Evaluation of Environmental Resistance of Cronobacter spp.
-
摘要: 婴儿配方奶粉(powdered infant formulas,PIF)是克罗诺杆菌(Cronobacter spp.)的主要污染来源,其原辅料的添加和加工环境是最为主要的传播途径。为彻底有效地对克罗诺杆菌进行预防和控制,保障乳制品的安全,本实验以8株分离自PIF及其加工环境中的克罗诺杆菌为研究对象,对其耐热性、耐酸碱性、耐干燥性及耐高渗性进行研究,分析不同菌株环境耐受性之间的差异。结果表明:8株克罗诺杆菌对热的耐受性存在差异性,其中分离自终产品的菌株耐热性相对较强;克罗诺杆菌普遍具有耐酸不耐碱的特性,在pH为1.5的酸性条件下,所有菌株在处理30 s后仍可存活;克罗诺杆菌具有较强的抗干燥能力,在室温条件下,空气相对湿度为20.7%的条件下,所有菌株在7个月的试验过程中菌数均从初始浓度108 CFU/mL下降到105 CFU/mL,这种缓慢的下降趋势说明克罗诺杆菌具有很强的抵抗干燥环境的能力;克罗诺杆菌具有较强的耐高渗性,当NaCl的浓度大于8%时,所有菌株生长缓慢,且在等渗条件下,克罗诺杆菌对山梨醇的耐受性强于NaCl。Abstract: Powdered infant formula (PIF) is the main source of Cronobacter spp. contamination, among which the addition of raw and auxiliary materials and the processing environment are the most important routes of transmission. In order to effectively prevent and control Cronobacter spp. to ensure the safety of dairy products, eight strains of Cronobacter spp. isolated from PIF and its processing environment were used as the research objects. Their heat resistance, acid and alkali resistance, dryness resistance and permeability resistance were studied, and the differences of environmental resistance of different strains were analyzed. The results showed that Cronobacter spp. had different heat resistance. The strains isolated from the end products had relatively stronger heat resistance. Cronobacter spp. generally had the characteristics of acid resistance but not alkali resistance. Under the acidic conditions at pH1.5, all strains could still survive being treated for 30 s. Cronobacter spp. had strong resistance to desiccation. The bacterial count of all strains decreased from an initial concentration of 108 CFU/mL to 105 CFU/mL over the course of the 7-month test at room temperature with a relative air humidity of 20.7%. The slow decreasing trend indicated that Cronobacter spp. had a strong ability to resist dry environment. Cronobacter spp. had a strong resistance to osmosis. We found that all strains grew slowly when the concentration of NaCl was over 8% and the tolerance of Cronobacter spp. to sorbitol was stronger than that to NaCl under isotonic conditions.
-
表 1 实验用菌株及其来源
Table 1. Bacterial strains used in this study and their sources
菌株编号 菌株名称 所属ST型 菌株来源 ES3 丙二酸盐克罗诺杆菌 258 婴儿配方粉 ES35 丙二酸盐克罗诺杆菌 201 婴儿配方粉 ES37 阪崎克罗诺杆菌 8 原料乳 ES38 阪崎克罗诺杆菌 12 原辅料 ES39 阪崎克罗诺杆菌 1 婴儿配方粉 ES45 阪崎克罗诺杆菌 4 振动筛 ES46 阪崎克罗诺杆菌 64 传送带 ES52 阪崎克罗诺杆菌 21 流化床出口 表 2 克罗诺杆菌在不同温度下的生长情况
Table 2. Growth of Cronobacter spp. at different temperatures
温度
(℃)菌株
编号时间(min) 1 2 3 5 8 10 20 30 60 53 全部菌株 + + + + + + + + + 57 ES3 + + + + + + + − − ES35 + + + + + + + − − ES37 + + + + − − − − − ES38 + + + + − − − − − ES39 + + + + − − − − − ES45 + + + − − − − − − ES46 + + + − − − − − − ES52 + + + + + + − − − 61 ES3 + + + + − − − − − ES35 + + + + − − − − − ES37 + − − − − − − − − ES38 + + − − − − − − − ES39 + − − − − − − − − ES45 + + − − − − − − − ES46 + + − − − − − − − ES52 + + + − − − − − − 65 全部菌株 − − − − − − − − − 注:“+”表示存活,“−”表示死亡。处理后原液直接涂布,有菌落存在即为存活,无菌落生长即为死亡;表3同。 表 3 克罗诺杆菌在不同pH下的生长情况
Table 3. Growth of Cronobacter spp. at different pH
pH 菌株编号 时间(s) 10 30 60 90 120 1.0 全部菌株 − − − − − 1.5 ES3 + + + + − ES35 + + + − − ES37 + + + − − ES38 + + − − − ES39 + + + − − ES45 + + − − − ES46 + + − − − ES52 + + + − − 2.0 ES3 + + + + + ES35 + + + + − ES37 + + + + − ES38 + + + + − ES39 + + + + − ES45 + + + + − ES46 + + + − − ES52 + + + + − 12.0 ES3 + + + + − ES35 + + + + − ES37 + + + + − ES38 + + + + + ES39 + + + + − ES45 + + + + − ES46 + + + + − ES52 + + + + − 12.5 ES3 + − − − − ES35 + − − − − ES37 + − − − − ES38 + + − − − ES39 + + − − − ES45 + − − − − ES46 + − − − − ES52 + − − − − 13.0 ES3 − − − − − ES35 − − − − − ES37 − − − − − ES38 + − − − − ES39 − − − − − ES45 − − − − − ES46 − − − − − ES52 − − − − − -
[1] JONES T F, YACKLEY J. Foodborne disease outbreaks in the United States: A historical overview[J]. Foodborne Pathogens and Disease,2018,15(1):11−15. doi: 10.1089/fpd.2017.2388 [2] TODD E. Food-borne disease prevention and risk assessment[Z]. Multidisciplinary Digital Publishing Institute, 2020: 5129 [3] MUN S G. The effects of ambient temperature changes on foodborne illness outbreaks associated with the restaurant industry[J]. International Journal of Hospitality Management,2020,85:102432. doi: 10.1016/j.ijhm.2019.102432 [4] HAN X, LIU Y, YIN J, et al. Microfluidic devices for multiplexed detection of foodborne pathogens[J]. Food Research International,2021,143:110246. doi: 10.1016/j.foodres.2021.110246 [5] MIRANDA N, BANERJEE P, SIMPSON S, et al. Molecular surveillance of Cronobacter spp. isolated from a wide variety of foods from 44 different countries by sequence typing of 16S rRNA, rpoB and O-antigen genes[J]. Foods,2017,6(5):36. doi: 10.3390/foods6050036 [6] QIAN C, HUANG M, DU Y, et al. Chemotaxis and shorter O-Antigen chain length contribute to the strong desiccation tolerance of a food-isolated Cronobacter sakazakii strain[J]. Frontiers in Microbiology,2021:12. [7] PARRA-FLORES J, HOLÝ O, RIFFO F, et al. Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing[J]. Frontiers in Microbiology,2021:1730. [8] WANG L, ZHU W, LU G, et al. In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data[J]. International Journal of Food Microbiology,2021,358:109405. doi: 10.1016/j.ijfoodmicro.2021.109405 [9] YANG Y, MA S, GUO K, et al. Efficacy of 405-nm LED illumination and citral used alone and in combination for the inactivation of Cronobacter sakazakii in reconstituted powdered infant formula[J]. Food Research International,2022,154:111027. doi: 10.1016/j.foodres.2022.111027 [10] CARVALHO G G, CALARGA A P, TEODORO J R, et al. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods[J]. Food Research International,2020,137:109643. doi: 10.1016/j.foodres.2020.109643 [11] POLAT YEMIŞ G, DELAQUIS P. Natural compounds with antibacterial activity against Cronobacter spp. in powdered infant formula: A review[J]. Frontiers in Nutrition,2020:232. [12] WANG L, FORSYTHE S J, YANG X, et al. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production[J]. Journal of Dairy Science,2021,104(11):11348−11367. doi: 10.3168/jds.2021-20591 [13] LING N, JIANG X, FORSYTHE S, et al. Food safety risks and contributing factors of Cronobacter spp[J]. Engineering,2022,12:128−138. doi: 10.1016/j.eng.2021.03.021 [14] HOQUE A, AHMED T, SHAHIDULLAH M, et al. Isolation and molecular identification of Cronobacter spp. from powdered infant formula (PIF) in Bangladesh[J]. International Journal of Food Microbiology,2010,142(3):375−378. doi: 10.1016/j.ijfoodmicro.2010.07.019 [15] XU D, MING X, GAN M, et al. Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation[J]. Journal of Immunological Methods,2018,462:54−58. doi: 10.1016/j.jim.2018.08.008 [16] CHAUHAN R, SINGH N, PAL G K, et al. Trending biocontrol strategies against Cronobactersakazakii: A recent updated review[J]. Food Research International,2020,137:109385. doi: 10.1016/j.foodres.2020.109385 [17] LANG E, SANT’ANA A S. Microbial contaminants in powdered infant formula: What is the impact of spray-drying on microbial inactivation?[J]. Current Opinion in Food Science,2021,42:195−202. doi: 10.1016/j.cofs.2021.06.007 [18] ZHAN J, QIAO J, WANG X. Role of sigma factor RpoS in Cronobacter sakazakii environmental stress tolerance[J]. Bioengineered,2021,12(1):2791−2809. doi: 10.1080/21655979.2021.1938499 [19] FORSYTHE S J. Updates on the Cronobacter genus[J]. Annual Review of Food Science and Technology,2018,9:23−44. doi: 10.1146/annurev-food-030117-012246 [20] WU Y, XIONG Y, CHEN X, et al. Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples[J]. Journal of Dairy Science,2019,102(12):10877−10886. doi: 10.3168/jds.2019-17067 [21] 曹晨阳, 孟令缘, 王嘉炜, 等. 婴幼儿乳粉和米粉中阪崎克罗诺杆菌的耐受性研究[J]. 中国食品学报,2019,19(9):45−52. [CAO C Y, MENG L Y, WANG J W, et al. Tolerance study of Cronobacter sakazakii in nanoclusters of infant milk and rice powders[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(9):45−52. doi: 10.16429/j.1009-7848.2019.09.005 [22] BENNOUR HENNEKINNE R, GUILLIER L, FAZEUILH L, et al. Survival of Cronobacter in powdered infant formula and their variation in biofilm formation[J]. Letters in Applied Microbiology,2018,66(6):496−505. doi: 10.1111/lam.12879 [23] YE Y, LING N, GAO J, et al. Roles of outer membrane protein W (OmpW) on survival, morphology, and biofilm formation under NaCl stresses in Cronobactersakazakii[J]. Journal of Dairy Science,2018,101(5):3844−3850. doi: 10.3168/jds.2017-13791 [24] FEI P, JIANG Y, FENG J, et al. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments[J]. Frontiers in Microbiology,2017,8:316. [25] WANG X, DEVLIEGHERE F, GEERAERD A, et al. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface[J]. International Journal of Food Microbiology,2017,243:70−77. doi: 10.1016/j.ijfoodmicro.2016.12.008 [26] 翟立公, 李港回, 周紫洁, 等. 高渗适应德尔卑沙门氏菌对交叉环境胁迫抗性分析[J]. 食品与发酵工业,2022,48(15):69−77. [ZHAI L G, LI G H, ZHOU Z J, et al. Analysis of hypertonic adaptation of Salmonella delbe to cross environmental stress resistance[J]. Food and Fermentation Industries,2022,48(15):69−77. [27] VOGEL B F, HANSEN L T, MORDHORST H, et al. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material[J]. International Journal of Food Microbiology,2010,140(2-3):192−200. doi: 10.1016/j.ijfoodmicro.2010.03.035 [28] 萨娜, 王熙, 赵鹏, 等. 产甘油重组大肠杆菌的构建及其耐高渗透压性能的测定[J]. 北京化工大学学报(自然科学版),2011,38(6):93−7. [SA N, WANG X, ZHAO P, et al. Construction of glycerol-producing recombinant Escherichia coli and determination of its resistance to high osmotic pressure[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2011,38(6):93−7. doi: 10.13543/j.cnki.bhxbzr.2011.06.022 [29] SUN X, WANG C, WANG H, et al. Effects of processing on structure and thermal properties of powdered preterm infant formula[J]. Journal of Food Science,2018,83(6):1685−1694. doi: 10.1111/1750-3841.14162 [30] ORIESKOVA M, KAJSIK M, SZEMES T, et al. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains[J]. Antonie Van Leeuwenhoek,2016,109(3):405−414. doi: 10.1007/s10482-016-0645-1 [31] 孔阳芷, 王潇栋, 李想, 等. 乳品工业复合清洗剂发展现状[J]. 日用化学品科学,2021,44(10):13−18. [KONG Y Z, WANG X D, LI X, et al. Development status of compound cleaning agent for dairy industry[J]. Detergent & Cosmetics,2021,44(10):13−18. doi: 10.3969/j.issn.1006-7264.2021.10.002 [32] BREEUWER P, LARDEAU A, PETERZ M, et al. Desiccation and heat tolerance of Enterobacter sakazakii[J]. Journal of Applied Microbiology,2003,95(5):967−973. doi: 10.1046/j.1365-2672.2003.02067.x [33] 陈娟, 李颖, 朱永军, 等. 山梨醇的性质及其在食品中的应用研究进展[J]. 粮食与油脂,2018,31(8):7−9. [CHEN J, LI Y, ZHU Y J, et al. Research progress on the properties of sorbitol and its application in food[J]. Cereals & Oils,2018,31(8):7−9. doi: 10.3969/j.issn.1008-9578.2018.08.003 [34] LI H, ZHAO Y, ZHANG J, et al. Silver nanoparticles reduce the tolerance of Cronobacter sakazakii to environmental stress by inhibiting expression of related genes[J]. Journal of Dairy Science,2022,105(8):6469−6482. doi: 10.3168/jds.2022-21833 [35] PEI X, LI Y, ZHANG H, et al. Surveillance and characterisation of Cronobacter in powdered infant formula processing factories[J]. Food Control,2019,96:318−323. doi: 10.1016/j.foodcont.2018.09.009 [36] ZHANG Y, XIE Y, TANG J, et al. Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency[J]. Food Control,2020,114:107270. doi: 10.1016/j.foodcont.2020.107270 [37] 陈翠玲, 钮冰, 杨捷琳, 等. 克罗诺杆菌在特殊环境中耐受性与耐药性的研究进展[J]. 食品工业科技,2020,41(5):328−331,339. [CHEN C L, NIU B, YANG J L, et al. Research progress on the tolerance and drug resistance of Cronobacter in special environments[J]. Science and Technology of Food Industry,2020,41(5):328−331,339. doi: 10.13386/j.issn1002-0306.2020.05.053 [38] VELÁZQUEZ-ESTRADA R M, LÓPEZ-PEDEMONTE T J, HERNÁNDEZ-HERRERO M M, et al. Evaluation of Mycobacterium smegmatis as indicator of the efficacy of high hydrostatic pressure and ultra-high pressure homogenization treatments for pasteurization-like purposes in milk[J]. Journal of Dairy Research,2020,87(1):94−102. doi: 10.1017/S0022029919001043 [39] SHARMA P, BREMER P, OEY I, et al. Bacterial inactivation in whole milk using pulsed electric field processing[J]. International Dairy Journal,2014,35(1):49−56. doi: 10.1016/j.idairyj.2013.10.005 [40] WANG S, LIU Y, ZHANG Y, et al. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure[J]. LWT,2022,153:112573. doi: 10.1016/j.lwt.2021.112573 [41] 陈雪峰, 郭玉曦, 曾海燕, 等. 阪崎克罗诺杆菌物理和化学防控方法的研究进展[J]. 现代食品科技,2022,38(1):1−10,421. [CHEN X F, GUO Y X, ZENG H Y, et al. Research progress on physical and chemical control methods of Cronobacter sakazakii[J]. Modern Food Science and Technology,2022,38(1):1−10,421. doi: 10.13982/j.mfst.1673-9078.2022.1.0890 -