• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

益生菌改善牛乳蛋白过敏性的研究进展

曹婷 赵丽娜 陈庆学 岳莹雪 吕秀莉 平丽筠 李柏良 霍贵成

曹婷,赵丽娜,陈庆学,等. 益生菌改善牛乳蛋白过敏性的研究进展[J]. 食品工业科技,2022,43(23):11−18. doi:  10.13386/j.issn1002-0306.2022050245
引用本文: 曹婷,赵丽娜,陈庆学,等. 益生菌改善牛乳蛋白过敏性的研究进展[J]. 食品工业科技,2022,43(23):11−18. doi:  10.13386/j.issn1002-0306.2022050245
CAO Ting, ZHAO Lina, CHEN Qingxue, et al. Research Progress of Probiotics in Improving Milk Protein Allergy[J]. Science and Technology of Food Industry, 2022, 43(23): 11−18. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050245
Citation: CAO Ting, ZHAO Lina, CHEN Qingxue, et al. Research Progress of Probiotics in Improving Milk Protein Allergy[J]. Science and Technology of Food Industry, 2022, 43(23): 11−18. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050245

益生菌改善牛乳蛋白过敏性的研究进展

doi: 10.13386/j.issn1002-0306.2022050245
基金项目: 黑龙江省“百千万”工程科技重大专项(2019ZX07801);中国营养学会-飞鹤体质营养与健康研究基金项目(CNS-Feihe2020A37)。
详细信息
    作者简介:

    曹婷(2000−),女,硕士研究生,研究方向:食品科学及肠道微生物,E-mail:12047097083@qq.com

    通讯作者:

    李柏良(1989−),男,博士,副教授,研究方向:食品微生物与生物技术,E-mail:15846092362@163.com

    霍贵成(1958−),男,博士,教授,研究方向:食品微生物与生物技术,E-mail:guichenghuo@126.com

  • 中图分类号: TS252.42

Research Progress of Probiotics in Improving Milk Protein Allergy

  • 摘要: 牛奶蛋白过敏是儿童早期最常见的食物过敏反应之一,通常会持续到成年期。益生菌影响肠道微生物群并调节免疫反应。因此,它可能是可以缓解某些涉及肠道免疫系统疾病的工具,例如尚无治疗方法的牛乳蛋白过敏。本文中探讨了牛奶蛋白过敏的重要研究进展,介绍了牛乳蛋白过敏原和过敏机理。重点强调了益生菌在牛奶蛋白过敏方面取得的最新进展,通过调节肠道菌群和提高肠道免疫来改善牛乳蛋白过敏。最后阐述了低致敏性产品的研究现状,提出了研究及应用中面临的主要问题。益生菌改善牛乳蛋白过敏性的深入研究是过敏领域的重大突破,为缓解牛乳过敏提供理论依据。
  • 图  1  过敏表位结构[10]

    Figure  1.  Allergic epitope structure[10]

    图  2  IgE介导的牛乳蛋白过敏机制[12-14]

    Figure  2.  IgE-mediated mechanism of bovine milk protein allergy[12-14]

    图  3  益生菌调节Th1/Th2平衡过程[35]

    Figure  3.  Probiotics regulate the process of Th1/Th2 balance[35]

    表  1  牛乳过敏原基本信息[6-7]

    Table  1.   Basic information of milk allergen[6-7]

    蛋白种类致敏原Uniprot等电点浓度(g/L)占总蛋白的比例(%)分子量(kDa)氨基酸数量生物功能
    αs1-酪蛋白Bos d9P026624.9~512~152923.6199钙结合蛋白
    αs2-酪蛋白Bos d10P026635.2~5.43~4825.2207钙结合蛋白
    β-酪蛋白Bos d11P026665.1~5.49~112724.0209钙结合蛋白
    κ-酪蛋白Bos d12P026685.4~5.63~41019.0169钙的稳定和凝固
    β-乳球蛋白Bos d5P027545.33~41018.3162脂质结合蛋白
    α-乳白蛋白Bos d4P007114.81~1.5514.2123参与乳糖的合成;结合脂质、矿物质
    免疫球蛋白Bos d60.6~1.03150.0防御病毒
    牛血清蛋白Bos d7P027694.9~5.10.1~0.4166.3582配体的运输,保护自由基
    下载: 导出CSV

    表  2  牛乳蛋白诱导机制的区别

    Table  2.   Differences in milk protein induction mechanism

    项目IgE介导非IgE介导
    患病率
    年龄婴幼儿婴幼儿和成人
    机制免疫学
    -IgE
    免疫学
    -细胞介导
    -复合免疫
    症状一种或多种胃肠道、皮肤、呼吸道、过敏反应主要是胃肠道和/或呼吸道疾病
    摄入后的发病时间小于1 h大于1 h至数天
    预防母乳喂养
    婴儿避免摄入牛乳蛋白(0~6个月)
    避免食用牛乳蛋白
    处理去除过敏原表位-牛乳蛋白水解去除过敏原表位
    下载: 导出CSV

    表  3  益生菌对牛乳过敏的改善作用

    Table  3.   Improvement effect of probiotics on milk allergy

    改善作用益生菌改善原因参考文献
    调节肠道菌群鼠李糖乳杆菌LA305,唾液乳杆菌LA307和长双歧杆菌婴儿亚种LA308平衡肠道菌群的丰度及结构,影响免疫调节和耐受[17]
    促进sIgA增加,增强肠粘膜屏障功能鼠李糖乳杆菌GG增强B细胞的活化,显著提高小鼠肠道黏膜sIgA的分泌量,调节黏膜免疫系统[18]
    短双歧杆菌M-16V增强了小鼠肠道内IgA的合成,促进了早期黏膜免疫的发展[19]
    嗜酸乳杆菌和乳双歧杆菌增加肠黏膜sIgA含量,增强小鼠特异性及非特异性免疫功能[20]
    减少Th2极化,保持Th1/Th2平衡植物乳杆菌ZDY2013和鼠李糖乳杆菌GG诱导Th1或调节性T细胞分化抑制Th2的反应;显著增加了紧密连接蛋白的相对表达,增强肠道屏障功能[21]
    嗜酸乳杆菌和双歧杆菌使血清中Th2特异性免疫应答向Th1倾斜,抑制了血清中IgE的产生,从而减轻小鼠对乳清蛋白的过敏反应[22]
    诱导Foxp3+Treg,保持Treg/Th17的平衡副干酪乳杆菌L9或长双歧杆菌BBMN68刺激树突细胞(如CD11c+CD103+ DCs)的表达和诱导T细胞转换Foxp3+Treg[23-24]
    下载: 导出CSV

    表  4  不同益生菌对肠道菌群丰度的影响[17]

    Table  4.   Different probiotics on the intestinal flora abundance[17]

    菌名菌群丰度增加菌群丰度降低
    鼠李糖乳杆菌LA305消化球菌科(Peptococcaceae)、瘤胃球菌科(Ruminococcaceae)、
    Odoribacter
    梭菌属(Clostridium sensu stricto)、Marvinbryantia
    唾液乳杆菌LA307普雷沃氏菌科(Prevotellaceae)NK3B31、OdoribacterMarvinbryantia
    长双歧杆菌婴儿亚种LA308毛螺旋菌科(Lachnospiraceae)NK4A136厌氧原体菌属(Anaeroplasma)、Marvinbryantia
    下载: 导出CSV
  • [1] MA Z Z, CHENG Y Y, WANG S Q, et al. Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics[J]. Journal of Animal Physiology and Animal Nutrition,2020,104(1):44−55. doi:  10.1111/jpn.13226
    [2] CUKROWSKA B, CEREGRA A, MACIORKOWSKA E, et al. The effectiveness of probiotic Lactobacillus rhamnosus and Lactobacillus casei strains in children with atopic dermatitis and cow’s milk protein allergy: A multicenter, randomized, double blind, placebo controlled study[J]. Nutrients,2021,13(4):1169. doi:  10.3390/nu13041169
    [3] WAN K, URAJI M, TOKAI S, et al. Enzymatic degradation of allergen peptides from bovine casein by a combination of Streptomyces aminopeptidases[J]. Applied Biochemistry and Biotechnology,2019,187(2):570−582. doi:  10.1007/s12010-018-2839-7
    [4] WARREN C, DUCK S, MUKHERJEE A, et al. The epidemiology of milk allergy in US children: An update[J]. Annals of Allergy, Asthma & Immunology,2018,121(5):S13.
    [5] WRÓBLEWSKA B, KALISZEWSKA-SUCHODOŁA A, MARKIEWICZ L H, et al. Whey prefermented with beneficial microbes modulates immune response and lowers responsiveness to milk allergens in mouse model[J]. Journal of Functional Foods,2019,54:41−52. doi:  10.1016/j.jff.2018.12.032
    [6] VUKOTIC G, MATIC I, BEGOVIC J, et al. Lactobacilli hydrolysis of cows' milk proteins abrogates their humoral immunoreactivity in patients with immune-mediated diseases[J]. International Dairy Journal,2016,63:1−7. doi:  10.1016/j.idairyj.2016.07.009
    [7] LIU J, CHEN W, SHAO Y, et al. The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation[J]. Food Chemistry,2020,310:125853. doi:  10.1016/j.foodchem.2019.125853
    [8] 张玉梅, 石羽杰, 张健, 等. 母乳α-乳清蛋白, β-酪蛋白与婴幼儿健康的研究进展[J]. 营养学报,2020,42(1):78−82. [ZHANG Yumei, SHI Yujie, ZHANG Jian, et al. Advances in studies of the relation between breast milk α-lactalbumin, β-casein and health of infants and toddlers[J]. Acta Nutrimenta Sinica,2020,42(1):78−82.
    [9] 丛艳君, 李晔, 刘家琦, 等. 牛乳α-乳白蛋白免疫球蛋白G线性表位的关键氨基酸识别[J]. 食品科学,2018,39(7):195−200. [CONG Yanjun, LI Ye, LIU Jiaqi, et al. Characterization of critical amino acids in linear immunoglobulin G epitopes of α-lactalbumin in cow milk[J]. Food Science,2018,39(7):195−200. doi:  10.7506/spkx1002-6630-201807029
    [10] BOGAHAWATHTHA D, CHANDRAPALA J, VASILJEVIC T. Modulation of milk immunogenicity by thermal processing[J]. International Dairy Journal,2017,69:23−32. doi:  10.1016/j.idairyj.2017.01.010
    [11] JO J, GARSSEN J, KNIPPELS L, et al. Role of cellular immunity in cow's milk allergy: Pathogenesis, tolerance induction, and beyond[J]. Mediators of Inflammation,2015,2014:249784.
    [12] YAO M, XU Q, LUO Y, et al. Study on reducing antigenic response and IgE-binding inhibitions of four milk proteins of Lactobacillus casei 1134[J]. Journal of the Science of Food and Agriculture,2015,95(6):1303−1312. doi:  10.1002/jsfa.6823
    [13] EL MECHERFI K E, CURET S, LUPI R, et al. Combined microwave processing and enzymatic proteolysis of bovine whey proteins: The impact on bovine β-lactoglobulin allergenicity[J]. Journal of Food Science and Technology,2019,56(1):177−186. doi:  10.1007/s13197-018-3471-9
    [14] ANVARI S, MILLER J, YEH C Y, et al. IgE-mediated food allergy[J]. Clinical Reviews in Allergy & Immunology,2019,57(2):244−260.
    [15] RAHAMAN T, VASILJEVIC T, RAMCHANDRAN L. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear[J]. Food Chemistry,2017,217:517−523. doi:  10.1016/j.foodchem.2016.08.129
    [16] SAVINO F, GIULIANI F, GIRAUDI S, et al. Analysis of serum Th2 cytokines in infants with non-IgE mediated food allergy compared to healthy infants[J]. Nutrients,2022,14(8):1565. doi:  10.3390/nu14081565
    [17] ESBER N, MAURAS A, DELANNOY J, et al. Three candidate probiotic strains impact gut microbiota and induce anergy in mice with cow's milk allergy[J]. Applied and Environmental Microbiology,2020,86(21):e01203−e01220.
    [18] 陈毅秋. 鼠李糖乳杆菌对BALB/c小鼠肠相关淋巴组织中B细胞发育的影响[D]. 长春: 吉林农业大学, 2016

    CHEN Yiqiu. Effects of Lactobacillus rhamnosus on BALB/c mice B cells development in gut-associated lymphoid tissue[D]. Changchun: Jilin Agricultural University, 2016.
    [19] RIGO-ADROVER M D M, FRANCH A, CASTELL M, et al. Preclinical immunomodulation by the probiotic Bifidobacterium breve M-16V in early life[J]. PLoS One,2016,11(11):e0166082. doi:  10.1371/journal.pone.0166082
    [20] 张微, 满朝新, 王辉, 等. 乳酸菌发酵降低牛乳蛋白过敏性的研究进展[J]. 中国乳品工业,2017,45(1):21−24. [ZHANG Wei, MAN Chaoxin, WANG Hui, et al. Research development on the influence of LAB fermentation for antigenicity of milk protein[J]. China Dairy Industry,2017,45(1):21−24. doi:  10.3969/j.issn.1001-2230.2017.01.006
    [21] FU G, ZHAO K, CHEN H, et al. Effect of 3 Lactobacilli on immunoregulation and intestinal microbiota in a β-lactoglobulin-induced allergic mouse model[J]. Journal of Dairy Science,2019,102(3):1943−1958. doi:  10.3168/jds.2018-15683
    [22] SHANDILYA U K, SHARMA A, KAPILA R, et al. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice[J]. Journal of the Science of Food and Agriculture,2016,96(9):3180−3187. doi:  10.1002/jsfa.7497
    [23] YANG J, ZHANG H, JIANG L, et al. Bifidobacterium longum BBMN 68-specific modulated dendritic cells alleviate allergic responses to bovine β-lactoglobulin in mice[J]. Journal of Applied Microbiology,2015,119(4):1127−1137. doi:  10.1111/jam.12923
    [24] YANG B, HAGEMANN S, MAMARELI P, et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation[J]. Mucosal Immunology,2016,9(2):444−457. doi:  10.1038/mi.2015.74
    [25] LYNCH S V, PEDERSEN O. The human intestinal microbiome in health and disease[J]. New England Journal of Medicine,2016,375(24):2369−2379. doi:  10.1056/NEJMra1600266
    [26] BUNYAVANICH S, BERIN M C. Food allergy and the microbiome: Current understandings and future directions[J]. Journal of Allergy and Clinical Immunology,2019,144(6):1468−1477. doi:  10.1016/j.jaci.2019.10.019
    [27] WANG Z, ZHONG J, MENG X, et al. The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy[J]. Trends in Food Science & Technology,2021,114:116−132.
    [28] BUNYAVANICH S, SHEN N, GRISHIN A, et al. Early-life gut microbiome composition and milk allergy resolution[J]. Journal of Allergy and Clinical Immunology,2016,138(4):1122−1130. doi:  10.1016/j.jaci.2016.03.041
    [29] ZHAO W, HO H E, BUNYAVANICH S. The gut microbiome in food allergy[J]. Annals of Allergy, Asthma & Immunology,2019,122(3):276−282.
    [30] BUNYAVANICH S, SHEN N, GRISHIN A, et al. Early-life gut microbiome composition and milk allergy resolution[J]. Journal of Allergy and Clinical Immunology,2016:1122−1130.
    [31] GAVROVICJANKULOVIC M, WILLEMSEN L E. Epithelial models to study food allergen-induced barrier disruption and immune activation[J]. Drug Discovery Today: Disease Models,2015,17:29−36.
    [32] SPILJAR M, MERKLER D, TRAJKOVSKI M. The immune system bridges the gut microbiota with systemic energy homeostasis: Focus on TLRs, mucosal barrier, and SCFAs[J]. Frontiers in Immunology,2017,8:1353. doi:  10.3389/fimmu.2017.01353
    [33] 李欣, 徐子豪, 黄美佳, 等. 乳酸菌降低牛乳中蛋白质致敏性的研究进展[J]. 食品与生物技术学报,2021,40(1):12−19. [LI Xin, XU Zihao, HUANG Meijia, et al. Progress on the reduction of allergenicity of bovine milk proteins by lactic acid bacteria[J]. Journal of Food Science and Biotechnology,2021,40(1):12−19. doi:  10.3969/j.issn.1673-1689.2021.01.002
    [34] SAMPSON H A, O'MAHONY L, BURKS A W, et al. Mechanisms of food allergy[J]. Journal of Allergy and Clinical Immunology,2018,141(1):11−19. doi:  10.1016/j.jaci.2017.11.005
    [35] 陈境, 张晓宁, 霍麒文, 等. 婴幼儿牛乳蛋白过敏机制及解决方法研究进展[J]. 中国食品学报,2020,20(7):289−298. [CHEN Jing, ZHANG Xiaoning, HUO Qiwen, et al. Progress in the mechanisms of cow's milk protein allergy in infants and its treatments[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):289−298.
    [36] MCKENZIE C, TAN J, MACIA L, et al. The nutrition-gut microbiome-physiology axis and allergic diseases[J]. Immunological Reviews,2017,278(1):277−295. doi:  10.1111/imr.12556
    [37] PAPARO L, NOCERINO R, CIAGLIA E, et al. Butyrate as a bioactive human milk protective component against food allergy[J]. Allergy,2021,76(5):1398−1415. doi:  10.1111/all.14625
    [38] MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. Mechanisms and functional importance in the gut[J]. Proceedings of the Nutrition Society,2021,80(1):37−49. doi:  10.1017/S0029665120006916
    [39] TAN J, MCKENZIE C, VUILLERMIN P J, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways[J]. Cell Reports,2016,15(12):2809−2824. doi:  10.1016/j.celrep.2016.05.047
    [40] SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity,2014,40(1):128−139. doi:  10.1016/j.immuni.2013.12.007
    [41] FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2013,504(7480):446−450. doi:  10.1038/nature12721
    [42] SMITH P M, HOWITT M R, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science,2013,341(6145):569−573. doi:  10.1126/science.1241165
    [43] DI COSTANZO M, DE PAULIS N, BIASUCCI G. Butyrate: A link between early life nutrition and gut microbiome in the development of food allergy[J]. Life,2021,11(5):384. doi:  10.3390/life11050384
    [44] RODUIT C, FREI R, FERSTL R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy[J]. Allergy,2019,74(4):799−809. doi:  10.1111/all.13660
    [45] YANG J, KUANG H, LI N, et al. The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases[J]. Critical Reviews in Food Science and Nutrition,2022:1−13.
    [46] MEYER R, GROETCH M, VENTER C. When should infants with cow's milk protein allergy use an amino acid formula? a practical guide[J]. The Journal of Allergy and Clinical Immunology: In Practice,2018,6(2):383−399. doi:  10.1016/j.jaip.2017.09.003
    [47] CARUCCI L, NOCERINO R, PAPARO L, et al. Dietary prevention of atopic march in pediatric subjects with cow's milk allergy[J]. Frontiers in Pediatrics,2020,8:440. doi:  10.3389/fped.2020.00440
    [48] GUEST J F, FULLER G W. Effectiveness of using an extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG compared with an extensively hydrolysed whey formula in managing cow’s milk protein allergic infants[J]. Journal of Comparative Effectiveness Research,2019,8(15):1317−1326. doi:  10.2217/cer-2019-0088
    [49] NOCERINO R, DI COSTANZO M, BEDOGNI G, et al. Dietary treatment with extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG prevents the occurrence of functional gastrointestinal disorders in children with cow's milk allergy[J]. The Journal of Pediatrics,2019,213:137−142. doi:  10.1016/j.jpeds.2019.06.004
    [50] ABD ELSALAM M H, ELSHIBINY S. Reduction of milk protein antigenicity by enzymatic hydrolysis and fermentation: A review[J]. Food Reviews International,2021,37(3):276−295. doi:  10.1080/87559129.2019.1701010
    [51] KÜÇÜKOSMANOĞLU E, ÖZEN E, ELTAN S B, et al. Most children who are allergic to cow’s milk tolerate yogurt[J]. Journal of International Medical Research,2018,46(12):5099−5106. doi:  10.1177/0300060518790430
    [52] ANGGRAINI H, TONGKHAO K, CHANPUT W. Reducing milk allergenicity of cow, buffalo, and goat milk using lactic acid bacteria fermentation[C]//AIP Conference Proceedings. AIP Publishing LLC, 2018, 2021(1): 070010.
    [53] BISCOLA V, CHOISET Y, RABESONA H, et al. Brazilian artisanal ripened cheeses as sources of proteolytic lactic acid bacteria capable of reducing cow milk allergy[J]. Journal of Applied Microbiology,2018,125(2):564−574. doi:  10.1111/jam.13779
    [54] NATH A, CSIGHY A, EREN B A, et al. Bioactive peptides from liquid milk protein concentrate by sequential tryptic and microbial hydrolysis[J]. Processes,2021,9(10):1688. doi:  10.3390/pr9101688
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名