• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

离子液体辅助超声法提取工业大麻叶中大麻二酚的工艺优化

王崑仑 管立军 高扬 严松 李家磊 李波 周野

王崑仑,管立军,高扬,等. 离子液体辅助超声法提取工业大麻叶中大麻二酚的工艺优化[J]. 食品工业科技,2023,44(3):203−212. doi:  10.13386/j.issn1002-0306.2022050272
引用本文: 王崑仑,管立军,高扬,等. 离子液体辅助超声法提取工业大麻叶中大麻二酚的工艺优化[J]. 食品工业科技,2023,44(3):203−212. doi:  10.13386/j.issn1002-0306.2022050272
WANG Kunlun, GUAN Lijun, GAO Yang, et al. Process Optimization of the Method of Ionic Liquid Assisted Ultrasonic Extraction of Cannabidiol from Industrial Hemp Leaves[J]. Science and Technology of Food Industry, 2023, 44(3): 203−212. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050272
Citation: WANG Kunlun, GUAN Lijun, GAO Yang, et al. Process Optimization of the Method of Ionic Liquid Assisted Ultrasonic Extraction of Cannabidiol from Industrial Hemp Leaves[J]. Science and Technology of Food Industry, 2023, 44(3): 203−212. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050272

离子液体辅助超声法提取工业大麻叶中大麻二酚的工艺优化

doi: 10.13386/j.issn1002-0306.2022050272
基金项目: 黑龙江省省属科研院所科研业务费(CZKYF2022-1-B021,CZKYF2021B001);黑龙江省现代农业产业技术协同创新体系(YYM19STX-17);黑龙江省农业科学院“农业科技创新跨越工程”专项(MLCX-22)。
详细信息
    作者简介:

    王崑仑(1982−),男,博士,助理研究员,研究方向:植物有效成分,食品工程与营养,E-mail:white19820708@163.com

    通讯作者:

    管立军(1983−),男,博士,副研究员,研究方向:植物有效成分,食品工程与营养,E-mail:qqaipphh@sina.com

  • 中图分类号: TS255.1

Process Optimization of the Method of Ionic Liquid Assisted Ultrasonic Extraction of Cannabidiol from Industrial Hemp Leaves

  • 摘要: 为提高工业大麻的经济价值,本研究以工业大麻叶为原料,利用离子液体辅助超声法提取具有药用价值的活性成分大麻二酚(CBD),并对提取工艺进行优化。本研究以CBD得率为指标,先从16种咪唑类离子液体中筛选出[C8mim]NTF2为最佳提取溶剂,再对影响离子液体辅助超声法提取CBD得率的6个因素(超声功率、超声温度、超声时间、乙醇溶液浓度、离子液体摩尔浓度和液料比)进行单因素实验,并确定乙醇浓度为65%,离子液体摩尔浓度为0.3 mol/L(65%乙醇溶液配制)。在此结果基础上,利用Plackett-Burman试验设计筛选出4个显著因素(超声功率、超声温度、超声时间和液料比)。并利用响应面Box-Behnken试验设计进一步优化提取工艺。确定CBD显著因素的最佳提取工艺条件为:超声功率280 W,超声温度50 ℃,超声时间62.5 min,液料比25 mL/g。在上述条件下,离子液体[C8mim]NTF2提取CBD得率为7.66%±0.2%、甲醇的CBD得率为6.42%±0.3%,65%乙醇溶液的CBD得率为5.81%±0.2%。即CBD的提取能力,离子液体[C8mim]NTF2>甲醇>65%乙醇溶液。通过CBD降解实验,表明离子液体[C8mim]NTF2的CBD降解率为16.40%±0.3%,小于甲醇的24.65%±0.6%和65%乙醇溶液的32.88%±0.5%,结果表明65%乙醇溶液加入离子液体[C8mim]NTF2后,既可以降低CBD的降解率,又可提高CBD的得率。本研究证明了离子液体既是 CBD的保护剂,也是CBD的优良提取溶剂,研发了离子液体辅助超声法提取CBD工艺,为工业大麻的开发利用提供数据支持。
  • 图  1  各单因素对CBD得率的影响

    Figure  1.  Effect of each single factor on CBD yield

    注:同一指标不同小写字母表示差异显著(P<0.05),图7图8同。

    图  2  6因素对CBD得率影响的帕累托图

    Figure  2.  Pareto chart of the effects of six variables on CBD yield

    图  3  超声功率与超声温度交互作用对CBD得率的影响

    Figure  3.  Effect of interaction of ultrasonic power and ultrasonic temperature on CBD yield

    图  4  超声功率和超声时间交互作用对CBD得率的影响

    Figure  4.  Effect of interaction of ultrasonic power and ultrasonic time on CBD yield

    图  5  超声温度和超声时间交互作用对CBD得率的影响

    Figure  5.  Effect of interaction of ultrasonic temperature and ultrasonic time on CBD yield

    图  6  超声时间和液料比交互作用对CBD得率的影响

    Figure  6.  Effect of interaction of ultrasonic time and liquid material ratio on CBD yield

    图  7  不同溶剂提取对CBD得率的影响

    Figure  7.  Effect of different solvent extraction on CBD yield

    图  8  不同溶剂提取对CBD降解率的影响

    Figure  8.  Effect of different solvent extraction on CBD degradation rate

    表  1  因素与水平编码表

    Table  1.   Code of factors and levels

    水平因素
    A(W)B(℃)C(min)D(%)E(mol/L)F(mL/g)
    −12003040550.115
    +12805060650.325
    下载: 导出CSV

    表  2  因素与水平编码表

    Table  2.   Code of factors and levels

    水平因素
    X1(W)X2(℃)X3(min)X4(mL/g)
    −1240405020
    0280506025
    +1320607030
    下载: 导出CSV

    表  3  离子液体的筛选

    Table  3.   Screening of ionic liquids

    序号名称CBD得率(%)误差
    1[C4mim]NTF23.15±0.11
    2[C6mim]NTF24.63±0.13
    3[C8mim]NTF25.15±0.14
    4[C10mim]NTF23.89±0.10
    5[C4mim]PF64.31±0.09
    6[C6mim]PF62.99±0.05
    7[C8mim]PF63.23±0.08
    8[C10mim]PF62.91±0.05
    9[C4mim]BF44.43±0.13
    10[C6mim]BF44.30±0.10
    11[C8mim]BF43.90±0.09
    12[C10mim]BF43.58±0.07
    13[C4mim]Br3.19±0.07
    14[C6mim]Br2.83±0.04
    15[C8mim]Br3.62±0.08
    16[C10mim]Br3.24±0.08
    下载: 导出CSV

    表  4  Plackett-Burman试验设计及响应值

    Table  4.   Plackett-Burman test design and results

    试验号ABCDEFY1(%)
    1−1+1+1+1−1−15.65±0.17
    2−1+1−1+1+1−14.53±0.19
    3+1−1+1+1−1+16.76±0.22
    4−1−1+1−1+1+16.00±0.11
    5+1−1−1−1+1−14.40±0.15
    6+1+1+1−1−1−17.26±0.16
    7−1+1+1−1+1+17.26±0.15
    8+1−1+1+1+1−17.08±0.14
    9−1−1−1+1−1+14.38±0.05
    10−1−1−1−1−1−13.21±0.06
    11+1+1−1−1−1+16.96±0.14
    12+1+1−1+1+1+16.81±0.13
    下载: 导出CSV

    表  5  Plackett-Burman试验设计方差分析

    Table  5.   ANOVA of Plackett-Burman test design

    变量平方和自由度均方FP显著性
    模型20.5463.4217.590.0032**
    A5.6615.6629.080.0030**
    B3.6713.6718.880.0074*
    C7.8717.8740.460.0014**
    D1.2×10−311.2×10−36.167×10−30.9405
    E0.2910.291.480.2778
    F3.0413.0415.620.0108*
    残差0.9750.19
    总差21.5111
    R20.9548
    R2Adj0.9005
    注:*表示差异显著(P<0.05);**表示差异极显著(P<0.01);表7同。
    下载: 导出CSV

    表  6  Box-Behnken设计方案及结果

    Table  6.   Design and results of Box-Behnken

    试验号水平编码Y1(%)
    X1X2X3X4
    1+10−106.57±0.22
    200−1−15.69±0.18
    300007.66±0.15
    400+1+16.24±0.23
    500007.61±0.28
    60+10+16.23±0.26
    7+1+1006.47±0.17
    8−10+106.69±0.12
    90−1−106.38±0.21
    10−100−16.25±0.08
    1100007.57±0.14
    12−10−105.54±0.15
    1300+1−16.95±0.14
    1400007.58±0.17
    15+100+16.62±0.18
    160+1+106.92±0.19
    17−1−1006.63±0.22
    18+100−16.54±0.23
    19−1+1005.83±0.21
    200−10−16.13±0.25
    210+1−105.74±028
    22+1−1005.99±0.21
    230−10+16.18±0.13
    2400007.88±0.12
    250−1+106.47±0.23
    26+10+106.86±0.18
    27−100+16.36±0.16
    2800−1+16.91±0.14
    290+10−15.65±0.15
    下载: 导出CSV

    表  7  方差分析结果

    Table  7.   ANOVA of test results

    来源平方和自由度均差FP显著性
    模型11.01140.7921.60< 0.0001**
    X10.2610.267.010.0191*
    X20.07410.0742.020.1768
    X30.9110.9124.930.0002**
    X40.1510.154.050.0638
    X1X20.4110.4111.250.0047**
    X1X30.1810.185.080.0408*
    X1X42.25×10−412.25×10−46.181×10−30.9384
    X2X30.3010.308.160.0127*
    X2X40.07010.0701.930.1865
    X3X40.9310.9325.580.0002**
    X122.4412.4466.94< 0.0001**
    X224.4614.46122.51< 0.0001**
    X321.8711.8751.32< 0.0001**
    X423.0713.0784.33< 0.0001**
    残差0.51140.036
    失拟项0.44100.0442.720.1739不显著
    纯误差0.06540.016
    总离差11.5228
    R20.9557
    R2Adj0.9115
    下载: 导出CSV
  • [1] DAS L, LI W, DODGE L A, et al. Comparative evaluation of industrial hemp cultivars: Agronomical practices, feedstock characterization and potential for biofuels and bioproducts[J]. ACS Sustainable Chemistry & Engineering,2020,8(16):6200−6210.
    [2] GUNNARSSON I B, KUGLARZ M, KARAKASHEV D, et al. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)[J]. Bioresource Technology,2015,182:58−66. doi:  10.1016/j.biortech.2015.01.126
    [3] HARTSEL J A, EADES J, HICKORY B, et al. Cannabis sativa and hemp[J]. Nutraceuticals,2016:735−754.
    [4] BURKHARD H, ROBERT R. Anti-tumour actions of cannabinoids[J]. British Journal of Pharmacology,2019,176(10):1384−1394. doi:  10.1111/bph.14426
    [5] MARCUS S D. Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources[J]. Economic Botany,2003,57(4):545−558. doi:  10.1663/0013-0001(2003)057[0545:TLIHCS]2.0.CO;2
    [6] GRASSA C J, WEIBLEN G D, WENGER J P, et al. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana[J]. New Phytologist,2021,230(4):1665−1679. doi:  10.1111/nph.17243
    [7] WANG Y, MUKHOPADHYAY P, CAO Z, et al. 201-Cannabidiol protects against chronic plus binge alcohol induced liver injury by modulating neutrophil infiltration, E selectin, inflammation and oxidative/nitrative stress[J]. Free Radical Biology and Medicine,2014,76:S88.
    [8] WIRTH P W, WATSON E S, ELSOHLY M, et al. Anti-inflammatory properties of cannabichromene[J]. Life Sciences,1980,26(23):1991−1995.
    [9] HUBER S, HARDER M, FUNCK K, et al. Novel room temperature ionic liquid for liquid-phase microextraction of cannabidiol from natural cosmetics[J]. Separations,2020,7(3):45. doi:  10.3390/separations7030045
    [10] 李焰梅, 郝丹, 蒋献. 大麻二酚在皮肤科的研究进展[J]. 中国皮肤性病学杂志,2019,33(10):1202−1205. [LI Yanmei, HAO Dan, JIANG Xian. Research progress of cannabidiol in dermatology[J]. Chin J Derm Venereol,2019,33(10):1202−1205. doi:  10.13735/j.cjdv.1001-7089.201901008
    [11] 刘凯, 张静, 何媛, 等. 大麻二酚临床疗效及递送系统研究进展[J]. 沈阳医科大学学报,2021,38(12):1361−1372. [LIU Kai, ZHANG Jing, HE Yuan, et al. Research progress on clinical efficacy and delivery system of cannabidiol[J]. Journal of Shenyang Pharmaceutical University,2021,38(12):1361−1372.
    [12] BOEHNKE K F, GAGNIER J J, MATALLANA L, et al. Substituting cannabidiol for opioids and pain medications among individuals with fibromyalgia: A large online survey[J]. The Journal of Pain,2021,22(11):1418−1428. doi:  10.1016/j.jpain.2021.04.011
    [13] MOLTKE J, HINDOCHA C. Reasons for cannabidiol use: A cross-sectional study of CBD users, focusing on self-perceived stress, anxiety, and sleep problems[J]. Journal of Cannabis Research,2021,3(1):5. doi:  10.1186/s42238-021-00061-5
    [14] 高哲, 张志军, 李晓君, 等. 火麻叶中大麻二酚的热回流法提取工艺研究[J]. 中国油脂,2019,44(3):107−111. [GAO Zhe, ZHANG Zhijun, LI Xiaojun, et al. Hot reflux extraction of cannabidiol from hemp leaves[J]. China Oils and Fats,2019,44(3):107−111. doi:  10.3969/j.issn.1003-7969.2019.03.023
    [15] LEIMAN K, COLOMO L, ARMENTA S, et al. Fast extraction of cannabinoids in marijuana samples by using hard-cap espresso machines[J]. Talanta,2018,190:321−326. doi:  10.1016/j.talanta.2018.08.009
    [16] DRINI Z, VLADI J, KOREN A, et al. Microwave-assisted extraction of cannabinoids and antioxidants from Cannabis sativa aerial parts and process modeling[J]. Journal of Chemical Technology & Biotechnology,2020,95(3):831−839.
    [17] GRIJO D R, VIEITEZ O I A, CARDOZO F L. Supercritical extraction strategies using CO2 and ethanol to obtain cannabinoid compounds from Cannabis hybrid flowers[J]. Journal of CO2 Utilization,2018,28:174−180. doi:  10.1016/j.jcou.2018.09.022
    [18] HAN G, ZHANG D, KONG C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting[J]. Chemical Engineering Journal,2022,437:135482. doi:  10.1016/j.cej.2022.135482
    [19] ALAYOUBI R, MEHMOOD N, HUSSON E, et al. Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield[J]. Renewable Energy,2020,145:1808−1816. doi:  10.1016/j.renene.2019.07.091
    [20] PENG L Q, YU W Y, XU J J, et al. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria[J]. Food Chemistry,2018,239:1075−1084. doi:  10.1016/j.foodchem.2017.07.031
    [21] FAN C, LI N, CAO X, et al. Ionic liquid-modified countercurrent chromatographic isolation of high-purity delphinidin-3-rutinoside from eggplant peel[J]. Journal of Food Science,2020,85(4):1132−1139. doi:  10.1111/1750-3841.15089
    [22] 曾理. 化学溶剂离子液体研究进展[J]. 广州化工,2016,44(1):56−58. [ZENG Li. Research progress on application of ionic liquids[J]. Guangzhou Chemical Industry,2016,44(1):56−58. doi:  10.3969/j.issn.1001-9677.2016.01.023
    [23] XU H, HAN Z, ZHANG D, et al. Theoretical elucidation of the dual role of [HMIM]BF4 ionic liquid as catalyst and extractant in the oxidative desulfurization of dibenzothiophene[J]. Journal of Molecular Catalysis A Chemical,2015,398:297−303. doi:  10.1016/j.molcata.2014.12.018
    [24] MAZID R R, DIVISEKERA U, YANG W, et al. Biological stability and activity of siRNA in ionic liquids[J]. Chemical Communications,2014,50(88):13457−13460. doi:  10.1039/C4CC05086J
    [25] STOLTE S, ABDULKARIM S, ARNING J, et al. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds[J]. Green Chemistry,2008,10(2):214−224. doi:  10.1039/B713095C
    [26] 次仁曲宗, 罗禹, 屈晓宇, 等. 黑龙江汉麻叶中化学成分研究与大麻二酚(CBD)含量测定[J]. 四川大学学报(自然科学版),2019,56(5):957−962. [CIREN Quzong, LUO Yu, QU Xiaoyu, et al. Study on chemical constituents and determination of cannabidiol (CBD) in hemp leaves of Heilongjiang Province[J]. Journal of Sichuan University (Natural Science Edition),2019,56(5):957−962.
    [27] 廖钦洪, 李会合, 刘奕清, 等. 碳酸钾活化剂法制备稻壳活性炭的工艺优化[J]. 农业工程学报,2015,31(11):256−261. [LIAO Qinhong, LI Huihe, LIU Yiqing, et al. Optimizing preparation of activated carbons from rice husk by K2CO3 chemical activation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(11):256−261. doi:  10.11975/j.issn.1002-6819.2015.11.037
    [28] WU X, ZHANG L, SUI A, et al. Optimization of fermentation process parameters for ginsenoside Re bioconversion by Plackett-Burman and Box-Benhnken design[J]. Matec Web of Conferences,2018,238(4):04001.
    [29] CAI C, YU W, WANG C, et al. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin[J]. Journal of Molecular Liquids,2019,287:110957. doi:  10.1016/j.molliq.2019.110957
    [30] TOMA K, BURSOVA M, HORSLEY R, et al. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids[J]. Journal of Cleaner Production,2018,278:391−396.
    [31] AHMED F E. Analysis of polychlorinated biphenyls in food products[J]. TrAC Trends in Analytical Chemistry,2003,22(3):170−185. doi:  10.1016/S0165-9936(03)00305-4
    [32] 邓永, 刘东红. 超声处理对石榴皮多酚提取效果的影响[J]. 食品科学技术学报,2021,39(1):65−69,77. [DENG Yong, LIU Donghong. Effects of ultrasound treatment on extraction of pomegrante peel polyphenols[J]. Journal of Food Science and Technology,2021,39(1):65−69,77. doi:  10.12301/j.issn.2095-6002.2021.01.007
    [33] SEOUD O, SILVA V, POSSIDONIO S, et al. Microwave-assisted derivatization of cellulose, 2-the surprising effect of the structure of ionic liquids on the dissolution and acylation of the biopolymer[J]. Macromolecular Chemistry & Physics,2011,212(23):2541−2550.
    [34] 王崑仑, 李家磊, 谢学军, 等. 纤维素酶辅助超声法提取葛根多糖及其DPPH自由基清除能力[J]. 食品工业科技,2019,40(20):174−179, 187. [WANG Kunlun, LI Jialei, XIE Xuejun, et al. The research of cellulase assisted ultrasound extraction of pueraria polysaccharides and DPPH antioxidant capacity[J]. Science and Technology of Food Industry,2019,40(20):174−179, 187. doi:  10.13386/j.issn1002-0306.2019.20.028
    [35] 于殿宇, 王彤, 唐洪琳, 等. 挤压法制备富钙强化重组大米的工艺优化及其结构表征[J]. 农业工程学报,2018,34(22):291−298. [YU Dianyu, WANG Tong, TANG Honglin, et al. Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018,34(22):291−298. doi:  10.11975/j.issn.1002-6819.2018.22.036
    [36] SHA Ruyi, WU Dongyang, WANG Wenxing, et al. Application of Plackett-Burman design in screening the significant parameters in extraction of phytic acid from defatted rice bran by acetic acid[J]. Waste & Biomass Valorization,2019,10(4):1003−1011.
    [37] CHEN Fengli, ZHANG Qiang, FEI Shimin, et al. Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett-Burman design and Box-Behnken design[J]. Ultrasonics Sonochemistry, 2017, 35(Pt A): 161−175.
    [38] FAN Yunchang, CHEN Meilan, CHAO Shentu, et al. Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography[J]. Analytica Chimica Acta,2009,650(1):65−69. doi:  10.1016/j.aca.2009.03.025
    [39] 刘师师. 喜树碱和盐酸小檗碱在离子液体中的溶解性能及应用研究[D]. 南宁: 广西大学, 2015

    LIU Shishi. Reasearch on the solubility and application of camptothecin and berberine chloride in several ionic liquids[D]. Nanning: Guangxi University, 2015.
    [40] CAI Changyong, WANG Yani, YI Yongjian, et al. Ionic liquids simultaneously used as accelerants, stabilizers and extractants for improving the cannabidiol extraction from industrial hemp[J]. Industrial Crops & Products,2020,155:112796.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海