Study on Quantitative Counting Method of Lactic Acid Bacteria Powder
-
摘要: 目的:以9株乳杆菌、6株双歧杆菌、3株球菌、1株凝结芽孢杆菌菌粉为研究对象,在国标GB 4789.35-2016的基础上,对稀释倍数、稀释液成分、培养基成分进行比较研究,考察对乳酸菌菌粉计数活菌数的影响。方法:采用稀释平板计数的方法,对不同的乳酸菌菌粉进行活菌计数。结果:初始乳酸菌菌粉样品稀释倍数对最终计数活菌数无明显影响,ISO稀释液对部分乳杆菌、双歧杆菌菌粉的活菌计数结果有显著提高(P<0.05);双歧杆菌菌粉采用TOS琼脂培养基的计数结果显著优于国标培养基(P<0.05);凝结芽孢杆菌菌粉采用改良芽孢计数培养基计数结果优于PCA和NA计数培养基。结论:平板计数方法中,稀释液中含有酪蛋白胨能提升双歧杆菌菌粉的活菌计数数量;TOS琼脂培养基更有利于双歧杆菌的增殖培养;改良芽孢计数培养基更有利于凝结芽孢杆菌的芽孢萌发增殖。Abstract: Objective: On the basis of national standard GB 4789.35-2016, a comparative study was conducted on dilution ratio, diluent components and medium components to investigate the influence on the number of viable bacteria when counting lactic acid bacteria powder. Nine strains of Lactobacillus, six strains of Bifidobacterium, three strains of coccus and one strain of Bacillus coagulans were used as research objects. Methods: The method of dilution plate count was used to count the viable bacteria of different lactic acid bacteria powders. Results: According to research findings, the dilution ratio of the initial lactic acid bacteria powder sample had no significant effect on the final count of viable bacteria, and the ISO dilution had significant effects on the viable count results of some Lactobacillus and Bifidobacterium powders (P<0.05); The counting result of Bifidobacterium powder using TOS agar medium was better than that of national standard medium (P<0.05); The counting result of Bacillus coagulans powder using modified spore counting medium was better than PCA and NA counting culture base. Conclusion: The diluent containing casein peptone could increase the number of viable counts of Bifidobacterium powder when plate counting method was used; TOS agar medium was more conducive to the proliferation and culture of Bifidobacterium; The improved spore counting medium was more conducive to the spore germination and proliferation of Bacillus coagulans.
-
Key words:
- lactic acid bacteria /
- counting method /
- Bifidobacterium /
- Bacillus coagulans /
- casein peptone
-
表 1 梯度稀释液研究
Table 1. Research on serial dilutions
10−1试管 10−2试管 10−3试管 10−4试管 10−5试管 10−6试管 10−7试管 10−8试管 10−9试管 测试1 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 测试2 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 国标稀释液 ISO稀释液 ISO稀释液 测试3 国标稀释液 国标稀释液 国标稀释液 国标稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 测试4 国标稀释液 国标稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 测试5 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 ISO稀释液 表 2 不同益生菌菌粉稀释倍数计数结果(×1011 CFU/g)
Table 2. Counting results of dilution times of different probiotic bacteria powder (×1011 CFU/g)
分类 菌株 2 g→38 mL 10 g→90 mL 25 g→225 mL(国标)
乳杆菌嗜酸乳杆菌LA85 2.4±0.1 2.3±0.2 2.4±0.1 植物乳杆菌Lp90 5.4±0.1 5.3±0.1 5.4±0.1 鼠李糖乳杆菌LRa05 4.4±0.2 4.5±0.1 4.5±0.1 干酪乳杆菌LC89 5.4±0.1 5.5±0.2 5.5±0.2 副干酪乳杆菌LC86 5.3±0.1 5.4±0.1 5.4±0.1 唾液乳杆菌LS97 2.3±0.1 2.2±0.1 2.3±0.2 罗伊氏乳杆菌LR08 2.3±0.2 2.2±0.1 2.3±0.1 保加利亚乳杆菌LB42 1.1±0.2 1.2±0.1 1.2±0.2 格氏乳杆菌LG08 3.4±0.1 3.4±0.1 3.3±0.1
双歧
杆菌乳双歧杆菌BLa80 5.4±0.2 5.6±0.1 5.5±0.1 长双歧杆菌BL21 3.4±0.1 3.5±0.2 3.4±0.2 短双歧杆菌BBr60 5.4±0.1 5.6±0.1 5.5±0.1 青春双歧杆菌BAC30 1.3±0.2 1.2±0.2 1.2±0.2 婴儿双歧杆菌BI45 1.4±0.2 1.4±0.2 1.3±0.1 两歧双歧杆菌BBi32 5.4±0.1 5.5±0.2 5.4±0.2
球菌嗜热链球菌ST81 1.2±0.1 1.3±0.2 1.2±0.1 乳酸片球菌PA53 4.6±0.1 4.7±0.2 4.6±0.1 戊糖片球菌PP06 3.5±0.1 3.5±0.1 3.4±0.2 芽孢杆菌 凝结芽孢杆菌BC99 1.2±0.1 1.3±0.2 1.2±0.1 表 3 不同稀释液计数对活菌数的影响 (×1011 CFU/g)
Table 3. Effect of different diluent counts on the number of viable bacteria (×1011 CFU/g)
分类 菌株 国标稀释液 ISO稀释液 改良稀释液一 改良稀释液二 改良稀释液三
乳杆菌嗜酸乳杆菌LA85 2.3±0.2 3.2±0.1* 2.4±0.2 2.5±0.2 2.2±0.2 植物乳杆菌Lp90 5.3±0.1 5.8±0.2 5.4±0.2 5.4±0.2 5.5±0.2 鼠李糖乳杆菌LRa05 4.3±0.2 4.6±0.1 4.5±0.2 4.4±0.2 4.3±0.1 干酪乳杆菌LC89 5.4±0.2 5.7±0.2 5.5±0.2 5.4±0.1 5.7±0.1 副干酪乳杆菌LC86 5.3±0.2 5.5±0.1 5.4±0.2 5.3±0.2 5.5±0.1 唾液乳杆菌LS97 2.3±0.2 3.5±0.2* 2.8±0.1 2.7±0.1 2.4±0.2 罗伊氏乳杆菌LR08 2.1±0.2 2.5±0.2 2.3±0.1 2.3±0.2 2.4±0.2 保加利亚乳杆菌LB42 1.1±0.2 1.3±0.2 1.2±0.1 1.2±0.1 1.1±0.2 格氏乳杆菌LG08 3.2±0.1 3.5±0.2 3.3±0.2 3.4±0.1 3.3±0.2
双歧
杆菌乳双歧杆菌BLa80 5.3±0.2 6.7±0.1* 5.6±0.2 5.7±0.2 5.4±0.1 长双歧杆菌BL21 3.2±0.2 4.1±0.2* 3.5±0.1 3.5±0.1 3.2±0.2 短双歧杆菌BBr60 5.4±0.1 6.7±0.2* 5.8±0.2 5.8±0.1 5.3±0.1 青春双歧杆菌BAC30 1.3±0.2 1.9±0.1* 1.2±0.2 1.3±0.2 1.3±0.2 婴儿双歧杆菌BI45 1.2±0.2 1.9±0.1* 1.2±0.1 1.3±0.1 1.2±0.1 两歧双歧杆菌BBi32 5.3±0.2 6.9±0.2* 5.8±0.1 5.5±0.2 5.2±0.1
球菌嗜热链球菌ST81 1.1±0.1 1.3±0.1 1.2±0.2 1.2±0.1 1.2±0.2 乳酸片球菌PA53 4.6±0.1 4.5±0.1 4.8±0.2 4.6±0.1 4.8±0.2 戊糖片球菌PP06 3.5±0.2 3.4±0.2 3.6±0.1 3.5±0.2 3.6±0.1 芽孢
杆菌凝结芽孢杆菌BC99 1.1±0.1 1.3±0.1 1.2±0.2 1.2±0.1 1.1±0.1 注:“*”表示与国标方法比较有显著性差异(P<0.05);“**”表示与国标方法比较有极显著性差异(P<0.01);表4、表6同。 表 4 不同稀释液计数结果(×1011 CFU/g)
Table 4. Counting results of different dilutions (×1011 CFU/g)
菌株 测试1 测试2 测试3 测试4 测试5 嗜酸乳杆菌LA85 2.3±0.2 2.4±0.2 2.6±0.2 2.8±0.2* 3.2±0.1* 唾液乳杆菌LS97 2.3±0.2 2.5±0.2 2.7±0.3 3.0±0.2* 3.5±0.2* 乳双歧杆菌BLa80 5.3±0.2 5.4±0.2 5.6±0.2 5.8±0.3 6.7±0.1* 长双歧杆菌BL21 3.1±0.2 3.3±0.1 3.4±0.2 3.6±0.2 4.1±0.2* 短双歧杆菌BBr60 5.5±0.1 5.6±0.2 5.8±0.2 6.1±0.1 6.7±0.2* 青春双歧杆菌BAC30 1.2±0.2 1.3±0.1 1.4±0.2 1.5±0.2 1.8±0.1* 婴儿双歧杆菌BI45 1.1±0.2 1.2±0.1 1.3±0.3 1.4±0.2 1.6±0.3* 两歧双歧杆菌BBi32 5.4±0.2 5.5±0.2 5.8±0.2 6.0±0.2* 6.8±0.3* 表 5 不同培养基对乳杆菌计数活菌数的影响(×1011 CFU/g)
Table 5. Effects of different mediums on Lactobacillus counting viable count (×1011 CFU/g)
菌株 MRS琼脂培养基(国标) 酸化MRS Agar培养基 嗜酸乳杆菌LA85 2.3±0.2 2.3±0.1 植物乳杆菌Lp90 5.3±0.1 5.4±0.1 鼠李糖乳杆菌LRa05 4.3±0.2 4.4±0.1 干酪乳杆菌LC89 5.4±0.2 5.5±0.1 副干酪乳杆菌LC86 5.3±0.2 5.4±0.1 唾液乳杆菌LS97 2.3±0.2 2.4±0.1 罗伊氏乳杆菌LR08 2.2±0.1 2.1±0.2 保加利亚乳杆菌LB42 1.1±0.2 1.2±0.1 格氏乳杆菌LG08 3.2±0.2 3.3±0.1 表 6 不同培养基对双歧杆菌计数活菌数的影响(×1011 CFU/g)
Table 6. Effects of different mediums on Bifidobacterium counting viable count (×1011 CFU/g)
菌株 MRS琼脂培养基+锂盐
(国标)TOS琼脂培养基 乳双歧杆菌BLa80 5.2±0.1 5.9±0.1* 长双歧杆菌BL21 3.1±0.2 5.5±0.1* 短双歧杆菌BBr60 5.4±0.1 7.5±0.2* 青春双歧杆菌BAC30 1.4±0.2 2.6±0.1* 婴儿双歧杆菌BI45 1.2±0.1 2.1±0.2* 两歧双歧杆菌BBi32 5.3±0.1 7.5±0.1* 表 7 不同培养基对球菌计数活菌数的影响(×1011 CFU/g)
Table 7. Effects of different mediums on the counting of viable cocci (×1011 CFU/g)
菌株 MC琼脂培养基(国标) M17培养基 嗜热链球菌ST81 1.2±0.2 1.3±0.2 乳酸片球菌PA53 4.8±0.2 4.9±0.2 戊糖片球菌PP06 3.6±0.1 3.7±0.1 表 8 不同培养基对凝结芽孢杆菌BC99计数活菌数的影响(×1011 CFU/g)
Table 8. Effects of different mediums on counting viable cells of Bacillus coagulans BC99 (×1011 CFU/g)
菌株 NA营养琼脂
培养基PCA
培养基改良芽孢计数
培养基凝结芽孢杆菌BC99 1.1±0.2 1.2±0.1 1.8±0.1* 注:“*”表示有显著性差异(P<0.05)。 -
[1] 王似锦, 江志杰, 牛振东, 等. 保健食品双歧杆菌和乳酸菌计数方法的优化[J]. 中国微生态学杂志,2015,27(2):227−229. [WANG S J, JIANG Z J, NIU Z D, et al. Optimization of enumeration method on Bifidobacteria and lactic bacteria in health food[J]. Chinese Journal of Microecology,2015,27(2):227−229. [2] 中华人民共和国卫生部. GB 4789.2 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016Ministry of Health of the People's Republic of China. GB 4789.2 Microbiological inspection of food Determination of total bacterial count[S]. Beijing: China Standard Press, 2016. [3] 中华人民共和国卫生部. GB 4789.35-2016 食品微生物学检验 乳酸菌检验[S]. 北京: 中国标准出版社, 2016Ministry of Health of the People's Republic of China. GB 4789.35-2016 Food microbiological inspection Lactic acid bacteria inspection[S]. Beijing: China Standard Press, 2016. [4] 刘艳容, 舒永红, 杨佳玮, 等. 食品中乳酸菌定量检测方法研究进展[J]. 食品工业科技,2020,41(12):358−365. [LIU Y R, SHU Y H, YANG J W, et al. Research progress on enumeration methods of lactic acid bacteria in food[J]. Science and Technology of Food Industry,2020,41(12):358−365. doi: 10.13386/j.issn1002-0306.2020.12.059 [5] 谢九艳, 赵婷, 高逸, 等. 发酵乳中乳酸菌的选择性计数及分离鉴定[J]. 食品与发酵工业,2022,48(10):35−41. [XIE J Y, ZHAO T, GAO Y, et al. Selective enumeration, isolation and identification of lactic acid bacteria in fermented milk[J]. Food and Fermentation Industries,2022,48(10):35−41. doi: 10.13995/j.cnki.11-1802/ts.029346 [6] 徐云凤, 张欣, 褚泽军, 等. 一株具有高效抑菌活性乳酸菌的分离鉴定及生长特性研究[J]. 食品与机械,2021,37(3):12−14, 21. [XU Y F, ZHANG X, CHU Z J, et al. Isolation, identification and growth characteristics of a strain of lactic acid bacteria with efficient antimicrobial activity[J]. Food & Machinery,2021,37(3):12−14, 21. [7] HERZOG T, CHROMIK A M, UHL W. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria[J]. Europ J Med Res,2010,15(12):525−532. doi: 10.1186/2047-783X-15-12-525 [8] 邸聪聪, 胡平, 胡章立, 等. 细菌活的非可培养(VBNC)状态及其机理研究进展[J]. 应用与环境生物学报,2014,20(6):1124−1131. [DI C C, HU P, HU Z L, et al. Research progress of viable but non-culturable state of aquatic bacteria[J]. Chinese Journal of Applied & Environmental Biology,2014,20(6):1124−1131. [9] PASZYŃSKA-WESOOWSKA I, BARTOSZCZ M. Bacteria in the state of VBNC-A threat to human health[J]. Medycyna Weterynaryjna,2009,65(4):228−231. [10] 郭慧玲, 邵玉宇, 高姝冉, 等. 细菌活的非可培养状态研究[J]. 中国乳品工业,2014,42(1):31−36. [GUO H L, SHAO Y Y, GAO S R, et al. Research on the viable but non-culturable (VBNC) state of bacteria[J]. China Dairy Industry,2014,42(1):31−36. doi: 10.3969/j.issn.1001-2230.2014.01.009 [11] SKORLUPKINA N, BLINKOVA L, PAKHOMOV Y, et al. Formation and reversion of VBNC cells of salmonella typhimurium preincubated in different substrates[J]. International Journal of Current Research and Review,2017,9(9):20−25. [12] 李晓丹, 屈建航, 张璐洁, 等. 环境微生物可培养性影响因素及培养方法研究进展[J]. 生命科学研究,2017,21(2):154−158. [LI X D, QU J H, ZHANG L J, et al. Progresses on the influence factors of culturability and cultivation strategies of environmental microorganisms[J]. Life Science Research,2017,21(2):154−158. [13] 沈菊, 胡章立, 黎双飞. 肺炎克雷伯氏菌VBNC状态转化突变株的筛选与特性研究[J]. 水生生物学报,2009,33(1):28−33. [SHEN J, HU Z L, LI S F. Studies on the screening for Klebsiella peneumoniae VBNC mutants and its transformation characteristics[J]. Acta Hydrobiologica Sinica,2009,33(1):28−33. doi: 10.3724/SP.J.1035.2009.00028 [14] GUO Q F, CHEN L, JING W M A. Research advances in the probiotics mechanism and application of Bacillus coagulans[J]. Food Research and Development,2018,39(18):208−213. [15] 单春乔, 刘秋晨, 李娟, 等. 凝结芽孢杆菌检测方法的建立[J]. 饲料研究,2020,43(12):84−87. [SHAN C Q, LIU Q C, LI J, et al. Estabishment of method about detecting Bacillus coagulans[J]. Feed Research,2020,43(12):84−87. [16] 韦嘉璐, 艾思洁, 张芯, 等. 葡萄糖和L-丙氨酸对藻菌共生系统处理养殖废水的影响研究[J]. 环境污染与防治,2022,44(2):1−7. [WEI J L, AI S J, ZHANG X, et al. The effect of glucose and L-alanine in the microalgal-bacterial consortia on culture wastewater treatment[J]. Environmental Pollution and Prevention,2022,44(2):1−7. doi: 10.15985/j.cnki.1001-3865.2022.02.009 [17] HAMABATA T, SENOH M, IWAKI M, et al. Induction and resuscitation of viable but nonculturable Corynebacterium diphtheriae[J]. Microorganisms,2021,9(5):1−5. [18] BODOR A, BOUNEDJOUM N, VINCZE G E, et al. Challenges of unculturable bacteria: Environmental perspectives[J]. Reviews in Environmental Science and Biotechnology,2020,19(1):1−22. doi: 10.1007/s11157-020-09522-4 [19] 姜陈波, 杭锋. 双歧杆菌和乳酸菌β-半乳糖苷酶转糖基作用的研究进展[J]. 食品科学,2019,40(7):335−341. [JIANG C B, HANG F. Advances in our understanding of the transgalactosylation activity of β-galactosidase from Bifidobacteria and lactic acid bacteria[J]. Food Science,2019,40(7):335−341. doi: 10.7506/spkx1002-6630-20180302-024 [20] 李素, 曲超, 张顺亮, 等. 中温乳化肠中凝结芽孢杆菌芽孢萌发及热致死规律[J]. 肉类研究,2017,31(4):10−16. [LI S, QU C, ZHANG S L, et al. Spore germination and thermal inactivation of a Bacillus coagulans strain isolated from medium-temperature sterilized emulsified sausage[J]. Meat Research,2017,31(4):10−16. [21] HUANG Z, GUO N, PAN Z, et al. Optimization of spore germination conditions of Clostridium sporogenes[J]. Modern Food Science and Technology,2021,37(2):49−55. [22] NIKOLAEVA L I. Properties of Bifidobacteria and their use for scientific and practical purposes[J]. Biotekhnologiya,2021,37(3):3−10. doi: 10.21519/0234-2758-2021-37-3-3-10 [23] LI W, LI H, ZHANG Y, et al. Different effects of soybean protein and its derived peptides on the growth and metabolism of Bifidobacterium animalis subsp. animalis JCM 1190[J]. Food & Function,2021,12(13):5731−5744. [24] LIU J, LIN L, BING L, et al. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum[J]. Microbial Pathogenesis,2017,110:257−261. doi: 10.1016/j.micpath.2017.06.044 [25] AKINKUGBE A O, ONILUDE A A. Selective comparability and physiological studies of lactic acid bacteria protease and Calotropis procera (linn) extracts[J]. Peerj, 2015. [26] 田露露, 华旭, 韩迪. 乳杆菌和双歧杆菌对碳水化合物体外利用的比较研究[J]. 乳业科学与技术,2022,45(1):7−14. [TIAN L L, HUA X, HAN D. Comparison of in vitro carbohydrate utilization by Lactobacilli and Bifidobacteria[J]. Journal of Dairy Science and Technology,2022,45(1):7−14. [27] TA C L, BANG Y C, CHUN Y C, et al. Comparative analysis of spray-drying microencapsulation of Bifidobacterium adolescentis and Lactobacillus acidophilus cultivated in different growth media[J]. Journal of Food Process Engineering,2019,42(7):13258. [28] 李珂, 杨秀华, 扈麟, 等. 猪骨蛋白酶解物对乳酸菌增殖作用研究[J]. 中国酿造,2009(10):12−14. [LI K, YANG X H, HU L, et al. Proliferative effect of swine bone protein hydrolysate on Lactobacillus[J]. China Brewing,2009(10):12−14. doi: 10.3969/j.issn.0254-5071.2009.10.005 [29] 董惠钧, 姜俊云, 郑立军, 等. 新型微生态益生菌凝结芽孢杆菌研究进展[J]. 食品科学,2010,31(1):292−294. [DONG H J, ZHANG J Y, ZHENG L J, et al. Research advances of novel microecologic probiotics Bacillus coagulans[J]. Food Science,2010,31(1):292−294. [30] CAO J, YU Z, LIU W, et al. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases[J]. Journal of Functional Foods,2019,64:103643. [31] 严涛, 朱建国, 姜甜, 等. 一株凝结芽孢杆菌的分离筛选及产孢条件优化[J]. 微生物学通报,2018,45(2):238−249. [YAN T, ZHU J G, JIANG T, et al. Isolation and optimization on spore-forming conditions of Bacillus coagulans[J]. Microbiology China,2018,45(2):238−249. [32] BOIX E, COUVERT O, ANDRE S, et al. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage[J]. Food Microbiology,2021,100:103832. doi: 10.1016/j.fm.2021.103832 -