Isolation and Identification of Dominant Spoilage Biogenic Amine Producing Bacteria from Refrigerated Skipjack Tuna and Analysis of Their Production Ability
-
摘要: 为探究鲣鱼中优势腐败产胺菌的种类,从冷藏的鲣鱼中筛选出3种优势腐败产胺菌,通过16S rDNA分子鉴定技术对菌株进行鉴定为荧光假单胞菌(Pseudomonas fluorescens)、弗氏柠檬酸杆菌(Citrobacter freundii)和嗜水气单胞菌(Aeromonas hydrophila),将鉴定出的优势腐败产胺菌接种至无菌鱼肉中4 ℃条件下贮藏,通过测定菌落总数和挥发性盐基氮(TVB-N)变化,以腐败代谢产物产量因子(YTVB-N/CFU)分析3种优势腐败产胺菌对鲣鱼的致腐能力,并通过样品中生物胺的含量比较3种优势腐败产胺菌的产胺能力。结果表明:在贮藏8 d后接种荧光假单胞菌、弗氏柠檬酸杆菌和嗜水气单胞菌组的菌落总数分别达到8.36、8.27和8.13 lg CFU/g,TVB-N值分别为28.21、30.30和31.29 mg/100 g,3种优势腐败产胺菌对鲣鱼的致腐能力大小为嗜水气单胞菌>弗氏柠檬酸杆菌>荧光假单胞菌。接种荧光假单胞菌组、弗式柠檬酸杆菌组和嗜水气单胞菌组的组胺含量分别为196.23、83.43和261.22 mg/kg,3组样品中总生物胺含量为嗜水气单胞菌>荧光假单胞菌>弗氏柠檬酸杆菌。综合比较得出,嗜水气单胞菌对4 ℃冷藏鲣鱼致腐产胺能力最强,本研究增加对冷藏鲣鱼中优势腐败产胺菌种类的了解并提供了部分理论基础。Abstract: In order to explore the types of dominant spoilage biogenic amine-producing bacteria in skipjack tuna, three dominant bacteria were screened from refrigerated skipjack tuna. The strains were identified by 16S rDNA molecular identification technology, which were Pseudomonas fluorescens, Citrobacter freundii and Aeromonas hydrophila. The dominant spoilage biogenic amine-producing bacteria were inoculated onto sterile fish and stored at 4 ℃. By measuring the total number of colonies and the value of volatile base nitrogen (TVB-N), we used the yield factor (YTVB-N/CFU) of spoilage metabolites to analyze the spoilage ability of the three dominant spoilage biogenic amine-producing bacteria. The production ability of bacteria was compared by detecting the content of biogenic amines in the samples. The results showed that the total number of colonies in the groups inoculated with P. fluorescens, C. freundii and A. hydrophila were 8.36, 8.27 and 8.13 lg CFU/g at the end of storage, respectively. The TVB-N values reached 28.21, 30.30 and 31.29 mg/100 g, respectively. The spoilage ability of the three dominant spoilage amine-producing bacteria were A. hydrophila>C. freundii>P. fluorescence. On the 8th day of storage, the histamine contents of the P. fluorescens, C. freundii and A. hydrophila groups reached 196.23, 83.43 and 261.22 mg/kg, respectively. The total biogenic amine contents of the three groups of samples at the end of storage were A. hydrophila>P. fluorescens>C. freundii. The combined comparison concluded that A. hydrophila had the highest spoilage biogenic amine-producing ability in skipjack tuna. This study increased the knowledge and provided a partial theoretical basis for the dominant spoilage biogenic amine producing species in refrigerated skipjack tuna.
-
表 1 鲣鱼接种3种优势腐败产胺菌致腐因子的比较
Table 1. Comparison of yield factors in skipjack tuna inoculated with 3 dominant spoilage biogenic amine-producing bacteria
菌名 菌落总数(CFU/g) 腐败代谢产物含量(mg N/100 g) 腐败代谢产物产量因子(mg/CFU) N0 Ni (TVB-N)0 (TVB-N)i YTVB-N/CFU 荧光假单胞菌 5.57×105 2.60×108 6.71 28.21 8.39×10−8 弗氏柠檬酸杆菌 3.87×105 2.00×108 6.22 30.30 1.20×10−7 嗜水气单胞菌 5.63×105 1.7×108 6.67 31.29 1.48×10−7 表 2 鲣鱼接种3种优势腐败产胺菌的生物胺含量
Table 2. Biogenic amines content of 3 dominant spoilage biogenic amine-producing bacteria inoculated to skipjack tuna
菌株 时间(d) 生物胺含量 (mg/kg) 色胺 酪胺 苯乙胺 组胺 尸胺 腐胺 空白对照 0 ND ND 0.28±0.02d 0.67±0.01a 1.95±0.15a ND 1 ND ND 0.23±0.00c 0.88±0.00a 2.44±0.16b ND 2 ND ND 0.24±0.00c 0.86±0.00a 3.16±0.17c ND 3 ND ND 0.19±0.00c 1.57±0.01b 5.11±0.27f ND 4 ND ND 0.17±0.01a 1.79±0.06bc 5.49±0.04f ND 5 ND ND 0.18±0.02ab 1.99±0.23c 4.65±0.02e ND 6 ND ND 0.17±0.00a 2.13±0.26d 4.43±0.29e ND 7 ND 0.43±0.34a 0.23±0.00c 3.35±0.10e 3.52±0.41cd ND 8 ND 0.74±0.02b 0.49±0.01e 5.40±0.13f 3.74±0.20d ND 荧光假单胞菌 0 ND ND 0.28±0.04c 7.53±0.42a 2.65±0.27a ND 1 ND ND 0.25±0.03c 9.31±1.16a 4.46±0.40a 0.21±0.09a 2 ND ND 0.18±0.05ab 5.68±1.06a 4.77±0.65a 5.73±0.95b 3 ND ND 0.23±0.03bc 17.95±0.96ab 5.27±0.24a 10.29±1.12c 4 ND ND 0.16±0.02a 27.50±1.59b 23.50±2.42b 16.95±1.38d 5 ND ND 0.16±0.04a 45.58±3.82c 33.72±2.60c 26.46±3.28e 6 ND 0.48±0.18a 0.17±0.01a 76.99±0.57d 45.43±4.36d 33.10±0.32f 7 ND 0.75±0.06c 0.26±0.02c 138.83±4.88e 54.34±0.59e 45.89±1.36g 8 ND 0.69±0.16b 0.27±0.02c 196.23±7.21f 65.35±1.21f 57.22±1.71h 弗氏柠檬酸杆菌 0 ND ND 0.24±0.01bcd 8.26±0.76a 3.11±0.22a ND 1 ND ND 0.24±0.03bcd 9.22±0.59a 5.60±0.33a 0.30±0.22a 2 ND ND 0.15±0.02ab 5.94±0.70a 11.02±0.84b 3.34±0.99ab 3 ND ND 0.27±0.12d 14.08±0.62a 15.74±3.12c 8.67±0.86b 4 ND ND 0.16±0.02abc 18.27±4.86ab 20.60±2.68d 18.45±1.27c 5 ND ND 0.14±0.02a 28.71±1.63bc 28.69±3.41e 26.26±6.18d 6 ND 0.49±0.03b 0.16±0.02abc 38.10±6.54c 39.71±1.53f 38.33±3.94e 7 ND 0.28±0.47a 0.24±0.01bcd 50.67±2.66d 43.93±3.52g 45.45±0.93f 8 ND 0.61±0.28c 0.25±0.03cd 83.43±7.92e 55.49±4.24h 55.39±2.65g 嗜水气单胞菌 0 ND ND 0.24±0.03ab 8.98±0.58a 3.80±0.37a ND 1 ND ND 0.22±0.02ab 14.50±1.62a 5.60±0.22a 0.30±0.09a 2 ND ND 0.14±0.04a 36.74±3.59b 13.50±2.68b 4.67±0.33b 3 ND ND 0.20±0.01ab 53.12±1.67c 19.58±3.09c 8.34±1.07c 4 ND ND 0.26±0.05bc 71.69±6.00d 28.58±0.37d 13.40±2.81d 5 ND ND 0.34±0.04c 107.84±2.96e 35.21±2.22e 22.63±2.63e 6 ND ND 0.63±0.12d 149.78±4.97f 45.48±1.96f 32.13±1.08f 7 ND ND 0.78±0.07e 204.29±7.48g 58.76±2.00g 45.84±3.69g 8 ND 0.25±0.04 0.86±0.04e 261.22±11.42h 69.99±2.83h 54.81±3.01h 注:ND表示未检出,同列不同小写字母表示同一组别不同贮藏时间之间存在显著性差异(P<0.05)。 -
[1] 童铃, 金毅, 徐坤华, 等. 3种鲣鱼背部肌肉的营养成分分析及评价[J]. 南方水产科学,2014,10(5):51−59. [TONG L, JIN Y, XU K H, et al. Analysis of nutritional components in back muscle of skipjacks[J]. South China Fisheries Science,2014,10(5):51−59. doi: 10.3969/j.issn.2095-0780.2014.05.008 [2] 李海波, 杨雪, 白冬, 等. 鲣鱼 (Katsuwonus pelamis) 肌肉蛋白在热处理过程中的营养变化及功能性评价[J]. 海洋与湖沼,2017,48(1):155−160. [LI H B, YANG X, BAI D, et al. The nutrinent content and evaluation of skipjack's back muscle before and after poached[J]. Oceanologia Et Limnologia Sinica,2017,48(1):155−160. [3] 刘爱芳, 谢晶, 钱韻芳. 冷藏金枪鱼优势腐败菌致腐败能力[J]. 食品科学,2018,39(3):7−14. [LIU A F, XIE J, QIAN Y F. Spoilage potential of dominant spoilage bacteria from chilled tuna (Thunnus obesus)[J]. Food Science,2018,39(3):7−14. doi: 10.7506/spkx1002-6630-201803002 [4] 励建荣, 杨兵, 李婷婷. 水产品优势腐败菌及其群体感应系统研究进展[J]. 食品科学,2015,36(19):5. [LI J R, YANG B, LI T T. Advances in quorum sensing of dominant spoilage bacteria from aquatic products[J]. Food Science,2015,36(19):5. [5] 冯豪杰, 蓝蔚青, 臧一宇, 等. 优势腐败菌对暗纹东方鲀冷藏期间品质变化影响及致腐能力分析[J]. 食品科学,2022,43(1):1191−1197. [FENG H J, LAN W Q, ZANG Y Y, et al. Effects of dominant spoilage bacteria on quality change in obscure pufferfish (Takifugu obscurus) during cold storage and analysis of their spoilage ability[J]. Food Science,2022,43(1):1191−1197. doi: 10.7506/spkx1002-6630-20210131-363 [6] 刘光明, 梁一巍, 李传勇, 等. 海洋中上层鱼类产品中生物胺的调查与控制[J]. 中国食品学报,2019,19(8):1−12. [LIU G M, LIANG Y W, LI C Y, et al. Investigation and control of biogenic amines in marine pelagic fishes products[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):1−12. [7] HOUICHER A, BENSID A, REGENSTEIN J M, et al. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review[J]. Food Bioscience,2020,39(2):100807. [8] ZOGUL F, HAMED I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review[J]. Critical Reviews in Food Science & Nutrition,2017:1. [9] 国家卫生和计划生育委员会. GB 2733-2015 食品安全国家标准 鲜、冻动物性水产品[S]. 北京:中国标准出版社, 2016.National Health and Family Planning Commission. GB 2733-2015 National food safety standard fresh and frozen aquatic products of animal origin[S]. Beijing: China Standards Press, 2016. [10] JSKELINEN E, JAKOBSEN L, HULTMAN J, et al. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage[J]. International Journal of Food Microbiology,2018:293. [11] LAKSHMANAN R, SHAKILA R J, JEYASEKARAN G. Survival of amine-forming bacteria during the ice storage of fish and shrimp[J]. Food Microbiology,2002,19(6):617−625. doi: 10.1006/fmic.2002.0481 [12] KULEY E, DURMUS M, BALIKCI E, et al. Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products[J]. International Journal of Food Properties,2016,20(5-8):1029−1043. [13] WANG H, LUO Y, HUANG H, et al. Microbial succession of grass carp (Ctenopharyngodon idellus) filets during storage at 4 ℃ and its contribution to biogenic amines' formation[J]. International Journal of Food Microbiology,2014,190:66−71. doi: 10.1016/j.ijfoodmicro.2014.08.021 [14] 中华人民共和国国家卫生和计划生育委员会. GB 5009.228-2016 食品安全国家标准 食品中挥发性盐基氮的测定[S]. 北京:中国标准出版社, 2017.National Health and Family Planning Commission of the People's Republic of China. GB 5009.228-2016 National food safety standards Determination of volatile basic nitrogen in food[S]. Beijing: China Standards Press, 2017. [15] 许振伟, 李学英, 杨宪时, 等. 海水鱼优势腐败菌腐败能力分析[J]. 食品与机械,2011,27(4):71−74. [XU Z W, LI X Y, YANG X S, et al. Analysis on spoilage ability of dominant spoilage bacteria from marine fish[J]. Food & Machinery,2011,27(4):71−74. doi: 10.3969/j.issn.1003-5788.2011.04.019 [16] 刘洋帆, 李绪鹏, 冯阳, 等. 超高效液相色谱-串联质谱法测定鲣鱼中的生物胺[J]. 食品与发酵工业: 1−9 [2022-09-17]. DOI: 10.13995/j.cnki.11-1802/ts.029408.LIU Y F, LI X P, FENG Y, et al. UPLC-MS/MS method for detection of biogenic amines in skipjack tuna[J]. Food and Fermentation Industries: 1−9 [2022-09-17]. DOI: 10.13995/j.cnki.11-1802/ts.029408. [17] XIE J, ZHANG Z, YANG S P. et al. Study on the spoilage potential of Pseudomonas fluorescens on salmon stored at different temperatures[J]. Journal of Food Science and Technology,2018,55(1):217−225. doi: 10.1007/s13197-017-2916-x [18] SETTANNI L, MICELIA, FRANCESCA N, et al. Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria[J]. International Journal of Food Microbiology,2013,160(3):344−352. doi: 10.1016/j.ijfoodmicro.2012.11.011 [19] 聂芳红, 谢日东, 雷晓凌, 等. 湛江水产品中大肠菌群的分离鉴定与分类研究[J]. 广东农业科学,2014,41(6):166−170. [NIE F H, XIE R D, LEI X L, et al. Isolation, identification and classification of E. coliforms from aquatic products in Zhanjiang[J]. Guangdong Agricultural Sciences,2014,41(6):166−170. doi: 10.3969/j.issn.1004-874X.2014.06.043 [20] ERDEM B, KARIPTAS E, KAYA T, et al. Factors influencing antibacterial activity of chitosan against Aeromonas hydrophila and Staphylococcus aureus[J]. International Current Pharmaceutical Journal,2016,5(5):45−48. doi: 10.3329/icpj.v5i5.27316 [21] BO H K, FERNA N N I C, BARROS V Z J, et al. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting[J]. Journal of Proteome Research,2010,9(6):3169−3183. doi: 10.1021/pr100047q [22] 励建荣, 李婷婷, 李学鹏. 水产品鲜度品质评价方法研究进展[J]. 北京工商大学学报(自然科学版),2010,28(6):1−8. [LI J R, LI T T, LI X P. Advances in methods for evaluating freshness of aquatic products[J]. Journal of Beijing Technology and Business University: Natural Science Edition,2010,28(6):1−8. [23] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 18108-2019 食品安全国家标准 鲜海水鱼通则[S]. 北京:中国标准出版社, 2019.State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 18108-2019 National food safety standard General rules of fresh marine fish[S]. Beijing: China Standards Press, 2019. [24] WANG H, LIU X C, et al. Spoilage potential of three different bacteria isolated from spoiled grass carp (Ctenopharyngodon idellus) fillets during storage at 4 ℃[J]. LWT-Food Science & Technology,2017:10−17. [25] KAUFMANN M, KLINGER C. [Methods in Molecular Bio-logy] Functional genomics volume 815 | | multiple-gene silencing using antisense RNAs in Escherichia coli[J]. Journal of Marine Science and Engineering, 2022, 10.1007/978-1-61779-424-7(Chapter 23): 307−319. [26] 钱韻芳, 杨胜平, 谢晶, 等. 气调包装凡纳滨对虾特定腐败菌致腐败能力研究[J]. 中国食品学报,2015,15(1):85−91. [QIAN Y F, YANG S P, XIE J, et al. Studies on the putrefaction potential of the specific spoilage organisms from modified atmosphere packaged Litopenaeus vannamei[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(1):85−91. [27] 于淑池, 杨毅, 冯紫蓝, 等. 冷藏卵形鲳鲹优势腐败菌的分离鉴定及致腐能力分析[J]. 食品工业科技, 2021, 42(1): 101-109.YU S C, YANG Y, FENG Z L, et al. Isolation and identification of dominant spoilage bacteria in Trachinotus ovatus during chilled storage and their spoilage capability[J]. Science and Technology of Food Industry, 2021, 42(1): 101-109. [28] 王光强, 俞剑燊, 胡健, 等. 食品中生物胺的研究进展[J]. 食品科学,2016,37(1):269−278. [WANG G Q, YU J S, HU J, et al. Progress in research on biogenic amines in foods[J]. Food Science,2016,37(1):269−278. doi: 10.7506/spkx1002-6630-201601046 [29] LIERKA P. Biogenic amines in fish, fish products and shellfish: A review[J]. Food Additives & Contaminants,2011,28(11):1547−1560. [30] KIM S H, FIELD K G, CHANG D S. Identification of bacteria crucial to histamine accumulation in pacific mackerel during storage[J]. Journal of Food Protection,2001,64(10):1556−1564. doi: 10.4315/0362-028X-64.10.1556 -