Process Optimization of the Method of Ionic Liquid Assisted Ultrasonic Extraction of Cannabidiol from Industrial Hemp Leaves
-
摘要: 为提高工业大麻的经济价值,本研究以工业大麻叶为原料,利用离子液体辅助超声法提取具有药用价值的活性成分大麻二酚(CBD),并对提取工艺进行优化。本研究以CBD得率为指标,先从16种咪唑类离子液体中筛选出[C8mim]NTF2为最佳提取溶剂,再对影响离子液体辅助超声法提取CBD得率的6个因素(超声功率、超声温度、超声时间、乙醇溶液浓度、离子液体摩尔浓度和液料比)进行单因素实验,并确定乙醇浓度为65%,离子液体摩尔浓度为0.3 mol/L(65%乙醇溶液配制)。在此结果基础上,利用Plackett-Burman试验设计筛选出4个显著因素(超声功率、超声温度、超声时间和液料比)。并利用响应面Box-Behnken试验设计进一步优化提取工艺。确定CBD显著因素的最佳提取工艺条件为:超声功率280 W,超声温度50 ℃,超声时间62.5 min,液料比25 mL/g。在上述条件下,离子液体[C8mim]NTF2提取CBD得率为7.66%±0.2%、甲醇的CBD得率为6.42%±0.3%,65%乙醇溶液的CBD得率为5.81%±0.2%。即CBD的提取能力,离子液体[C8mim]NTF2>甲醇>65%乙醇溶液。通过CBD降解实验,表明离子液体[C8mim]NTF2的CBD降解率为16.40%±0.3%,小于甲醇的24.65%±0.6%和65%乙醇溶液的32.88%±0.5%,结果表明65%乙醇溶液加入离子液体[C8mim]NTF2后,既可以降低CBD的降解率,又可提高CBD的得率。本研究证明了离子液体既是 CBD的保护剂,也是CBD的优良提取溶剂,研发了离子液体辅助超声法提取CBD工艺,为工业大麻的开发利用提供数据支持。Abstract: In order to improve the economic value of industrial hemp, an active ingredient cannabinoid (CBD) with medicinal value from industrial hemp leaves was extracted by ionic liquid assisted ultrasonic method and the extraction process was optimized. In this study, [C8mim]NTF2 was selected as the best extraction solvent from 16 kinds of imidazole ionic liquids based on the yield of CBD. Then single factor experiment was conducted on six factors affecting the yield of CBD extraction by ionic liquid assisted ultrasonic method. The six factors included: Ultrasonic power, ultrasonic temperature, ultrasonic time, ethanol concentration, molar concentration of ionic liquid and liquid material ratio. And the ethanol concentration was 65%. The ionic liquid molar concentration was 0.3 mol/L (65% ethanol solution preparation). On the basis of these results, four significant factors (ultrasonic power, ultrasonic temperature, ultrasonic time and liquid material ratio) were screened out by Plackett-Burman experimental design. The extraction process was further optimized by response surface Box-Behnken experimental design. The optimum extraction process conditions of CBD significant factors were as follows: Ultrasonic power 280 W, ultrasonic temperature 50 ℃, ultrasonic time 62.5 min, liquid material ratio 25 mL/g. Under the above conditions, the yield of CBD extracted by ionic liquid [C8mim]NTF2 was 7.66%±0.2%, the yield of CBD extracted by methanol was 6.42%±0.3%, and the yield of CBD extracted by 65% ethanol solution was 5.81%±0.2%. The extraction ability of CBD was ionic liquid [C8mim]NTF2>methanol>65% ethanol solution. The CBD degradation experiment showed that the CBD degradation rate of ionic liquid [C8mim]NTF2 was 16.40%±0.3%, which was smaller than that of methanol (24.65%±0.6%) and 65% ethanol solution (32.88%±0.5%). The results showed that adding 65% ethanol solution into ionic liquid [C8mim]NTF2 could not only reduce the degradation rate of CBD, but also increase the yield of CBD. This study proved that ionic liquid was not only a protective agent for CBD, but also an excellent solvent for CBD extraction. The technology of extracting CBD by ionic liquid assisted ultrasonic method was developed, which provided data support for the development and utilization of industrial hemp CBD.
-
表 1 因素与水平编码表
Table 1. Code of factors and levels
水平 因素 A(W) B(℃) C(min) D(%) E(mol/L) F(mL/g) −1 200 30 40 55 0.1 15 +1 280 50 60 65 0.3 25 表 2 因素与水平编码表
Table 2. Code of factors and levels
水平 因素 X1(W) X2(℃) X3(min) X4(mL/g) −1 240 40 50 20 0 280 50 60 25 +1 320 60 70 30 表 3 离子液体的筛选
Table 3. Screening of ionic liquids
序号 名称 CBD得率(%) 误差 1 [C4mim]NTF2 3.15 ±0.11 2 [C6mim]NTF2 4.63 ±0.13 3 [C8mim]NTF2 5.15 ±0.14 4 [C10mim]NTF2 3.89 ±0.10 5 [C4mim]PF6 4.31 ±0.09 6 [C6mim]PF6 2.99 ±0.05 7 [C8mim]PF6 3.23 ±0.08 8 [C10mim]PF6 2.91 ±0.05 9 [C4mim]BF4 4.43 ±0.13 10 [C6mim]BF4 4.30 ±0.10 11 [C8mim]BF4 3.90 ±0.09 12 [C10mim]BF4 3.58 ±0.07 13 [C4mim]Br 3.19 ±0.07 14 [C6mim]Br 2.83 ±0.04 15 [C8mim]Br 3.62 ±0.08 16 [C10mim]Br 3.24 ±0.08 表 4 Plackett-Burman试验设计及响应值
Table 4. Plackett-Burman test design and results
试验号 A B C D E F Y1(%) 1 −1 +1 +1 +1 −1 −1 5.65±0.17 2 −1 +1 −1 +1 +1 −1 4.53±0.19 3 +1 −1 +1 +1 −1 +1 6.76±0.22 4 −1 −1 +1 −1 +1 +1 6.00±0.11 5 +1 −1 −1 −1 +1 −1 4.40±0.15 6 +1 +1 +1 −1 −1 −1 7.26±0.16 7 −1 +1 +1 −1 +1 +1 7.26±0.15 8 +1 −1 +1 +1 +1 −1 7.08±0.14 9 −1 −1 −1 +1 −1 +1 4.38±0.05 10 −1 −1 −1 −1 −1 −1 3.21±0.06 11 +1 +1 −1 −1 −1 +1 6.96±0.14 12 +1 +1 −1 +1 +1 +1 6.81±0.13 表 5 Plackett-Burman试验设计方差分析
Table 5. ANOVA of Plackett-Burman test design
变量 平方和 自由度 均方 F值 P 值 显著性 模型 20.54 6 3.42 17.59 0.0032 ** A 5.66 1 5.66 29.08 0.0030 ** B 3.67 1 3.67 18.88 0.0074 * C 7.87 1 7.87 40.46 0.0014 ** D 1.2×10−3 1 1.2×10−3 6.167×10−3 0.9405 E 0.29 1 0.29 1.48 0.2778 F 3.04 1 3.04 15.62 0.0108 * 残差 0.97 5 0.19 总差 21.51 11 R2 0.9548 R2Adj 0.9005 注:*表示差异显著(P<0.05);**表示差异极显著(P<0.01);表7同。 表 6 Box-Behnken设计方案及结果
Table 6. Design and results of Box-Behnken
试验号 水平编码 Y1(%) X1 X2 X3 X4 1 +1 0 −1 0 6.57±0.22 2 0 0 −1 −1 5.69±0.18 3 0 0 0 0 7.66±0.15 4 0 0 +1 +1 6.24±0.23 5 0 0 0 0 7.61±0.28 6 0 +1 0 +1 6.23±0.26 7 +1 +1 0 0 6.47±0.17 8 −1 0 +1 0 6.69±0.12 9 0 −1 −1 0 6.38±0.21 10 −1 0 0 −1 6.25±0.08 11 0 0 0 0 7.57±0.14 12 −1 0 −1 0 5.54±0.15 13 0 0 +1 −1 6.95±0.14 14 0 0 0 0 7.58±0.17 15 +1 0 0 +1 6.62±0.18 16 0 +1 +1 0 6.92±0.19 17 −1 −1 0 0 6.63±0.22 18 +1 0 0 −1 6.54±0.23 19 −1 +1 0 0 5.83±0.21 20 0 −1 0 −1 6.13±0.25 21 0 +1 −1 0 5.74±028 22 +1 −1 0 0 5.99±0.21 23 0 −1 0 +1 6.18±0.13 24 0 0 0 0 7.88±0.12 25 0 −1 +1 0 6.47±0.23 26 +1 0 +1 0 6.86±0.18 27 −1 0 0 +1 6.36±0.16 28 0 0 −1 +1 6.91±0.14 29 0 +1 0 −1 5.65±0.15 表 7 方差分析结果
Table 7. ANOVA of test results
来源 平方和 自由度 均差 F值 P值 显著性 模型 11.01 14 0.79 21.60 < 0.0001 ** X1 0.26 1 0.26 7.01 0.0191 * X2 0.074 1 0.074 2.02 0.1768 X3 0.91 1 0.91 24.93 0.0002 ** X4 0.15 1 0.15 4.05 0.0638 X1X2 0.41 1 0.41 11.25 0.0047 ** X1X3 0.18 1 0.18 5.08 0.0408 * X1X4 2.25×10−4 1 2.25×10−4 6.181×10−3 0.9384 X2X3 0.30 1 0.30 8.16 0.0127 * X2X4 0.070 1 0.070 1.93 0.1865 X3X4 0.93 1 0.93 25.58 0.0002 ** X12 2.44 1 2.44 66.94 < 0.0001 ** X22 4.46 1 4.46 122.51 < 0.0001 ** X32 1.87 1 1.87 51.32 < 0.0001 ** X42 3.07 1 3.07 84.33 < 0.0001 ** 残差 0.51 14 0.036 失拟项 0.44 10 0.044 2.72 0.1739 不显著 纯误差 0.065 4 0.016 总离差 11.52 28 R2 0.9557 R2Adj 0.9115 -
[1] DAS L, LI W, DODGE L A, et al. Comparative evaluation of industrial hemp cultivars: Agronomical practices, feedstock characterization and potential for biofuels and bioproducts[J]. ACS Sustainable Chemistry & Engineering,2020,8(16):6200−6210. [2] GUNNARSSON I B, KUGLARZ M, KARAKASHEV D, et al. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)[J]. Bioresource Technology,2015,182:58−66. doi: 10.1016/j.biortech.2015.01.126 [3] HARTSEL J A, EADES J, HICKORY B, et al. Cannabis sativa and hemp[J]. Nutraceuticals,2016:735−754. [4] BURKHARD H, ROBERT R. Anti-tumour actions of cannabinoids[J]. British Journal of Pharmacology,2019,176(10):1384−1394. doi: 10.1111/bph.14426 [5] MARCUS S D. Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources[J]. Economic Botany,2003,57(4):545−558. doi: 10.1663/0013-0001(2003)057[0545:TLIHCS]2.0.CO;2 [6] GRASSA C J, WEIBLEN G D, WENGER J P, et al. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana[J]. New Phytologist,2021,230(4):1665−1679. doi: 10.1111/nph.17243 [7] WANG Y, MUKHOPADHYAY P, CAO Z, et al. 201-Cannabidiol protects against chronic plus binge alcohol induced liver injury by modulating neutrophil infiltration, E selectin, inflammation and oxidative/nitrative stress[J]. Free Radical Biology and Medicine,2014,76:S88. [8] WIRTH P W, WATSON E S, ELSOHLY M, et al. Anti-inflammatory properties of cannabichromene[J]. Life Sciences,1980,26(23):1991−1995. [9] HUBER S, HARDER M, FUNCK K, et al. Novel room temperature ionic liquid for liquid-phase microextraction of cannabidiol from natural cosmetics[J]. Separations,2020,7(3):45. doi: 10.3390/separations7030045 [10] 李焰梅, 郝丹, 蒋献. 大麻二酚在皮肤科的研究进展[J]. 中国皮肤性病学杂志,2019,33(10):1202−1205. [LI Yanmei, HAO Dan, JIANG Xian. Research progress of cannabidiol in dermatology[J]. Chin J Derm Venereol,2019,33(10):1202−1205. doi: 10.13735/j.cjdv.1001-7089.201901008 [11] 刘凯, 张静, 何媛, 等. 大麻二酚临床疗效及递送系统研究进展[J]. 沈阳医科大学学报,2021,38(12):1361−1372. [LIU Kai, ZHANG Jing, HE Yuan, et al. Research progress on clinical efficacy and delivery system of cannabidiol[J]. Journal of Shenyang Pharmaceutical University,2021,38(12):1361−1372. [12] BOEHNKE K F, GAGNIER J J, MATALLANA L, et al. Substituting cannabidiol for opioids and pain medications among individuals with fibromyalgia: A large online survey[J]. The Journal of Pain,2021,22(11):1418−1428. doi: 10.1016/j.jpain.2021.04.011 [13] MOLTKE J, HINDOCHA C. Reasons for cannabidiol use: A cross-sectional study of CBD users, focusing on self-perceived stress, anxiety, and sleep problems[J]. Journal of Cannabis Research,2021,3(1):5. doi: 10.1186/s42238-021-00061-5 [14] 高哲, 张志军, 李晓君, 等. 火麻叶中大麻二酚的热回流法提取工艺研究[J]. 中国油脂,2019,44(3):107−111. [GAO Zhe, ZHANG Zhijun, LI Xiaojun, et al. Hot reflux extraction of cannabidiol from hemp leaves[J]. China Oils and Fats,2019,44(3):107−111. doi: 10.3969/j.issn.1003-7969.2019.03.023 [15] LEIMAN K, COLOMO L, ARMENTA S, et al. Fast extraction of cannabinoids in marijuana samples by using hard-cap espresso machines[J]. Talanta,2018,190:321−326. doi: 10.1016/j.talanta.2018.08.009 [16] DRINI Z, VLADI J, KOREN A, et al. Microwave-assisted extraction of cannabinoids and antioxidants from Cannabis sativa aerial parts and process modeling[J]. Journal of Chemical Technology & Biotechnology,2020,95(3):831−839. [17] GRIJO D R, VIEITEZ O I A, CARDOZO F L. Supercritical extraction strategies using CO2 and ethanol to obtain cannabinoid compounds from Cannabis hybrid flowers[J]. Journal of CO2 Utilization,2018,28:174−180. doi: 10.1016/j.jcou.2018.09.022 [18] HAN G, ZHANG D, KONG C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting[J]. Chemical Engineering Journal,2022,437:135482. doi: 10.1016/j.cej.2022.135482 [19] ALAYOUBI R, MEHMOOD N, HUSSON E, et al. Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield[J]. Renewable Energy,2020,145:1808−1816. doi: 10.1016/j.renene.2019.07.091 [20] PENG L Q, YU W Y, XU J J, et al. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria[J]. Food Chemistry,2018,239:1075−1084. doi: 10.1016/j.foodchem.2017.07.031 [21] FAN C, LI N, CAO X, et al. Ionic liquid-modified countercurrent chromatographic isolation of high-purity delphinidin-3-rutinoside from eggplant peel[J]. Journal of Food Science,2020,85(4):1132−1139. doi: 10.1111/1750-3841.15089 [22] 曾理. 化学溶剂离子液体研究进展[J]. 广州化工,2016,44(1):56−58. [ZENG Li. Research progress on application of ionic liquids[J]. Guangzhou Chemical Industry,2016,44(1):56−58. doi: 10.3969/j.issn.1001-9677.2016.01.023 [23] XU H, HAN Z, ZHANG D, et al. Theoretical elucidation of the dual role of [HMIM]BF4 ionic liquid as catalyst and extractant in the oxidative desulfurization of dibenzothiophene[J]. Journal of Molecular Catalysis A Chemical,2015,398:297−303. doi: 10.1016/j.molcata.2014.12.018 [24] MAZID R R, DIVISEKERA U, YANG W, et al. Biological stability and activity of siRNA in ionic liquids[J]. Chemical Communications,2014,50(88):13457−13460. doi: 10.1039/C4CC05086J [25] STOLTE S, ABDULKARIM S, ARNING J, et al. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds[J]. Green Chemistry,2008,10(2):214−224. doi: 10.1039/B713095C [26] 次仁曲宗, 罗禹, 屈晓宇, 等. 黑龙江汉麻叶中化学成分研究与大麻二酚(CBD)含量测定[J]. 四川大学学报(自然科学版),2019,56(5):957−962. [CIREN Quzong, LUO Yu, QU Xiaoyu, et al. Study on chemical constituents and determination of cannabidiol (CBD) in hemp leaves of Heilongjiang Province[J]. Journal of Sichuan University (Natural Science Edition),2019,56(5):957−962. [27] 廖钦洪, 李会合, 刘奕清, 等. 碳酸钾活化剂法制备稻壳活性炭的工艺优化[J]. 农业工程学报,2015,31(11):256−261. [LIAO Qinhong, LI Huihe, LIU Yiqing, et al. Optimizing preparation of activated carbons from rice husk by K2CO3 chemical activation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(11):256−261. doi: 10.11975/j.issn.1002-6819.2015.11.037 [28] WU X, ZHANG L, SUI A, et al. Optimization of fermentation process parameters for ginsenoside Re bioconversion by Plackett-Burman and Box-Benhnken design[J]. Matec Web of Conferences,2018,238(4):04001. [29] CAI C, YU W, WANG C, et al. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin[J]. Journal of Molecular Liquids,2019,287:110957. doi: 10.1016/j.molliq.2019.110957 [30] TOMA K, BURSOVA M, HORSLEY R, et al. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids[J]. Journal of Cleaner Production,2018,278:391−396. [31] AHMED F E. Analysis of polychlorinated biphenyls in food products[J]. TrAC Trends in Analytical Chemistry,2003,22(3):170−185. doi: 10.1016/S0165-9936(03)00305-4 [32] 邓永, 刘东红. 超声处理对石榴皮多酚提取效果的影响[J]. 食品科学技术学报,2021,39(1):65−69,77. [DENG Yong, LIU Donghong. Effects of ultrasound treatment on extraction of pomegrante peel polyphenols[J]. Journal of Food Science and Technology,2021,39(1):65−69,77. doi: 10.12301/j.issn.2095-6002.2021.01.007 [33] SEOUD O, SILVA V, POSSIDONIO S, et al. Microwave-assisted derivatization of cellulose, 2-the surprising effect of the structure of ionic liquids on the dissolution and acylation of the biopolymer[J]. Macromolecular Chemistry & Physics,2011,212(23):2541−2550. [34] 王崑仑, 李家磊, 谢学军, 等. 纤维素酶辅助超声法提取葛根多糖及其DPPH自由基清除能力[J]. 食品工业科技,2019,40(20):174−179, 187. [WANG Kunlun, LI Jialei, XIE Xuejun, et al. The research of cellulase assisted ultrasound extraction of pueraria polysaccharides and DPPH antioxidant capacity[J]. Science and Technology of Food Industry,2019,40(20):174−179, 187. doi: 10.13386/j.issn1002-0306.2019.20.028 [35] 于殿宇, 王彤, 唐洪琳, 等. 挤压法制备富钙强化重组大米的工艺优化及其结构表征[J]. 农业工程学报,2018,34(22):291−298. [YU Dianyu, WANG Tong, TANG Honglin, et al. Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018,34(22):291−298. doi: 10.11975/j.issn.1002-6819.2018.22.036 [36] SHA Ruyi, WU Dongyang, WANG Wenxing, et al. Application of Plackett-Burman design in screening the significant parameters in extraction of phytic acid from defatted rice bran by acetic acid[J]. Waste & Biomass Valorization,2019,10(4):1003−1011. [37] CHEN Fengli, ZHANG Qiang, FEI Shimin, et al. Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett-Burman design and Box-Behnken design[J]. Ultrasonics Sonochemistry, 2017, 35(Pt A): 161−175. [38] FAN Yunchang, CHEN Meilan, CHAO Shentu, et al. Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography[J]. Analytica Chimica Acta,2009,650(1):65−69. doi: 10.1016/j.aca.2009.03.025 [39] 刘师师. 喜树碱和盐酸小檗碱在离子液体中的溶解性能及应用研究[D]. 南宁: 广西大学, 2015LIU Shishi. Reasearch on the solubility and application of camptothecin and berberine chloride in several ionic liquids[D]. Nanning: Guangxi University, 2015. [40] CAI Changyong, WANG Yani, YI Yongjian, et al. Ionic liquids simultaneously used as accelerants, stabilizers and extractants for improving the cannabidiol extraction from industrial hemp[J]. Industrial Crops & Products,2020,155:112796. -