膜多肽的ABTS自由基清除率为29.46%(0.1 mg/mL),OH自由基清除率为26.58%(5 mg/mL),Fe2+螯合能力为50.25%(0.4 mg/mL),细胞抗氧化活性达65%(10 μg/mL)。相对分子质量分布结果表明壳膜多肽中主要成分为低聚肽(252~2435 Da),占81.8%。氨基酸组成分析结果表明壳膜肽中Asp和Glu含量较高,与抗氧化活性有关的氨基酸含量为44.70 g/100 g蛋白。因此,蛋壳膜多肽有潜力作为天然抗氧化剂应用于食品、保健品或化妆品领域。
  • 图  1  挤压膨化对蛋壳膜中D-葡萄糖醛酸提取量和总氮回收率的影响

    Figure  1.  Effects of extruding expansion on D-glucuronic acid extraction amount and total nitrogen recovery

    注:(a)温度;(b)转速;(c)水分含量;同一指标不同小写字母表示差异显著(P<0.05);图2~图8同。

    图  2  酶解时间对D-葡萄糖醛酸提取量和总氮回收率的影响

    Figure  2.  Effects of hydrolysis time on D-glucuronic acid extraction amount and total nitrogen recovery

    图  3  酶解时间对抗氧化活性的影响

    Figure  3.  Effects of hydrolysis time on antioxidant activity

    图  4  加酶量对D-葡萄糖醛酸提取量和总氮回收率的影响

    Figure  4.  Effects of the amount of enzyme on D-glucuronic acid extraction amount and total nitrogen recovery

    图  5  加酶量对抗氧化活性的影响

    Figure  5.  Effects of enzyme amount on antioxidant activity

    图  6  温度对D-葡萄糖醛酸提取量和总氮回收率的影响

    Figure  6.  Effects of temperature on D-glucuronic acid extraction amount and total nitrogen recovery

    图  7  温度对抗氧化活性的影响

    Figure  7.  Effects of temperature on antioxidant activity

    图  8  壳膜多肽的细胞抗氧化活性

    Figure  8.  Cellular antioxidant activity of eggshell membrane peptides

    图  9  蛋壳膜多肽分子量分布的高效液相色谱图

    Figure  9.  High performance liquid chromatography of molecular weight distribution of eggshell membrane peptides

    注:图中数字表示不同分子量对应的保留时间。

    表  1  蛋壳膜多肽的氨基酸分析

    Table  1.   Amino acid analysis of eggshell membrane polypeptide

    氨基酸蛋壳膜
    (g/100 g蛋白)
    蛋壳膜多肽
    (g/100 g蛋白)
    Asp10.03±0.0213.32±0.00
    Glu15.84±0.0014.61±0.01
    Ser5.01±0.054.73±0.02
    His3.83±0.003.24±0.02
    Gly*6.09±0.016.47±0.04
    Thr5.25±0.043.53±0.07
    Arg7.22±0.046.23±0.06
    Ala3.77±0.015.35±0.05
    Pro*6.51±0.026.35±0.03
    Tyr*2.31±0.072.82±0.05
    Cys-s3.32±0.050.26±0.06
    Val*7.97±0.048.01±0.01
    Met*4.12±0.033.66±0.00
    Phe*3.01±0.014.88±0.00
    Ile*4.47±0.024.64±0.02
    Leu*6.15±0.017.87±0.00
    Lys5.10±0.014.06±0.03
    疏水性氨基酸40.6344.70
    注:“*”表示疏水性氨基酸。
    下载: 导出CSV
  • [1] KULSHRESHTHA G, DIEP T, HUDSON H A, et al. High value applications and current commercial market for eggshell membranes and derived bioactives[J]. Food Chemistry,2022,382:132270. doi:  10.1016/j.foodchem.2022.132270
    [2] BALAZ M. Eggshell membrane biomaterial as a platform for applications in materials science[J]. Acta Biomaterialia,2014,10(9):3827−3843. doi:  10.1016/j.actbio.2014.03.020
    [3] KAWEEWONG K, GARNJANAGOONCHORN W, JIRAPAKKUL W, et al. Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach[J]. The Protein Journal,2013,32(4):297−308. doi:  10.1007/s10930-013-9487-0
    [4] SHI Y, ZHOU K, LI D, et al. Avian eggshell membrane as a novel biomaterial: A review[J]. Foods,2021,10(9):2178. doi:  10.3390/foods10092178
    [5] ANDRESSA R, JANDLER S, MAURÍCIO Z, et al. Hyaluronic acid production and purification techniques: A review[J]. Preparative Biochemistry & Biotechnology, 2022. https://doi.org/10.1080/10826068.2022.2042822.
    [6] AHMED M, HUARD B. Inhibition of chondroitin sulfate proteoglycans by APRIL[J]. Methods in Molecular Biology,2021,2248:43−61.
    [7] SHAVLOVSKAYA O, ZOLOTOVSKAYA I, PROKOFYEVA Y. Anti-inflammatory and anti-aging effects of chondroitin sulfate[J]. Psihosomatika,2020,12(5):111−116.
    [8] SHARMA R, KUCHE K, THAKOR P. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering[J]. Carbohydrate Polymers,2022,286:119305. doi:  10.1016/j.carbpol.2022.119305
    [9] CHI Y, LIU R, LIN M, et al. A novel process to separate the eggshell membranes and eggshells via flash evaporation[J]. Food Science and Technology,2022:42.
    [10] ZHU L, XIONG H, HUANG X, et al. Identification and molecular mechanisms of novel antioxidant peptides from two sources of eggshell membrane hydrolysates showing cytoprotection against oxidative stress: A combined in silico and in vitro study[J]. Food Research International,2022,157:111266. doi:  10.1016/j.foodres.2022.111266
    [11] SHI Y, RUPA P, JIANG B, et al. Hydrolysate from eggshell membrane ameliorates intestinal inflammation in mice[J]. International Journal of Molecular Sciences,2014,15(12):22728−22742. doi:  10.3390/ijms151222728
    [12] 牛明福, 张婷婷, 万鹏, 等. 蛋壳内膜酶解液抑菌活性的工艺研究[J]. 食品科技,2017,42(4):78−83. [NIU M F, ZHANG T T, WAN P, et al. Antibacterial activity of eggshell membrane enzymatic hydrolysate[J]. Food Science and Technology,2017,42(4):78−83. doi:  10.13684/j.cnki.spkj.2017.04.017
    [13] SHI Y, KOVACS J, JIANG B, et al. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells[J]. Journal of Functional Foods,2014,10(11):35−45.
    [14] ZHAO Q, ZHAO J, AHA D, et al. Separation and identification of highly efficient antioxidant peptides from eggshell membrane[J]. Antioxidants,2019,8(10):495. doi:  10.3390/antiox8100495
    [15] PHILIPP C, EMIN M, BUCKOW R. Pea protein-fortified extruded snacks: Linking melt viscosity and glass transition temperature with expansion behaviour[J]. Journal of Food Engineering,2018,217:93−100. doi:  10.1016/j.jfoodeng.2017.08.022
    [16] RYU G, GU B. Effects of moisture content and screw speed on physical properties of extruded soy protein isolate[J]. Journal of the Korean Society of Food Science and Nutrition,2017,46(6):751−758.
    [17] 胡徐登, 陈有亮, 马萍. 鸭蛋壳膜双酶水解提取黏多糖的工艺研究[J]. 中国家禽,2015,37(3):34−37. [HU X D, CHEN Y L, MA P. Optimization of extraction conditons of mucopolysaccharides from duck eggshell membrane by hydrolyzing with double enzyme[J]. China Poultry,2015,37(3):34−37.
    [18] JUN H I, WIESENBORN D P, KIM Y S. Antioxidant activity of phenolic compounds from canola (Brassica napus) seed[J]. Food Science and Biotechnology,2014,23(6):1753−1760. doi:  10.1007/s10068-014-0240-z
    [19] LI Y, JIANG B, ZHANG T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106(2):444−450. doi:  10.1016/j.foodchem.2007.04.067
    [20] ZHU C, ZHANG W, ZHOU G, et al. Isolation and identification of antioxidant peptides from Jinhua ham[J]. Journal of Agricultural and Food Chemistry,2013,61(6):1265−1271. doi:  10.1021/jf3044764
    [21] 张晶, 张怡一, 徐斐然, 等. 菜籽多肽体外和细胞内抗氧化性评价及氨基酸分析[J]. 食品科学,2016,37(13):36−41. [ZHANG J, ZHANG Y Y, XU F R. Antioxidant activities in vitro and in cells and amino acid composition of rapeseed peptides[J]. Food Science,2016,37(13):36−41. doi:  10.7506/spkx1002-6630-201613007
    [22] 李杰, 罗志刚, 肖志刚, 等. 挤压超声联用提取米糠多糖工艺优化[J]. 农业机械学报,2013,44(3):174−179. [LI J, LUO Z G, XIAO Z G, et al. Optimization of extraction technology of rice bran polysaccharide by extrusion in conjunction with ultrasound[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(3):174−179. doi:  10.6041/j.issn.1000-1298.2013.03.032
    [23] 闫征, 李双石, 杨国伟, 等. 挤压膨化预处理技术对灵芝多糖提取的影响[J]. 食品工业科技,2017,38(8):280−283. [YAN Z, LI S S, YANG G W, et al. Effect of twin-screw extrusion conditions on polysaccharide extraction from ganoderma lucidum spore powder[J]. Food Science,2017,38(8):280−283.
    [24] 王若兰, 岳佳, 黄南. 薏苡仁玉米果膨化制作工艺优化[J]. 食品科技,2016,41(1):130−135. [WANG R L, YUE J, HUANG N. Optimization on the puffing technology of Coix seed and corn[J]. Food Science and Technology,2016,41(1):130−135. doi:  10.13684/j.cnki.spkj.2016.01.027
    [25] 于殿宇, 王彤, 王旭, 等. 挤压膨化预处理工艺优化提高大豆蛋白粉品质[J]. 农业工程学报,2018,34(4):285−292. [YU D Y, WANG T, WANG X, et al. Optimal extrusion pretreatment process improving quality of soybean protein powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(4):285−292. doi:  10.11975/j.issn.1002-6819.2018.04.035
    [26] 朱文婷, 吴士筠, 杨惠, 等. 酶法提取鸡蛋壳膜中透明质酸的工艺优化[J]. 食品科技,2016,41(1):204−209. [ZHU W T, WU S J, YANG H, et al. Optimization of the process of extracting hyaluronic acid from egg shell membrane by enzymatic method[J]. Food Science and Technology,2016,41(1):204−209.
    [27] VO T, PHAM K, LE V, et al. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides[J]. Process Biochemistry,2020,91:374−386. doi:  10.1016/j.procbio.2020.01.007
    [28] ZHANG X, ZHANG H, JIAO P, et al. Preparation and evaluation of antioxidant activities of bioactive peptides obtained from cornus officinalis[J]. Molecules,2022,27(4):1232. doi:  10.3390/molecules27041232
    [29] GU L, SU Y, ZHANG M, et al. Protection of beta-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates[J]. Food Research International,2017,96:84−93. doi:  10.1016/j.foodres.2017.03.015
    [30] LIANG G, CHEN W, QIE X, et al. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties[J]. Food Hydrocolloids,2020,105:105764. doi:  10.1016/j.foodhyd.2020.105764
    [31] MICAEL G, RICCARDO D, VALERIA B, et al. Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels[J]. LWT-Food Science & Technology,2020,118:10884.
    [32] 王艳红, 张丽娜, 牛思思, 等. 亚麻籽多肽制备工艺优化及生物活性研究[J]. 食品研究与开发,2022,43(13):66−76. [WANG Y H, ZHANG L N, NIU S S, et al. Optimization of the preparation process and biological activity of flaxseed polypeptide[J]. Food Research and Development,2022,43(13):66−76. doi:  10.12161/j.issn.1005-6521.2022.13.010
    [33] HORIMOTO Y, TAN R, LIM L. Enzymatic treatment of pork protein for the enhancement of iron bioavailability[J]. International Journal of Food Sciences & Nutrition,2019,70(1):41−52.
    [34] CHEN H, MURAMOTO K, YAMAUCHI F. Structural analysis of antioxidative peptides from soybean beta-conglycinin[J]. Journal of Agricultural and Food Chemistry,1995,43(3):574−578. doi:  10.1021/jf00051a004
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  43
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回