• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气

张敬文, 潘磊庆, 屠康

张敬文,潘磊庆,屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. doi: 10.13386/j.issn1002-0306.2022040207.
引用本文: 张敬文,潘磊庆,屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. doi: 10.13386/j.issn1002-0306.2022040207.
ZHANG Jingwen, PAN Leiqing, TU Kang. Aroma Determination of Three Freshly Squeezed Strawberry Juice Based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2023, 44(3): 286−296. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040207.
Citation: ZHANG Jingwen, PAN Leiqing, TU Kang. Aroma Determination of Three Freshly Squeezed Strawberry Juice Based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2023, 44(3): 286−296. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040207.

基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气

基金项目: 南疆特色农产品深加工兵团重点实验室开放课题AP1901;江苏高校优势学科建设工程资助项目(PAPD)。
详细信息
    作者简介:

    张敬文(1998−),女,硕士研究生,研究方向:农产品加工与检测,E-mail:2020108041@stu.njau.edu.cn

    通讯作者:

    屠康(1968−),男,博士,教授,研究方向:农产品贮藏与加工,E-mail:kangtu@njau.edu.cn

  • 中图分类号: TS201.2;TS255.1

Aroma Determination of Three Freshly Squeezed Strawberry Juice Based on E-nose, HS-SPME-GC-MS and GC-IMS

  • 摘要: 不同草莓品种鲜榨汁风味存在较大区别,风味特征会直接影响草莓鲜榨汁消费者接受度和经济价值。本研究以妙香3号草莓、红颜草莓和黔莓2号草莓为研究对象,利用电子鼻(Electronic nose, E-nose)、顶空固相微萃取-气相色谱-质谱联用(Headspace Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry, HS-SPME-GC-MS)和气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectrometry, GC-IMS)对三种草莓鲜榨汁的挥发性风味物质进行定性和定量分析。结果表明,三种草莓鲜榨汁中挥发性风味物质含量和种类有明显差别。电子鼻可以有效区分三种草莓鲜榨汁;HS-SPME-GC-MS检测出89种挥发性风味物质,包括55种酯类、9种醛类、7种醇类、13种酮类和5种酸类。其中22种挥发性风味物质是三种草莓鲜榨汁共有的,包括11种酯类、4种醛类、芳樟醇、5种酮类及壬酸。妙香3号鲜榨汁中5-己基二氢-2(3H)-呋喃酮含量较高,红颜草莓鲜榨汁中乙酸己酯和(Z)-乙酸-2-己烯-1-醇酯含量较高,黔莓2号草莓鲜榨汁中乙酸甲酯、丁酸甲酯、己酸甲酯、己醛、(E)-2己烯醛、芳樟醇和4-甲氧基-2,5-二甲基-3(2H)-呋喃酮含量较高。GC-IMS检测出60种挥发性风味物质,包括24种酯类、12种醛类、7种醇类、10种酮类、2种呋喃和5种其他物质。丁酸乙酯、乙酸异丙酯、2-己烯醛、1-戊烯-3-醇含量在三种草莓鲜榨汁中含量均较高,是形成草莓风味特性的关键物质。
    Abstract: Flavor of different freshly squeezed strawberry juice is quite different, and its characteristics will directly affect the economic value of freshly squeezed juice. In order to explore the differences of volatile organic compounds (VOCs) in Miaoxiang No. 3 (MX3), Hongyan (HY) and Qianmei No. 2 (QM2) strawberry freshly squeezed juice, VOCs were detected by electronic nose (E-nose), headspace solid phase micro extraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) qualitatively and quantitatively. The results showed that contents and species of VOCs in three freshly squeezed strawberry juice were significantly different. E-nose could distinguish these three freshly squeezed strawberry juice in terms of aroma characteristics. 89 kinds of VOCs were detected by HS-SPME-GC-MS, including 55 esters, 9 aldehydes, 7 alcohols, 13 ketones and 5 acids. Among them, 22 kinds of VOCs were common to MX3, HY and QM2 strawberry freshly squeezed juice, including 11 kinds of esters, 4 kinds of aldehydes, linalool, 5 kinds of ketones and nonanoic acid. Content of 5-hexyldihydro-2(3H)-furanone in MX3 strawberry freshly squeezed juice was higher, while contents of hexyl acetate and (Z)-2-hexen-1-ol acetate in HY strawberry freshly squeezed juice were higher. Methyl acetate, methyl butyrate, methyl hexanoate, hexanal, (E)-2-hexenal, linalool and 4-methoxy-2,5 dimethyl-3(2H)-furanone in QM2 strawberry freshly squeezed juice were higher. 60 kinds of VOCs were identified by GC-IMS, including 24 esters, 12 aldehydes, 7 alcohols, 10 ketones, 2 furans and 5 others. Contents of ethyl butyrate, isopropyl acetate, 2-hexenal and 1-penten-3-ol were higher in the three freshly squeezed strawberry juice, which were regarded as the key VOCs for the formation of flavor characteristics in freshly squeezed strawberry juice.
  • 草莓(Fragaria×ananassa Duch.)属于浆果类[1],富含维生素C、氨基酸、膳食纤维[2]及酚类、黄酮和花青素等生物活性物质[3]。为提升草莓经济价值,草莓粉、草莓脆片、草莓酱、草莓醋和草莓汁等深加工产品日益增加[4]。随着人们对健康和绿色食品的追求,草莓鲜榨汁将有较大的市场前景。

    香气作为评价草莓鲜榨汁的重要指标,直接影响消费者的选择。目前评价果汁风味的技术主要有电子鼻(Electronic nose, E-nose)[5-6]、顶空固相微萃取-气相色谱-质谱联用(Headspace Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry, HS-SPME-GC-MS)[7-9]和气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectrometry, GC-IMS)[10]等,已经应用于评价猕猴桃汁、桃汁、蓝莓汁[11]、沙棘汁[12]、番茄汁[13]和西瓜汁[14-15]的风味特征中。HS-SPME-GC-MS借助微萃取作用对挥发性风味物质富集,利用色谱柱分离出风味物质;GC-IMS通过分离和迁移风味物质,使得分子量较小的物质以单体和二聚体的形式被检出;电子鼻可以快速表征草莓鲜榨汁的整体风味特征,有研究依据风味特征区分鲜榨和经过灭菌处理的草莓汁[5,16]。目前许多研究集中在榨汁工艺[17]和加工处理对果汁营养品质[18-20]、贮藏稳定性[21]及微生物的影响[22]等方面。有研究基于气味信息利用电子鼻区分草莓鲜榨汁和不同加工处理的草莓汁[23],但没有表征草莓汁具体香气物质的含量和组成。草莓汁风味特性是多种挥发性风味物质相互作用的结果,明确每种挥发性风味物质变化极为重要,目前缺乏具体表征不同品种草莓鲜榨汁挥发性风味物质的研究。

    妙香3号草莓、红颜草莓和黔莓2号草莓分别为山东省、江苏省和四川省主要种植品种。本研究对三种典型草莓品种的鲜榨汁进行研究,利用E-nose、HS-SPME-GC-MS和GC-IMS对风味进行评价,通过定性和定量分析明确三种草莓鲜榨汁的挥发性风味物质差异,为鲜榨果汁风味品质评价和包装保鲜提供依据。

    妙香3号草莓约花期40 d 采摘于江苏省南京市栖霞区;红颜草莓约花期40 d 采摘于江苏省南京市江宁区;黔莓2号草莓约花期50 d 采摘于四川省大凉山;壬酸乙酯、丙二醇 国产分析纯。

    CTHI-250B恒温恒湿箱 施都凯仪器设备公司(中国); SJYZ23D 立式挤压原汁机 苏泊尔公司(中国); PEN3电子鼻 Airsense公司(德国); TSQ9000 三重四极杆GC-MS/MS 赛默飞公司(中国); GC-IMS FlavourSpec® G.A.S公司(德国)。

    挑选无病害,色泽鲜亮且成熟度基本一致(八成熟)的妙香3号(MX3)和红颜草莓(HY),采摘后2 h内运往实验室;黔莓2号(QM2)草莓(八成熟)采摘后当天运输至实验室,去除机械损伤的草莓,散除田间热。脱去萼片并用蒸馏水清洗三遍,然后进行榨汁处理。将草莓鲜榨汁放置于提前灭菌处理的200 mL玻璃瓶中,于温度为4±1 ℃,相对湿度为95%的恒温恒湿箱中保存以进行实验相关指标测定。

    参考高丽萍[24]的方法并进行修改。吸取10 mL草莓鲜榨汁于250 mL玻璃烧杯中,用锡箔纸密封15 min使得挥发性风味化合物在烧杯顶部达到平衡。实验条件:样品间隔时间为1 s,传感器清洗时间为60 s,自动调零时间为5 s,样品准备时间为5 s,传感器和内部流量分别为400 mL/min和150 mL/min,检测时间为90 s。每种草莓鲜榨汁样本重复20次。利用WINmuster对电子鼻检测结果进行主成分分析(Principal Component Analysis,PCA)、线性判别分析(Linear Discriminant Analysis,LDA)和载荷分析(Loadings,LA)。电子鼻传感器响应值在80 s后达到稳定,故80 s处的传感器响应值用来做数据分析。

    参考张琴等[25]的方法并进行修改。吸取10 g草莓鲜榨汁于20 mL顶空瓶中,加入10 μL稀释1000倍的内标物壬酸乙酯(5 mg/mL),立即密封顶空瓶,每种草莓鲜榨汁重复3次测定。

    HP-5 石英毛细柱(30 m×0.25 mm×0.25 μm);载气流量是1.2 mL/min(氦气),不分流进样。程序升温设定:初始温度为45 ℃,以15 ℃/min升至60 ℃,维持2 min,以8 ℃/min升至220 ℃,维持1 min,最后以40 ℃/min升至260 ℃。

    电子能量为70 eV;离子源和四极杆温度分别为280 ℃和250 ℃;扫描区间为35~450 m/z。

    利用Xcalibur V4.2对HS-SPME-GC-MS检测结果进行分析。定性:通过与NIST数据库比对。定量:采用内标法[25]。以壬酸乙酯作为内标:(μg/kg)=×(μg)×(kg)

    吸取2 g草莓鲜榨汁于20 mL顶空瓶中,加入10 μL稀释1000倍的内标物壬酸乙酯(5 mg/mL),立即密封顶空瓶,每种草莓鲜榨汁样本重复3次。GC-IMS测定顶草莓汁挥发性风味物质的条件参考付勋等[26]稍作修改。

    样品孵化条件为60 ℃,15 min,500 r/min;进样针温度为65 ℃;进样量为500 μL。

    色谱柱和探测器温度分别为60 ℃和45 ℃;载气流速为150 mL/min (N2);分析时间为30 min。

    利用LAV(Laboratory Analytical Viewer)对GC-IMS检测结果进行分析。Gallery Plot插件绘制指纹图谱;Reporter插件绘制差异谱图;Dynamic PCA插件绘制动态PCA图。定性:通过与NIST及IMS数据库比对。定量:采用内标法,以壬酸乙酯作为内标,计算如1.2.3.3中公式。

    利用OriginPro2021b、TB tools绘制图表;使用SPSS18.0对挥发性风味物质的相对含量进行统计分析,采用Duncan多重比较检验进行差异显著性分析(P<0.05),定量结果表示成平均值±标准差。

    E-nose可以快速表征样品的整体挥发性气味信息,每个传感器对特定的挥发性风味物质较为敏感(表1),传感器电阻比值代表对挥发性成分物质响应值的高低。

    表  1  电子鼻传感器性能描述
    Table  1.  The description of E-nose sensor performance
    阵列序号传感器名称传感器敏感性能描述
    S1W1C对苯等芳香类成分敏感
    S2W5S灵敏度大,对氮氧化合物很灵敏
    S3W3C氨水,对芳香成分灵敏
    S4W6S主要对氢气有选择性
    S5W5C对烷烃类芳香成分敏感
    S6W1S对甲烷等短链烷烃灵敏
    S7W1W对无机硫化物灵敏
    S8W2S对醇醚醛酮类灵敏
    S9W2W对芳香成分、有机硫化物灵敏
    S10W3S对长链烷烃类成分灵敏
    下载: 导出CSV 
    | 显示表格

    图1所示,电子鼻10个传感器对每种草莓鲜榨汁的响应值不同,说明三种草莓鲜榨汁挥发性成分存在差异。S2(对氮氧化合物敏感)、S7(对硫化物敏感)和S9(对芳香成分、有机硫化物敏感)对草莓鲜榨汁的挥发性风味物质响应较高,其余传感器响应不高且区别不大。电子鼻PCA、LDA和Loadings分析结果如图2所示。图2a中,PC1和PC2的贡献率分别为94.02%和5.20%,总贡献率达99.22%,这两个主成分可以很好地代表草莓鲜榨汁挥发性风味成分的整体信息。妙香3号和黔莓2号鲜榨汁整体信息出现交叠,说明二者的整体风味信息具有一定的相似性;红颜草莓鲜榨汁与妙香3号和黔莓2号草莓鲜榨汁相距较远,说明红颜草莓鲜榨汁风味特征与其他两种鲜榨汁相比区别较为明显。

    图  1  妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性成分的电子鼻传感器响应强度雷达图
    Figure  1.  Radar map of sensor respond values of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice measured by E-nose
    图  2  妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性风味物质的电子鼻PCA(a)、LDA(b)和Loadings(c)分析图
    Figure  2.  PCA (a), LDA (b) and Loadings (c) plots of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice measured by E-nose

    图2b为LDA分析结果,PC1和PC2的贡献率分别为80.23%和12.53%,总贡献率达到92.76%,可以有效代表三种草莓鲜榨汁的风味信息。LDA分析结果与PCA有所不同,因为前者是有监督降维算法,而后者是无监督降维算法。LDA对三种草莓鲜榨汁区分效果比PCA好,其中妙香3号与其他两种草莓鲜榨汁有明显区别。传感器载荷(Loadings)分析结果如图2c所示,传感器S2、S7和S9离坐标原点均较远,即传感器S2在第一主成分上贡献率最大,传感器S7和S9在第二主成份上贡献率较大,这一结果表明S2、S7和S9是特征传感器,与Liu等[27]的研究一致,说明氮氧化物、硫化物和芳香成分对草莓鲜榨汁香气特征有较大的贡献,总贡献率达99.22%。三种草莓鲜榨汁挥发性风味成分存在明显差异,因此可以使用E-nose依据挥发性风味特征区分不同品种草莓鲜榨汁。

    HS-SPME-GC-MS共检测出89种物质(表2),包含酯类(55种)、醛类(9种)、醇类(7种)、酮类(13种)和酸类(5种)。图3表示每种草莓鲜榨汁挥发性风味物质分布。图3a可见三种草莓鲜榨汁含有的挥发性风味物质总含量不同,妙香3号、红颜及黔莓2号鲜榨汁风味组成分别以酮类、酯类和醛类物质风味特性为主。图3b表示三种草莓鲜榨汁含有的挥发性风味物质种类。所含酯类(“果香”型物质)种类最多,醛类、酮类物质次之,这与Azodanlou等[28]的研究一致。红颜草莓鲜榨汁的挥发性风味物质中酯类物质的种类低于妙香3号和黔莓2号鲜榨汁。

    表  2  HS-SPME-GC-MS检测妙香3号、红颜及黔莓2号草莓鲜榨汁的挥发性风味物质
    Table  2.  VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by HS-SPME-GC-MS
    类别序号化合物种类含量 (μg/kg)
    妙香3号红颜黔莓2号
    酯类1乙酸甲酯0.305±0.047b1.25±0.091b10.066±0.197a
    2乙酸异丙酯ND0.065±0.01b1.894±0.035a
    3乙酸乙酯0.063±0.001bND0.771±0.012a
    4丙酸甲酯NDND0.330±0.001
    5丁酸甲酯1.021±0.095b2.776±0.244b14.185±0.272a
    6异戊酸甲酯NDND3.238±0.053
    72-丁醇-3-甲基乙酸酯NDND3.590±0.040
    8丁酸异丙酯NDND1.079±0.001
    91-乙基丙基乙酸酯NDND5.639±0.064
    101-丁醇3-甲基乙酸酯NDND2.269±0.031
    111-丁醇2-甲基乙酸酯NDND1.960±0.025
    12乙酸戊酯NDND0.749±0.015
    132-甲基丁-2-烯-1-乙酸酯NDND0.374±0.006
    14己酸甲酯5.294±0.445b9.934±1.388ab13.238±0.465a
    15己酸乙酯1.600±0.156a1.555±0.202a1.564±0.012a
    16乙酸己酯3.189±0.193b14.382±2.130a11.388±0.170a
    17己酸-1-甲基乙基酯0.095±0.010NDND
    184-辛烯酸甲酯0.053±0.006NDND
    19辛酸甲酯0.768±0.031a0.451±0.099aND
    20乙酸苯甲酯0.232±0.015b0.022±0.001b3.678±0.01a
    21丁酸己酯0.979±0.044b1.853±0.010aND
    22(E)-丁酸-2-己烯酯0.863±0.025b1.926±0.068aND
    233,4-二甲基-苯甲醛ND0.836±0.269ND
    241-甲基丁酸丁酯ND0.262±0.050ND
    25辛酸乙酯0.116±0.012NDND
    26水杨酸甲酯NDND0.132±0.010
    272-甲基-丙酸己酯NDND0.892±0.021
    28(Z)-丁酸-2-己烯酯NDND0.793±0.026
    292-甲基己酸丁酯NDND1.674±0.061
    30己酸-3-戊酯NDND1.696±0.091
    31乙酸-2-苯乙酯NDND5.176±0.031
    32乙酸对甲基苄酯NDND11.674±0.035
    33乙酸辛酯0.811±0.025NDND
    343-甲基-丁酸己酯0.221±0NDND
    35反-2-己烯基异戊酸酯0.126±0.010a0.102±0.012aND
    36己酸异戊酯0.505±0.010NDND
    37癸酸甲酯0.074±0.005NDND
    38(Z)-己酸-3-己烯酯0.111±0.021b1.453±0.186a0.859±0b
    39邻氨基苯甲酸甲酯ND0.196±0.010ND
    40己酸己酯2.989±0.192a1.744±0.200b1.013±0b
    41丁酸辛酯4.2±0.239NDND
    423-己酸庚酯0.063±0NDND
    43丁酸-1-甲基辛酯0.147±0.006NDND
    44乙酸癸酯0.189±0NDND
    453-甲基-丁酸辛酯1.621±0.061aND0.154±0b
    462-甲基丁酸3-辛酯ND0.501±0.080ND
    47丁酸十一烷酯0.142±0.007NDND
    48十一烷基己酸-2-烯酯0.126±0.028NDND
    49己酸辛酯2.453±0.336a0.443±0.097b0.595±0b
    50γ-十二内酯4.379±0.582a2.071±0.284aND
    512,2,4-三甲基-1,3-戊二醇二异丁酸酯0.411±0.010NDND
    52己酸癸酯0.063±0.010NDND
    酯类53邻苯二甲酸二丁酯0.326±0.045b0.385±0.042b0.991±0a
    54(Z)-2-丙烯醋酸盐NDND0.330±0
    55(E)-乙酸-2-己烯-1-醇酯5.158±0.245c24.004±3.262a15.374±0.250b
    醛类56己醛8.032±0.904c17.689±2.046b58.216±0.387a
    57(E)-2-己烯醛6.063±0.822c14.818±0.826b110.991±0.552a
    58庚醛0.079±0.007bND0.264±0.010a
    59(Z)-2-庚烯醛0.116±0.006b0.182±0.025b0.595±0a
    60苯甲醛0.253±0b0.291±0.012b0.363±0.007a
    61辛醛NDND0.727±0.030
    62壬醛1.405±0.120bND5.782±0.205a
    63癸醛0.147±0.006bND0.441±0.015a
    64(Z)-2-癸烯醛0.095±0a0.087±0.010aND
    醇类653-甲基-2-庚醇NDND1.035±0.012
    66(E)-2-戊烯醇0.079±0.007bND0.727±0.042a
    671-己醇0.674±0.085b3.445±0.219aND
    682-癸醇0.268±0.035NDND
    69顺-α,α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇0.042±0.006NDND
    70芳樟醇21.326±2.491b10.531±0.427c51.652±0.665a
    712-甲基-4-烯丙氧基戊二醇ND0.509±0.118ND
    酮类72丙酮0.379±0.072b0.211±0.021b0.771±0.031a
    732,3-丁二酮0.253±0.044b0.138±0.005b0.815±0.015a
    744-羟基-3-丙基-2-己酮0.032±0NDND
    752-庚酮0.4±0.031a0.436±0.026aND
    761-辛烯-3-酮ND0.044±0.010ND
    774-甲氧基-2,5-二甲基-3(2H)-呋喃酮0.916±0.036b1.337±0.146b10.859±0.200a
    782,5-二甲基呋喃-3,4(2H,5H)-二酮0.095±0.010a0.073±0.012aND
    792-壬酮0.032±0NDND
    803-壬烯-2-酮0.137±0.005a0.087±0b0.176±0.006a
    81紫罗兰酮0.032±0NDND
    823-乙基-4-庚酮ND0.647±0.323ND
    834,5-辛二酮ND0.843±0.234ND
    845-己基二氢-2(3H)-呋喃酮24.126±1.748a2.965±0.827b4.295±0.141b
    酸类85己酸ND1.577±0.501a0.727±0.026a
    862-乙基-己酸NDND1.233±0.042
    87辛酸0.453±0.023a0.262±0.030bND
    88新癸酸ND0.138±0.025ND
    89壬酸0.079±0.007b0.131±0.044b0.815±0.035a
    注:ND代表未检测出;同行不同小写字母表示差异显著(P<0.05),表3同。
    下载: 导出CSV 
    | 显示表格
    图  3  HS-SPME-GC-MS检测妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性风味物质的含量和种类
    Figure  3.  Content and species of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by HS-SPME-GC-MS

    定量分析结果如表2所示,三种草莓鲜榨汁中挥发性风味物质种类和含量存在较为明显的差异。整体而言,妙香3号和黔莓2号草莓鲜榨汁挥发性风味物质种类比红颜草莓鲜榨汁高。三种草莓鲜榨汁中,妙香3号草莓鲜榨汁中挥发性风味物质含量较低,黔莓2号草莓鲜榨汁中挥发性风味物质含量较高,其中己醛和(E)-2-己烯醛含量远高于其他两种草莓鲜榨汁,分别高达58.216、110.991 μg/kg。乙酸辛酯(柑橘、苹果和桃子香气)、3-甲基-丁酸己酯等是妙香3号草莓鲜榨汁特有的;1-辛烯-3-酮(奶油香气)等是红颜草莓鲜榨汁特有的;丙酸甲酯、异戊酸甲酯等是黔莓2号草莓鲜榨汁特有的,这可能与草莓品种和环境条件尤其是金属类物质[29]、采收时间等[30]有关。三种草莓鲜榨汁共有的挥发性风味物质有22种,包括11种酯类(乙酸甲酯、丁酸甲酯、己酸甲酯等)、4种醛类(己醛、(E)-2-己烯醛、(Z)-2-庚烯醛等)、芳樟醇、5种酮类(乙酮、2,3-丁二酮等)及壬酸。通过分析可以得出(Z)-己酸-3-己烯酯(果香、苹果-梨样香气)在红颜草莓鲜榨汁中含量最高;己酸辛酯、己酸己酯(嫩荚青刀豆香气和生水果香味)在妙香3号鲜榨汁含量最丰富;乙酸甲酯、丁酸甲酯、己酸甲酯、己醛、(E)-2-己烯醛、芳樟醇和4-甲氧基-2,5-二甲基-3(2H)-呋喃酮在黔莓2号草莓鲜榨汁中含量较高,其中芳樟醇和4-甲氧基-2,5-二甲基-3(2H)-呋喃酮(焦糖味[31])在黔莓2号中含量远高于其他两种草莓。5-己基二氢-2(3H)-呋喃酮又称为γ-癸内酯(桃香味[32])在妙香3号草莓汁中含量远高于其他两种草莓鲜榨汁。通过与已有研究[33-34]比较,草莓鲜榨汁与整果果实风味特征存在差异性和相似性,可能是由于原料加工及产品贮藏的过程中,化学组分的改变赋予了草莓鲜榨汁与原果实不同的风味[35]

    GC-IMS共检测出60种挥发性风味物质(表3),包括酯类(24种)、醛类(12种)、醇类(7种)、酮类(10种)、呋喃(2种)和其他物质(5种)。挥发性风味物质在GC的分离和IMS的迁移作用下被检测出来,不同区域表示特定的物质[36],横纵坐标分别表示离子迁移时间和保留时间。

    表  3  GC-IMS检测妙香3号、红颜及黔莓2号草莓鲜榨汁的挥发性风味物质
    Table  3.  VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS
    序号化合物名称CAS编号分子式保留时间(s)迁移时间(ms)备注含量 (μg/kg)
    妙香3号红颜黔莓2号
    1乙酸甲酯C79209C3H6O2136.0041.1948109.552±0.686b119.203±1.23a119.016±0.335a
    2丙酸乙酯C105373C5H10O2235.3131.4333D109.672±0.088a107.203±0.76b106.058±0.025c
    3丙酸乙酯C105373C5H10O2240.0131.148M22.736±0.595c25.461±0.292a23.731±0.299b
    4丁酸乙酯C105544C6H12O2310.4111.56498.693±0.268a93.354±0.502b88.197±1.488c
    5乙酸异戊酯C123922C7H14O2409.9441.316114.277±0.195a14.702±0.548a15.183±1.096a
    62-甲基丁酸甲酯C868575C6H12O2283.8131.1998M17.474±1.679a17.681±0.898a14.911±1.827a
    7(E)-2-辛烯醛C2548870C8H14O797.9481.829D4.836±0.213a2.988±0.19b3.445±0.385b
    8(E)-2-辛烯醛C2548870C8H14O800.9511.3309M12.168±0.871a10.799±0.675a10.773±1.226a
    92-甲基丁酸甲酯C868575C6H12O2281.1111.5385D85.465±1.306b58.37±1.128c89.367±0.95a
    10异丁酸乙酯C97621C6H12O2246.671.187117.721±0.794a16.217±0.016b7.13±0.307c
    11乙酸异丙酯C108214C5H10O2189.191.481947.836±2.305c75.518±1.743b99.563±0.318a
    122-羟基丙酸乙酯C97643C5H10O3338.6591.556321.831±1.391a11.751±1.322c18.039±2.186b
    13丁酸己酯C2639636C10H20O21227.7231.49065.17±0.324a3.515±0.324b2.473±0.386c
    14丁酸异戊酯C106274C9H18O2764.4241.38616.639±0.189a4.227±0.369b8.193±1.423a
    15乙酸己酯C142927C8H16O2626.4361.38282.486±0.004b1.901±0.084b4.22±0.684a
    16丙酸异丁酯C540421C7H14O2369.6121.699338.728±2.655b32.725±1.183c62.9±2.47a
    17乙酸庚酯C112061C9H18O2988.9371.43528.237±0.318a2.152±0.027b1.665±0.038c
    182-甲基丁酸丁酯C15706737C9H18O2736.1591.8809D11.075±2.689b15.516±1.669a6.858±0.972c
    192-甲基丁酸丁酯C15706737C9H18O2734.7261.3677M4.007±0.306b4.177±0.126b11.251±1.805a
    20乙酸戊酯C628637C7H14O2481.461.3229M8.663±0.501b5.172±0.516c11.684±0.577a
    21乙酸戊酯C628637C7H14O2482.1461.7651D5.468±0.453b1.909±0.091c7.484±1.293a
    222-甲基丁醇乙酸酯C624419C7H14O2419.5431.739838.609±2.235b10.465±0.34c54.773±1.619a
    23乙酸丁酯C123864C6H12O2325.5841.61927.895±1.444a10.22±0.737b24.769±2.553a
    24庚酸甲酯C106730C8H16O2674.7921.804558.594±1.556a22.731±0.409b14.944±2.301c
    25乙酸乙酯C141786C4H8O2167.1771.3341D108.398±0.739a55.792±2.791b106.19±0.678a
    26乙酸乙酯C141786C4H8O2167.4021.0901M25.675±0.408b28.021±0.902a14.375±0.248c
    272-甲基丙醛C78842C4H8O119.6531.1113126.743±0.556a113.631±7.484b103.33±5.152b
    28癸醛C112312C10H20O1300.0241.53532.717±0.204a2.276±0.281a2.555±0.328a
    29(E)-2-壬烯醛C18829566C9H16O1092.5611.41212.785±0.125a2.771±0.037a2.662±0.305a
    30(E)-2-庚醛C18829555C7H12O567.8761.263617.593±0.924a17.262±0.835a17.779±1.143a
    312-己烯醛C505577C6H10O384.9841.5138101.009±0.597a101.157±0.312a97.016±0.174b
    323-甲基丁醛C590863C5H10O189.6441.168223.557±0.77b26.875±0.76a19.148±0.457c
    335-甲基糠醛C620020C6H6O2566.2941.47596.364±0.949a4.18±0.969b3.956±0.979b
    34庚醛C110430C7H14O437.4951.26646.81±0.471a6.565±0.198a6.982±0.433a
    35壬醛C124196C9H18O922.8921.9482D1.658±0.042b2.356±0.973b3.932±0.321a
    36壬醛C124196C9H18O922.6921.4778M6.579±0.241c10.256±2.383b13.625±0.309a
    371-戊烯-3-醇C616251C5H10O207.8081.349786.559±1.432a46.127±1.211c70.104±1.426b
    382-呋喃甲硫醇C98022C5H6OS457.2621.33511.253±0.505b13.908±1.221a14.07±0.704a
    391-庚醇C111706C7H16O571.1621.37824.784±0.52a3.133±0.447b2.201±0.173c
    401-辛烯-3-醇C3391864C8H16O572.9091.15410.082±0.361a8.28±0.701a10.015±2.763a
    413-甲基-1-戊醇C589355C6H14O369.4951.612530.288±0.611b28.983±0.969b54.575±0.214a
    42芳樟醇C78706C10H18O923.991.2201M51.034±0.564a27.215±4.982b31.545±1.745b
    43芳樟醇C78706C10H18O910.7841.7147D5.853±0.197a1.751±0.253b1.986±0.094b
    442,3-丁二酮C431038C4H6O2127.5311.155973.565±0.578a73.514±1.38a65.892±0.087b
    45苯乙酮C98862C8H8O798.3531.5492D3.486±0.356a3.005±0.481a3.924±0.861a
    461-辛烯-3-醇C4312996C8H14O567.7281.677114.466±0.539a9.073±0.701c11.449±0.64b
    472-丁酮C78933C4H8O153.3241.250557.51±0.46a21.875±2.4c29.171±1.106b
    482-庚酮C110430C7H14O437.061.625D63.534±0.64a28.725±0.565b13.872±0.664c
    492-庚酮C111717C7H14O452.6651.7028M9.287±0.392a3.935±0.289b4.377±0.707b
    503-羟基-4-5-二甲基-2-5H-呋喃酮C28664359C6H8O3986.2791.62352.264±0.432a0.929±0.047b0.948±0.062b
    512-壬酮C821556C9H18O889.4931.41462.307±0.022a1.323±0.115b1.385±0.089b
    523-甲基-2-戊酮C565617C6H12O262.3191.48895.144±0.225b4.245±0.256b24.374±1.25a
    53苯乙酮C98862C8H8O813.2271.1938M7.34±0.535b6.178±0.356c9.866±0.62a
    542-戊基呋喃C3777693C9H14O655.6681.254620.36±0.598a16.8±0.935b15.562±0.411b
    552-乙酰呋喃C1192627C6H6O2454.9641.42464.041±0.657a4.046±0.565a4.698±0.804a
    562-乙酰吡嗪C22047252C6H6N2O680.8191.54425.595±1.046a4.272±0.974a4.191±0.857a
    572-乙基-3-甲基吡嗪C15707230C7H10N2642.0851.182314.953±0.675a6.823±0.149b5.589±0.196c
    58α-蒎烯C80568C10H16505.8171.2891M21.293±1.099a22.547±0.768a21.027±1.651a
    59α-蒎烯C80568C10H16504.2951.6844D92.045±0.231a83.766±0.102b82.559±1.126b
    602-甲基丙酸C79312C4H8O2260.8041.362424.787±0.223b23.499±2.372b29.698±0.622a
    注:M代表单体,D代表二聚体。
    下载: 导出CSV 
    | 显示表格

    为了更加直观地反映出三种草莓鲜榨汁挥发性物质的差别,以黔莓2号鲜榨汁为对照,扣除蓝色背景,红色区域代表挥发性物质含量较黔莓2号鲜榨汁高,白色区域代表物质浓度较低。利用Reporter插件绘制出差异谱图,如图4所示。保留时间为200~1000 s,迁移时间为1.0~2.0 ms区域内的草莓鲜榨汁挥发性风味物质信号较强;红框代表的物质在不同草莓鲜榨汁中颜色深浅不同,说明妙香3号鲜榨汁中挥发性风味物质种类和含量均较高。利用Gallery Plot插件绘制指纹图谱,如图5所示。指纹图谱可以直观地反映出草莓鲜榨汁中检测出的挥发性成分之间的差异,颜色的深浅代表峰强度的大小,峰强度对应挥发性风味物质含量。红框区域代表在红颜草莓鲜榨汁中含量极少,这与图4所示结果一致,包括15种酯类(2-羟基丙酸乙酯、丁酸己酯、丁酸异戊酯、乙酸己酯、丙酸异丁酯、乙酸庚酯、2-甲基丁酸丁酯-M、2-甲基丁酸丁酯-D、乙酸戊酯-M、乙酸戊酯-D、2-甲基丁醇乙酸酯、乙酸丁酯、庚酸甲酯、乙酸乙酯-D、乙酸乙酯-M)、3种醇类(3-甲基-1-戊醇、芳樟醇-M、芳樟醇-D)、10种酮类(2,3-丁二酮、苯乙酮-D、1-辛烯-3-酮、2-丁酮、2-庚酮-D、2-庚酮-M、3-羟基-4-5-二甲基-2-5H-呋喃酮、2-壬酮、3-甲基-2-戊酮、苯乙酮-M)和2-戊基呋喃。

    图  4  妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性组分GC-IMS二维差异图谱
    Figure  4.  Two-dimensional difference spectra of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS
    图  5  妙香3号、红颜及黔莓2号草莓鲜榨汁60种挥发性组分GC-IMS指纹图谱
    Figure  5.  Fingerprint of 60 species VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    挥发性风味物质的不同芳香特征如花香、果香、青草香和焦糖味等共同组成草莓鲜榨汁的风味轮廓[28,37-38]。结合表3图5,乙酸甲酯、丁酸乙酯、(E)-2-壬烯醛 (黄瓜清香味)、 2-己烯醛、庚醛(柑橘香味)、α-蒎烯-M(松木、针叶及树脂样气息)和2-甲基丙酸等36种物质在三种草莓鲜榨汁中含量相近。乙酸异丙酯、丙酸异丁酯、乙酸庚酯、2-甲基丁酸丁酯-M、2-甲基丁醇乙酸酯、乙酸丁酯、庚酸甲酯、乙酸乙酯-D、乙酸乙酯-M、1-戊烯-3-醇、芳樟醇-D、2-庚酮-D和3-甲基-2-戊酮等这13种物质含量在三种草莓鲜榨汁中差别较大,可能与草莓品种和化学成分如糖酸比等有关。

    利用动态PCA分析筛选三种草莓鲜榨汁的关键性风味物质,两个主成分的贡献率达到98%(PC1:50%;PC2:48%),结果如图6所示。妙香3号、红颜和黔莓2号鲜榨汁之间距离较远,说明三种草莓鲜榨汁可以依据这11种物质有效区分开,这些物质包括3-甲基丁醛、2-己烯醛、丙酸乙酯-M(菠萝香,微涩似芝麻)、丁酸乙酯(菠萝、苹果、香蕉气息)、乙酸异丙酯、3-甲基-1-戊醇、苯乙酮-M、2-甲基丁酸甲酯、1-戊烯-3-醇、芳樟醇-D(风信子香)、乙酸庚酯,说明这11种物质为三种草莓鲜榨汁的特征性挥发风味物质。其中丁酸乙酯、乙酸异丙酯、2-己烯醛、1-戊烯-3-醇含量在三种草莓鲜榨汁中含量均较高,是草莓风味的重要组成成分。

    图  6  妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性组分GC-IMS动态PCA分析
    注:M和D分别表示单体和二聚体。
    Figure  6.  Dynamic PCA plot of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    由于IMS数据库还不够完善,利用GC-IMS检测出的草莓鲜榨汁风味物质种类比HS-SPME-GC-MS少,但GC-IMS可以检测出以单体和二聚体形式存在的挥发性风味物质(丙酸乙酯、乙酸戊酯等)及HS-SPME-GC-MS未能检出的物质(庚酸甲酯、1-辛烯-3-醇等)。综合分析HS-SPME-GC-MS和GC-IMS结果,可以全面表征三种草莓鲜榨汁挥发性风味物质的差异。

    利用E-nose、HS-SPME-GC-MS和GC-IMS定性和定量分析妙香3号、红颜和黔莓2号草莓鲜榨汁的挥发性风味化合物,E-nose可以根据其气味特征差异区分三种草莓鲜榨汁。HS-SPME-GC-MS共检测出挥发性风味化合物89种,其中妙香3号、红颜和黔莓2号草莓鲜榨汁挥发性物质分别为60种、45种和65种,包括酯类、醛类、醇类、酮类和酸类5大类。妙香3号、红颜及黔莓2号草莓鲜榨汁风味组成分别以酮类、酯类和醛类物质风味特性为主,其中含22种共有的挥发性风味物质,包括乙酸甲酯、丁酸甲酯、己酸甲酯等11种酯类;己醛、(E)-2-己烯醛、(Z)-2庚烯醛等4种醛类;芳樟醇;乙酮、2, 3-丁二酮等5种酮类及壬酸。GC-IMS共检测出60种物质,乙酸异丙酯、丙酸异丁酯、乙酸庚酯、2-甲基丁酸丁酯-M、2-甲基丁醇乙酸酯、乙酸丁酯、庚酸甲酯、乙酸乙酯-D、乙酸乙酯-M、1-戊烯-3-醇、芳樟醇-D、2-庚酮-D和3-甲基-2-戊酮等13种物质的含量在三种草莓鲜榨汁中差别较大;通过动态PCA分析筛选出三种草莓鲜榨汁的11种特征风味物质,包括3-甲基丁醛、2-己烯醛、丙酸乙酯-M、丁酸乙酯、乙酸异丙酯、3-甲基-1-戊醇、苯乙酮-M、2-甲基丁酸甲酯、1-戊烯-3-醇、芳樟醇-D和乙酸庚酯。

    本研究能够为不同品种草莓鲜榨汁的香气分析提供依据,利用E-nose可以根据其整体风味差异区分三种草莓鲜榨汁;利用HS-SPME-GC-MS可以对三种草莓鲜榨汁挥发性风味物质进行定性和定量表征,但该方法一般检测出分子量较大的物质;GC-IMS能够检测出以单体和二聚体形式存在的挥发性风味物质如丙酸乙酯、乙酸戊酯等及庚酸甲酯、1-辛烯-3-醇等HS-SPME-GC-MS未能检出的物质。因此为实现对三种草莓鲜榨汁具体差异性风味物质的表征,应考虑结合HS-SPME-GC-MS和GC-IMS技术。

  • 图  1   妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性成分的电子鼻传感器响应强度雷达图

    Figure  1.   Radar map of sensor respond values of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice measured by E-nose

    图  2   妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性风味物质的电子鼻PCA(a)、LDA(b)和Loadings(c)分析图

    Figure  2.   PCA (a), LDA (b) and Loadings (c) plots of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice measured by E-nose

    图  3   HS-SPME-GC-MS检测妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性风味物质的含量和种类

    Figure  3.   Content and species of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by HS-SPME-GC-MS

    图  4   妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性组分GC-IMS二维差异图谱

    Figure  4.   Two-dimensional difference spectra of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    图  5   妙香3号、红颜及黔莓2号草莓鲜榨汁60种挥发性组分GC-IMS指纹图谱

    Figure  5.   Fingerprint of 60 species VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    图  6   妙香3号、红颜及黔莓2号草莓鲜榨汁挥发性组分GC-IMS动态PCA分析

    注:M和D分别表示单体和二聚体。

    Figure  6.   Dynamic PCA plot of VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    表  1   电子鼻传感器性能描述

    Table  1   The description of E-nose sensor performance

    阵列序号传感器名称传感器敏感性能描述
    S1W1C对苯等芳香类成分敏感
    S2W5S灵敏度大,对氮氧化合物很灵敏
    S3W3C氨水,对芳香成分灵敏
    S4W6S主要对氢气有选择性
    S5W5C对烷烃类芳香成分敏感
    S6W1S对甲烷等短链烷烃灵敏
    S7W1W对无机硫化物灵敏
    S8W2S对醇醚醛酮类灵敏
    S9W2W对芳香成分、有机硫化物灵敏
    S10W3S对长链烷烃类成分灵敏
    下载: 导出CSV

    表  2   HS-SPME-GC-MS检测妙香3号、红颜及黔莓2号草莓鲜榨汁的挥发性风味物质

    Table  2   VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by HS-SPME-GC-MS

    类别序号化合物种类含量 (μg/kg)
    妙香3号红颜黔莓2号
    酯类1乙酸甲酯0.305±0.047b1.25±0.091b10.066±0.197a
    2乙酸异丙酯ND0.065±0.01b1.894±0.035a
    3乙酸乙酯0.063±0.001bND0.771±0.012a
    4丙酸甲酯NDND0.330±0.001
    5丁酸甲酯1.021±0.095b2.776±0.244b14.185±0.272a
    6异戊酸甲酯NDND3.238±0.053
    72-丁醇-3-甲基乙酸酯NDND3.590±0.040
    8丁酸异丙酯NDND1.079±0.001
    91-乙基丙基乙酸酯NDND5.639±0.064
    101-丁醇3-甲基乙酸酯NDND2.269±0.031
    111-丁醇2-甲基乙酸酯NDND1.960±0.025
    12乙酸戊酯NDND0.749±0.015
    132-甲基丁-2-烯-1-乙酸酯NDND0.374±0.006
    14己酸甲酯5.294±0.445b9.934±1.388ab13.238±0.465a
    15己酸乙酯1.600±0.156a1.555±0.202a1.564±0.012a
    16乙酸己酯3.189±0.193b14.382±2.130a11.388±0.170a
    17己酸-1-甲基乙基酯0.095±0.010NDND
    184-辛烯酸甲酯0.053±0.006NDND
    19辛酸甲酯0.768±0.031a0.451±0.099aND
    20乙酸苯甲酯0.232±0.015b0.022±0.001b3.678±0.01a
    21丁酸己酯0.979±0.044b1.853±0.010aND
    22(E)-丁酸-2-己烯酯0.863±0.025b1.926±0.068aND
    233,4-二甲基-苯甲醛ND0.836±0.269ND
    241-甲基丁酸丁酯ND0.262±0.050ND
    25辛酸乙酯0.116±0.012NDND
    26水杨酸甲酯NDND0.132±0.010
    272-甲基-丙酸己酯NDND0.892±0.021
    28(Z)-丁酸-2-己烯酯NDND0.793±0.026
    292-甲基己酸丁酯NDND1.674±0.061
    30己酸-3-戊酯NDND1.696±0.091
    31乙酸-2-苯乙酯NDND5.176±0.031
    32乙酸对甲基苄酯NDND11.674±0.035
    33乙酸辛酯0.811±0.025NDND
    343-甲基-丁酸己酯0.221±0NDND
    35反-2-己烯基异戊酸酯0.126±0.010a0.102±0.012aND
    36己酸异戊酯0.505±0.010NDND
    37癸酸甲酯0.074±0.005NDND
    38(Z)-己酸-3-己烯酯0.111±0.021b1.453±0.186a0.859±0b
    39邻氨基苯甲酸甲酯ND0.196±0.010ND
    40己酸己酯2.989±0.192a1.744±0.200b1.013±0b
    41丁酸辛酯4.2±0.239NDND
    423-己酸庚酯0.063±0NDND
    43丁酸-1-甲基辛酯0.147±0.006NDND
    44乙酸癸酯0.189±0NDND
    453-甲基-丁酸辛酯1.621±0.061aND0.154±0b
    462-甲基丁酸3-辛酯ND0.501±0.080ND
    47丁酸十一烷酯0.142±0.007NDND
    48十一烷基己酸-2-烯酯0.126±0.028NDND
    49己酸辛酯2.453±0.336a0.443±0.097b0.595±0b
    50γ-十二内酯4.379±0.582a2.071±0.284aND
    512,2,4-三甲基-1,3-戊二醇二异丁酸酯0.411±0.010NDND
    52己酸癸酯0.063±0.010NDND
    酯类53邻苯二甲酸二丁酯0.326±0.045b0.385±0.042b0.991±0a
    54(Z)-2-丙烯醋酸盐NDND0.330±0
    55(E)-乙酸-2-己烯-1-醇酯5.158±0.245c24.004±3.262a15.374±0.250b
    醛类56己醛8.032±0.904c17.689±2.046b58.216±0.387a
    57(E)-2-己烯醛6.063±0.822c14.818±0.826b110.991±0.552a
    58庚醛0.079±0.007bND0.264±0.010a
    59(Z)-2-庚烯醛0.116±0.006b0.182±0.025b0.595±0a
    60苯甲醛0.253±0b0.291±0.012b0.363±0.007a
    61辛醛NDND0.727±0.030
    62壬醛1.405±0.120bND5.782±0.205a
    63癸醛0.147±0.006bND0.441±0.015a
    64(Z)-2-癸烯醛0.095±0a0.087±0.010aND
    醇类653-甲基-2-庚醇NDND1.035±0.012
    66(E)-2-戊烯醇0.079±0.007bND0.727±0.042a
    671-己醇0.674±0.085b3.445±0.219aND
    682-癸醇0.268±0.035NDND
    69顺-α,α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇0.042±0.006NDND
    70芳樟醇21.326±2.491b10.531±0.427c51.652±0.665a
    712-甲基-4-烯丙氧基戊二醇ND0.509±0.118ND
    酮类72丙酮0.379±0.072b0.211±0.021b0.771±0.031a
    732,3-丁二酮0.253±0.044b0.138±0.005b0.815±0.015a
    744-羟基-3-丙基-2-己酮0.032±0NDND
    752-庚酮0.4±0.031a0.436±0.026aND
    761-辛烯-3-酮ND0.044±0.010ND
    774-甲氧基-2,5-二甲基-3(2H)-呋喃酮0.916±0.036b1.337±0.146b10.859±0.200a
    782,5-二甲基呋喃-3,4(2H,5H)-二酮0.095±0.010a0.073±0.012aND
    792-壬酮0.032±0NDND
    803-壬烯-2-酮0.137±0.005a0.087±0b0.176±0.006a
    81紫罗兰酮0.032±0NDND
    823-乙基-4-庚酮ND0.647±0.323ND
    834,5-辛二酮ND0.843±0.234ND
    845-己基二氢-2(3H)-呋喃酮24.126±1.748a2.965±0.827b4.295±0.141b
    酸类85己酸ND1.577±0.501a0.727±0.026a
    862-乙基-己酸NDND1.233±0.042
    87辛酸0.453±0.023a0.262±0.030bND
    88新癸酸ND0.138±0.025ND
    89壬酸0.079±0.007b0.131±0.044b0.815±0.035a
    注:ND代表未检测出;同行不同小写字母表示差异显著(P<0.05),表3同。
    下载: 导出CSV

    表  3   GC-IMS检测妙香3号、红颜及黔莓2号草莓鲜榨汁的挥发性风味物质

    Table  3   VOCs in MX3, HY and QM2 strawberry freshly squeezed juice detected by GC-IMS

    序号化合物名称CAS编号分子式保留时间(s)迁移时间(ms)备注含量 (μg/kg)
    妙香3号红颜黔莓2号
    1乙酸甲酯C79209C3H6O2136.0041.1948109.552±0.686b119.203±1.23a119.016±0.335a
    2丙酸乙酯C105373C5H10O2235.3131.4333D109.672±0.088a107.203±0.76b106.058±0.025c
    3丙酸乙酯C105373C5H10O2240.0131.148M22.736±0.595c25.461±0.292a23.731±0.299b
    4丁酸乙酯C105544C6H12O2310.4111.56498.693±0.268a93.354±0.502b88.197±1.488c
    5乙酸异戊酯C123922C7H14O2409.9441.316114.277±0.195a14.702±0.548a15.183±1.096a
    62-甲基丁酸甲酯C868575C6H12O2283.8131.1998M17.474±1.679a17.681±0.898a14.911±1.827a
    7(E)-2-辛烯醛C2548870C8H14O797.9481.829D4.836±0.213a2.988±0.19b3.445±0.385b
    8(E)-2-辛烯醛C2548870C8H14O800.9511.3309M12.168±0.871a10.799±0.675a10.773±1.226a
    92-甲基丁酸甲酯C868575C6H12O2281.1111.5385D85.465±1.306b58.37±1.128c89.367±0.95a
    10异丁酸乙酯C97621C6H12O2246.671.187117.721±0.794a16.217±0.016b7.13±0.307c
    11乙酸异丙酯C108214C5H10O2189.191.481947.836±2.305c75.518±1.743b99.563±0.318a
    122-羟基丙酸乙酯C97643C5H10O3338.6591.556321.831±1.391a11.751±1.322c18.039±2.186b
    13丁酸己酯C2639636C10H20O21227.7231.49065.17±0.324a3.515±0.324b2.473±0.386c
    14丁酸异戊酯C106274C9H18O2764.4241.38616.639±0.189a4.227±0.369b8.193±1.423a
    15乙酸己酯C142927C8H16O2626.4361.38282.486±0.004b1.901±0.084b4.22±0.684a
    16丙酸异丁酯C540421C7H14O2369.6121.699338.728±2.655b32.725±1.183c62.9±2.47a
    17乙酸庚酯C112061C9H18O2988.9371.43528.237±0.318a2.152±0.027b1.665±0.038c
    182-甲基丁酸丁酯C15706737C9H18O2736.1591.8809D11.075±2.689b15.516±1.669a6.858±0.972c
    192-甲基丁酸丁酯C15706737C9H18O2734.7261.3677M4.007±0.306b4.177±0.126b11.251±1.805a
    20乙酸戊酯C628637C7H14O2481.461.3229M8.663±0.501b5.172±0.516c11.684±0.577a
    21乙酸戊酯C628637C7H14O2482.1461.7651D5.468±0.453b1.909±0.091c7.484±1.293a
    222-甲基丁醇乙酸酯C624419C7H14O2419.5431.739838.609±2.235b10.465±0.34c54.773±1.619a
    23乙酸丁酯C123864C6H12O2325.5841.61927.895±1.444a10.22±0.737b24.769±2.553a
    24庚酸甲酯C106730C8H16O2674.7921.804558.594±1.556a22.731±0.409b14.944±2.301c
    25乙酸乙酯C141786C4H8O2167.1771.3341D108.398±0.739a55.792±2.791b106.19±0.678a
    26乙酸乙酯C141786C4H8O2167.4021.0901M25.675±0.408b28.021±0.902a14.375±0.248c
    272-甲基丙醛C78842C4H8O119.6531.1113126.743±0.556a113.631±7.484b103.33±5.152b
    28癸醛C112312C10H20O1300.0241.53532.717±0.204a2.276±0.281a2.555±0.328a
    29(E)-2-壬烯醛C18829566C9H16O1092.5611.41212.785±0.125a2.771±0.037a2.662±0.305a
    30(E)-2-庚醛C18829555C7H12O567.8761.263617.593±0.924a17.262±0.835a17.779±1.143a
    312-己烯醛C505577C6H10O384.9841.5138101.009±0.597a101.157±0.312a97.016±0.174b
    323-甲基丁醛C590863C5H10O189.6441.168223.557±0.77b26.875±0.76a19.148±0.457c
    335-甲基糠醛C620020C6H6O2566.2941.47596.364±0.949a4.18±0.969b3.956±0.979b
    34庚醛C110430C7H14O437.4951.26646.81±0.471a6.565±0.198a6.982±0.433a
    35壬醛C124196C9H18O922.8921.9482D1.658±0.042b2.356±0.973b3.932±0.321a
    36壬醛C124196C9H18O922.6921.4778M6.579±0.241c10.256±2.383b13.625±0.309a
    371-戊烯-3-醇C616251C5H10O207.8081.349786.559±1.432a46.127±1.211c70.104±1.426b
    382-呋喃甲硫醇C98022C5H6OS457.2621.33511.253±0.505b13.908±1.221a14.07±0.704a
    391-庚醇C111706C7H16O571.1621.37824.784±0.52a3.133±0.447b2.201±0.173c
    401-辛烯-3-醇C3391864C8H16O572.9091.15410.082±0.361a8.28±0.701a10.015±2.763a
    413-甲基-1-戊醇C589355C6H14O369.4951.612530.288±0.611b28.983±0.969b54.575±0.214a
    42芳樟醇C78706C10H18O923.991.2201M51.034±0.564a27.215±4.982b31.545±1.745b
    43芳樟醇C78706C10H18O910.7841.7147D5.853±0.197a1.751±0.253b1.986±0.094b
    442,3-丁二酮C431038C4H6O2127.5311.155973.565±0.578a73.514±1.38a65.892±0.087b
    45苯乙酮C98862C8H8O798.3531.5492D3.486±0.356a3.005±0.481a3.924±0.861a
    461-辛烯-3-醇C4312996C8H14O567.7281.677114.466±0.539a9.073±0.701c11.449±0.64b
    472-丁酮C78933C4H8O153.3241.250557.51±0.46a21.875±2.4c29.171±1.106b
    482-庚酮C110430C7H14O437.061.625D63.534±0.64a28.725±0.565b13.872±0.664c
    492-庚酮C111717C7H14O452.6651.7028M9.287±0.392a3.935±0.289b4.377±0.707b
    503-羟基-4-5-二甲基-2-5H-呋喃酮C28664359C6H8O3986.2791.62352.264±0.432a0.929±0.047b0.948±0.062b
    512-壬酮C821556C9H18O889.4931.41462.307±0.022a1.323±0.115b1.385±0.089b
    523-甲基-2-戊酮C565617C6H12O262.3191.48895.144±0.225b4.245±0.256b24.374±1.25a
    53苯乙酮C98862C8H8O813.2271.1938M7.34±0.535b6.178±0.356c9.866±0.62a
    542-戊基呋喃C3777693C9H14O655.6681.254620.36±0.598a16.8±0.935b15.562±0.411b
    552-乙酰呋喃C1192627C6H6O2454.9641.42464.041±0.657a4.046±0.565a4.698±0.804a
    562-乙酰吡嗪C22047252C6H6N2O680.8191.54425.595±1.046a4.272±0.974a4.191±0.857a
    572-乙基-3-甲基吡嗪C15707230C7H10N2642.0851.182314.953±0.675a6.823±0.149b5.589±0.196c
    58α-蒎烯C80568C10H16505.8171.2891M21.293±1.099a22.547±0.768a21.027±1.651a
    59α-蒎烯C80568C10H16504.2951.6844D92.045±0.231a83.766±0.102b82.559±1.126b
    602-甲基丙酸C79312C4H8O2260.8041.362424.787±0.223b23.499±2.372b29.698±0.622a
    注:M代表单体,D代表二聚体。
    下载: 导出CSV
  • [1] 周历萍, 余红, 王淑珍. 10个粉(白)果草莓品种(系)果实品质比较试验[J]. 浙江农业科学,2020,61(12):2559−2661. [ZHOU Liping, YU Hong, WANG Shuzhen. Comparative study on fruit quality of 10 strawberry varieties (lines) with pink (white) fruit[J]. Zhejiang Agricultural Science,2020,61(12):2559−2661. doi: 10.16178/j.issn.0528-9017.20201235
    [2] 白胜, 朱润华, 阳圣莹, 等. 不同草莓品种营养成分比较与品种筛选[J]. 山西农业科学,2020,48(1):64−67. [BAI Sheng, ZHU Runhua, YANG Shengying, et al. Nutrients comparison and screening of different strawberry varieties[J]. Journal of Shanxi Agricultural Sciences,2020,48(1):64−67. doi: 10.3969/j.issn.1002-2481.2020.01.16
    [3] 王苑馨, 宋娇娇, 任寅印, 等. 不同品种草莓果实生物活性物质和抗氧化能力比较[J]. 山西农业大学学报(自然科学版),2022,42(1):69−76. [WANG Yuanxin, SONG Jiaojiao, REN Yinyin, et al. Comparison of bioactive substances and antioxidant activity of different strawberry cultivars[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2022,42(1):69−76. doi: 10.13842/j.cnki.issn1671-8151.202110006
    [4] 桂远方. 真空冷冻干燥草莓粉品质评价研究[D]. 南京: 南京师范大学, 2016.

    GUI Yuanfang. Reasearch on quality evaluation of vaccum freeze-dried strawberry powder[D]. Nanjing: Nanjing Normal University, 2016.

    [5]

    QIU S S, GAO L P, WANG J. Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice[J]. Journal of Food Engineering,2015,144:77−85. doi: 10.1016/j.jfoodeng.2014.07.015

    [6] 蓬桂华, 李文馨, 殷勇, 等. 电子鼻和电子舌在分析桑果汁风味上的应用[J]. 食品工业科技,2020,41(12):234−237, 244. [PENG Guihua, LI Wenxin, YIN Yong, et al. Analysis of flavor difference of mulberry juice by E-nose and E-tongue[J]. Science and Technology of Food Industry,2020,41(12):234−237, 244. doi: 10.13386/j.issn1002-0306.2020.12.038
    [7] 付勋, 聂青玉, 李翔, 等. HS-SPME/GC-MS测定玫瑰香橙果汁挥发性成分[J]. 贵州师范大学学报(自然科学版),2021,39(4):70−75. [FU Xun, NIE Qingyu, LI Xiang, et al. Analysis of volatiles and aroma in rose-flavor orange juice by HS-SPME/GC-MS[J]. Journal of Guizhou Normal University (Natural Sciences),2021,39(4):70−75. doi: 10.16614/j.gznuj.zrb.2021.04.010
    [8] 王鹏, 田洪磊, 詹萍, 等. 采用GC-MS技术分析新疆蟠桃鲜果及其果汁制品中的挥发性物质[J]. 食品与发酵工业,2016,42(11):199−205. [WANG Peng, TIAN Honglei, ZHAN Ping, et al. Analysis and identification of volatile compounds in Xinjiang flat peach fruits and its juice products by GC-MS[J]. Food and Fermentation Industries,2016,42(11):199−205. doi: 10.13995/j.cnki.11-1802/ts.201611035
    [9]

    WANG L, WANG P, DENG W L, et al. Evaluation of aroma characteristics of sugarcane (Saccharum officinarum L.) juice using gas chromatography-mass spectrometry and electronic nose[J]. LWT,2019,108:400−406. doi: 10.1016/j.lwt.2019.03.089

    [10] 武东昕, 孟新涛, 马燕, 等. 基于GC-IMS技术分析加工关键单元对NFC比谢克幸甜瓜汁风味的影响[J]. 现代食品科技,2021,37(10):220−229. [WU Dongxin, MENG Xintao, MA Yan, et al. Effects of key processing units on the flavor of NFC bisekxing melon juice based on GC-IMS analysis[J]. Modern Food Science and Technology,2021,37(10):220−229.
    [11] 关小莺, 温靖, 徐玉娟, 等. HS-SPME-GC-MS联用技术分析南高丛蓝莓浊汁酶解前后挥发性成分[J]. 热带作物学报,2017,38(9):1752−1758. [GUAN Xiaoying, WEN Jing, XU Yujuan, et al. Analysis of aroma components of southern high-bush blueberry juice before and after enzymatic hydrolysis using HS-SPME-GC-MS[J]. Chinese Journal of Tropical Crops,2017,38(9):1752−1758. doi: 10.3969/j.issn.1000-2561.2017.09.028
    [12] 刘原野, 蔡文超, 张琴, 等. 乳酸菌对沙棘汁中酚酸及挥发性化合物的影响研究[J]. 食品与发酵工业,2022,48(11):156−161. [LIU Yuanye, CAI Wenchao, ZHANG Qin, et al. Changes of phenolic acids and volatile compounds in sea buckthorn juice by lactic acid bacteria[J]. Food and Fermentation Industries,2022,48(11):156−161. doi: 10.13995/j.cnki.11-1802/ts.029709
    [13] 洪雪珍. 基于电子鼻和电子舌的樱桃番茄汁品质检测方法研究[D]. 杭州: 浙江大学, 2014.

    HONG Xuezhen. Study of quality detection approaches for cherry tomato juices based on electronic nose and electronic tongue[D]. Hangzhou: Zhejiang University, 2014.

    [14]

    ABOSHI T, MUSYA S, SATO H, et al. Changes of volatile flavor compounds of watermelon juice by heat treatment[J]. Bioscience Biotechnology and Biochemistry,2020,84(10):2157−2159. doi: 10.1080/09168451.2020.1787814

    [15]

    YANG F, LIU Y, WANG B, et al. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis[J]. LWT-Food Science and Technology,2021,137:110478. doi: 10.1016/j.lwt.2020.110478

    [16]

    QIU S S, WANG J, GAO L P. Discrimination and characterization of strawberry juice based on electronic nose and tongue: Comparison of different juice processing approaches by LDA, PLSR, RF, and SVM[J]. Journal of Agricultural and Food Chemistry,2014,62(27):6426−6434. doi: 10.1021/jf501468b

    [17]

    CHENG H, CHEN Y, CHEN Y X, et al. Comparison and evaluation of aroma-active compounds for different squeezed Chinese bayberry (Myrica rubra) juices[J]. Journal of Food Processing and Preservation,2021,45(11):e15924.

    [18]

    WANG K W, XU Z Z. Comparison of freshly squeezed, non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview[J]. Food Chemistry,2022,373:131430. doi: 10.1016/j.foodchem.2021.131430

    [19]

    GOMES A, COSTA A L R, RODRIGUES P D, et al. Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability[J]. Food Control,2022,131:108391. doi: 10.1016/j.foodcont.2021.108391

    [20]

    OLMEDILLA-ALONSO B, GRANADO-LORENCIO F, de ANCOS B, et al. Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals[J]. Food Chemistry,2022,371:130821. doi: 10.1016/j.foodchem.2021.130821

    [21]

    HAFIZOV S G, QURBANOV I S, HAFIZOV G K. Ensuring transparency of pomegranate juice during its storage[J]. International Conference on Production and Processing of Agricultural Raw Materials,2021,640(2):022055.

    [22]

    BARUT G S. UV-C treatment of apple and grape juices by modified UV-C reactor based on dean vortex technology: Microbial, physicochemical and sensorial parameters evaluation[J]. Food and Bioprocess Technology,2021,14(6):1055−1066. doi: 10.1007/s11947-021-02624-z

    [23]

    QIU S, WANG J, GAO L. Qualification and quantisation of processed strawberry juice based on electronic nose and tongue[J]. LWT-Food Science and Technology,2015,60(1):115−123. doi: 10.1016/j.lwt.2014.08.041

    [24] 高利萍. 基于电子鼻和电子舌的草莓鲜榨汁的检测[D]. 杭州: 浙江大学, 2012.

    GAO Liping. Evaluation for fresh juice of strawberries by electronic nose and electronic tongue[D]. Hangzhou: Zhejiang University, 2012.

    [25] 张琴, 周丹丹, 彭菁, 等. 油桃采后结合态香气变化规律及其与可溶性糖的关联性[J]. 食品科学,2021,42(6):206−214. [ZHANG Qin, ZHOU Dandan, PENG Jing, et al. Changes of bound aroma compounds and their relationship between soluble sugars in nectarines during postharvest storage[J]. Food Science,2021,42(6):206−214. doi: 10.7506/spkx1002-6630-20200317-261
    [26] 付勋, 张海彬, 聂青玉, 等. 猕猴桃品质指标差异分析及GC-IMS分析果汁中挥发性物质[J]. 食品科学,2022,43(10):247−254. [FU Xun, ZHANG Haibin, NIE Qingyu, et al. Difference analysis of quality indexes of different varieties of kiwifruit and analysis of volatile components in juice by GC-IMS[J]. Food Science,2022,43(10):247−254. doi: 10.7506/spkx1002-6630-20210818-240
    [27]

    LIU Q, SUN K, ZHAO N, et al. Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay[J]. Postharvest Biology and Technology,2019,153:152−160. doi: 10.1016/j.postharvbio.2019.03.017

    [28]

    AZODANLOU R, DARBELLAY C, LUISIER J, et al. Changes in flavour and texture during the ripening of strawberries[J]. European Food Research and Technology,2004,218(2):167−172. doi: 10.1007/s00217-003-0822-0

    [29]

    LOUTFI A, CORADESCHI S, MANI G K, et al. Electronic noses for food quality: A review[J]. Journal of Food Engineering,2015,144:103−111. doi: 10.1016/j.jfoodeng.2014.07.019

    [30]

    INFANTE R, FARCUH M, MENESES C. Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage[J]. Journal of the Science of Food and Agriculture,2008,88(12):2073−2078. doi: 10.1002/jsfa.3316

    [31]

    PELAYO C, EBELER S, KADER A. Postharvest life and flavor quality of three strawberry cultivars kept at 5 degrees C in air or air+20 kPa CO2[J]. Postharvest Biology and Technology,2003,27(2):171−183. doi: 10.1016/S0925-5214(02)00059-5

    [32] 王娟, 孙瑞, 王桂霞, 等. 8个草莓品种(系)果实特征香气成分比较分析[J]. 果树学报,2018,35(8):967−976. [WANG Juan, SUN Rui, WANG Guixia, et al. A comparative analysis on fruit characteristic aroma compounds in eight strawberry varieties (strains)[J]. Journal of Fruit Science,2018,35(8):967−976. doi: 10.13925/j.cnki.gsxb.20180069
    [33] 赵娜, 郭小鸥, 王丽娟. 6个草莓品种果实香气成分分析[J]. 河北农业大学学报,2021,44(1):57−66. [ZHAO Na, GUO Xiaoou, WANG Lijuan. Analysis of fruit aroma components of 6 strawberry varieties[J]. Journal of Hebei Agricultural University,2021,44(1):57−66. doi: 10.13320/j.cnki.jauh.2021.0008
    [34] 付磊, 冒德寿, 洪鎏, 等. 不同品种草莓的特征香气成分[J]. 食品工业,2021,42(1):202−205. [FU Lei, MAO De Shou, HONG Liu, et al. Characteristic aroma compounds of different varieties of strawberry[J]. Food Industry,2021,42(1):202−205.
    [35]

    MOHD ALI M, HASHIM N, ABD AZIZ S, et al. Principles and recent advances in electronic nose for quality inspection of agricultural and food products[J]. Trends in Food Science & Technology,2020,99:1−10.

    [36] 罗杨, 冯涛, 王凯, 等. 基于GC-IMS分析不同成熟度百香果挥发性有机物的差异[J/OL]. 食品工业科技, 2022: 14. https://doi.org/10.13386/j.issn1002-0306.2021120148

    LUO Yang, FENG Tao, WANG Kai, et al. Analysis of difference volatile organic compounds in passion fruit with different maturity via GC-IMS[J/OL]. Science and Technology of Food Industry, 2022: 14. https://doi.org/10.13386/j.issn1002-0306.2021120148

    [37]

    SCHEIBERLE P, HOFMANN T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures[J]. Journal of Agricultural and Food Chemistry,1997,45(1):227−232. doi: 10.1021/jf960366o

    [38]

    DA SILVA M, DAS NEVES H. Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria ananassa)[J]. Journal of Agricultural and Food Chemistry,1999,47(11):4568−4573. doi: 10.1021/jf9905121

图(6)  /  表(3)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  44
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-01-31

目录

/

返回文章
返回
x 关闭 永久关闭