Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation
-
摘要: 本研究以苏丹红Ⅲ适配体为识别元件,以未修饰的纳米金传感信号,以聚二烯丙基二甲基氯化铵(PDDA)作为纳米金聚集的诱导剂,构建了一种简单、经济、快速的苏丹红比色检测方法。在优化条件下评估本方法的检测灵敏度、准确性和特异性,最后应用于食品中苏丹红快速检测,并将检测结果与国标法(GB/T 19681-2005)对比验证。结果显示,在PDDA浓度20 nmol/L、适配体浓度5 nmol/L、反应时间4 min等优化条件下,纳米金吸光度比值(A650nm/A530nm)与苏丹红III浓度呈良好线性关系(R=0.986),线性检测范围为3.13~50 ng/mL,可视化检测限为3.13 ng/mL,检测时间约为5 min。特异性分析显示,本方法对苏丹红I、II、III和IV有高的特异性,与柠檬黄、日落黄、分散橙11等无交叉反应。将本方法应用于食品中苏丹红检测,加标回收率为85.4%~102.5%,相对标准偏差为3.37%~6.75%。本方法具有操作简便、快速、结果易读等优点,适用于批量样品中苏丹红的现场快速检测。Abstract: In this study, a simple, economical and rapid colorimetric assay was developed for the detection of Sudan, in which Sudan-binding aptamer was used as recognition element, unmodified gold nanoparticles (AuNPs) as sensing signal, and poly(diallyldimethylammonium chloride) (PDDA) as inducer for gold nanoparticle aggregation. The sensitivity, accuracy and specificity of developed method were evaluated under optimized condition. Finally, the colorimetric sensor was applied to detection Sudan in food samples, and the results were compared with GB standard method (GB/T 19681-2005). The best procedure for Sudan analysis in our system was: The concentration of aptamer at 5 nmol/L, the concentration of PDDA at 20 nmol/L, and the reaction time was 4 min. The correlation between concentration of Sudan III and absorbance ratio of gold nanoparticles (A650nm/A530nm) was observed to be linear within the range of 3.13 to 50 ng/mL. The limit of visual detection was 3.13 ng/mL by naked-eye observation. The detection time was 5 min. The colorimetric sensor had high specificity for Sudan I, II, III and IV, and no cross-reactivity towards sunset yellow, tartrazine, and 1-amino-2-methylanthraquinone. Further, the colorimetric sensor was applied to measure Sudan Ⅲ in spiked real samples, and the recoveries were in the range of 85.4%~102.5%, with relative standard deviations of 3.37%~6.75%. Our study provides a simple, fast, and easy to read method for Sudan analysis, which can be applied in future on-site detection in food samples.
-
Key words:
- Sudan dyes /
- aptamer /
- gold nanoparticles /
- colorimetric assay
-
图 6 苏丹红与适配体反应时间优化
Figure 6. The optimization of reaction time between Sudan dyes and aptamer
注:对照组1:AuNPs+适配体5 nmol/L+PDDA 20 nmol/L;对照组2:AuNPs+PDDA 20 nmol/L;图8同。
表 1 苏丹红检测方法比较
Table 1. Comparison of methods reported for detection of Sudan dyes
分析方法 分析物 识别元件 检测限 线性范围 检测时间 参考文献 HPLC Sudan I~IV - 0.33~2.27 μg/g 0.5~5.0 μg/mL - [3] HPLC SudanI~IV - 10 ng/g - - [18] MIP-HPLC Sudan I~IV MIP 5~9 ng/g 31~4000 ng/g - [20] HPL-MS/MS Sudan I~IV - 0.2~1.0 ng/g 1~100 ng/mL - [21] GC-MS/MS Sudan III - 2~10 ng/g 0.1~4.0 μg/mL - [22] ELISA Sudan III 抗体 0.1~0.8 ng/mL - 105 min [23] 电化学传感器 SudanI - 0.093 μmol/L 0.3~700 μmol/L - [24] 比色 SudanIII 适配体 2.15 ng/mL 3.1~50 ng/mL 5 min 本方法 注:-代表文献未涉及该部分内容。 表 2 本方法加标回收率(n=3)
Table 2. The recovery of the proposed method (n=3)
样品 添加量(ng/g) 检测值(ng/g) 加标回收率(%) 相对标准偏差(%) 辣椒粉 10 8.83±0.45 88.3 5.09 50 46.20±1.76 92.4 3.81 100 93.80±5.22 93.8 5.56 辣椒酱 10 9.19±0.62 91.9 6.75 50 45.40±1.53 90.8 3.37 100 102.50±6.35 102.5 6.20 番茄酱 10 8.54±0.38 85.4 4.45 50 44.50±2.03 89.0 4.56 100 94.60±5.57 94.6 5.88 -
[1] TING X U, WEI K Y, WANG J, et al. Development of an enzyme linked immunosorbent assay specific to Sudan red I[J]. Analytical Biochemistry,2010,405:41−49. doi: 10.1016/j.ab.2010.05.031 [2] 张卫明, 赵伯涛, 卢庆国, 等. 基于辣椒红素提取的辣椒原料生产质量安全控制技术[J]. 中国野生植物资源,2013,32(5):55−58. [ZHANG W M, ZHAO B T, LU Q G, et al. The quality and safety control technology of hot pepper based on the extraction of capsanthin[J]. Chinese Wild Plant Resources,2013,32(5):55−58. doi: 10.3969/j.issn.1006-9690.2013.05.014 [3] 钟丽琪, 曹进, 钱和, 等. 高效液相色谱法测定食品中可能掺杂的16种工业染料[J]. 食品科学,2021,42(22):305−310. [ZHONG L Q, CAO J, QIAN H, et al. Determination of 16 industrial dyes illegally addition in food by high performance liquid chromatography[J]. Food Science,2021,42(22):305−310. doi: 10.7506/spkx1002-6630-20201127-286 [4] PHAM T C, DANG X T, NGUYEN B N, et al. Determination of Sudan I and II in food by high-performance liquid chromatography after simultaneous adsorption on nanosilica[J]. Journal of Analytical Methods in Chemistry,2021(1):1−9. [5] SHAN W C, XI J Z, SUN J, et al. Production of the monoclonal antibody against Sudan 4 for multi-immunoassay of Sudan dyes in egg[J]. Food Control,2012,27(1):146−152. doi: 10.1016/j.foodcont.2012.03.017 [6] LI J B, YANG Y Q, WANG J H, et al. Resonance rayleigh scattering detection of the epidermal growth factor receptor based on an aptamer-functionalized gold-nanoparticle probe[J]. Analytical Methods,2018,10:2910−2916. doi: 10.1039/C8AY00860D [7] LU C X, LIU C B, SHI G Q. Colorimetric enzyme-linked aptamer assay utilizing hybridization chain reaction for determination of bovine pregnancy-associated glycoproteins[J]. Microchimica Acta,2020,187:316−324. doi: 10.1007/s00604-020-04301-y [8] RUBAYE A A, NABOK A, CATANANTE G, et al. Detection of Ochratoxin A in aptamer assay using total internal reflection ellipsometry[J]. Sensor Actuat B-Chem,2018,263:48−251. [9] 王红旗, 张玲, 刘冬梅, 等. 小分子靶标核酸适配体研究进展[J]. 食品与生物技术学报,2015,34(8):790−798. [WANG H Q, ZHANG L, LIU D M, et al. Research progress of aptamer for small molecule target[J]. Journal of Food Science and Biotechnology,2015,34(8):790−798. doi: 10.3969/j.issn.1673-1689.2015.08.002 [10] XU X M, MA X Y, WAND H T, et al. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers[J]. Microchimica Acta,2018,185:325−332. doi: 10.1007/s00604-018-2852-0 [11] LI D L, LIU L Y, HUANG Q L, et al. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria[J]. World Journal of Microbiology & Biotechnology,2021,37:45. [12] MEHLHORN A, RAHIMI P, JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors 2018, 8: 54. [13] SCHÜLING T, EILERS A, SCHEPER T, et al. Aptamer-based lateral flow assays[J]. AIMS Bioengineering,2018,5(2):78−102. doi: 10.3934/bioeng.2018.2.78 [14] KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors[J]. Biosensors & Bioelectronics,2016,76:2−19. [15] YUAN, Q, LU D Q, ZHANG X B, et al. Aptamer-conjugated optical nanomaterials for bioanalysis[J]. Trac-Trends in Analytical Chemistry,2012,39:72−86. doi: 10.1016/j.trac.2012.05.010 [16] WANG Y, LI J, QIAO P, et al. Screening and application of a new aptamer for the rapid detection of Sudan dye III[J]. European Journal of Lipid Science and Technology,2018,120(6):1700112. doi: 10.1002/ejlt.201700112 [17] 卢春霞, 李红敏, 孙凤霞, 等. 基于适配体识别的侧向层析法快速检测单核细胞增生李斯特氏菌[J]. 食品与生物技术学报,2020,4:85−92. [LU C X, LI H M, SUN F X, et al. Aptamer-based lateral flow strip for rapid detection of Listeria monocytogenes[J]. Journal of Food Science and Biotechnology,2020,4:85−92. doi: 10.3969/j.issn.1673-1689.2020.04.012 [18] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 19681-2005食品中苏丹红燃料的检测方法高效液相色谱法[S]. 北京: 中国标准出版社, 2005.Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 19681-2005 The method for the determination of Sudan dyes in foods-high performance liquid chromatography[S]. Beijing: Standards Press of China, 2005. [19] OFIR Y, SAMANTA B, ROTELLO V M. Polymer and biopolymer mediated self-assembly of gold nanoparticles[J]. Chemical Society Reviews,2008,37:1814−1825. doi: 10.1039/b712689c [20] YAN H Y, QIAO J D, PEI Y N, et al. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds[J]. Food Chemistry,2012,132:649−654. doi: 10.1016/j.foodchem.2011.10.105 [21] 杨光勇, 薛光, 郭金喜, 等. 超高效合相色谱-串联质谱法测定中药材中10种偶氮染料[J]. 质谱学报,2021,42(6):1509−1067. [YANG G Y, XUE G, GUO J X, et al. Determination of ten kinds of azo dyes in Chinese medicinal materials by ultra performance convergence chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2021,42(6):1509−1067. [22] 张胜帮, 韩超, 刘继东, 等. 食品中苏丹红I~IV及对位红的GC-MS/SIM法研究[J]. 中国食品学报,2009,9(2):187−193. [ZHANG S B, HAN C, LIU J D, et al. Study on simultaneous determination of sudanI-Sudan IV and para red in food by GC-MS/SIM[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(2):187−193. doi: 10.3969/j.issn.1009-7848.2009.02.031 [23] QI Y H, SHAN W C, LIU Y Z, et al. Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan dyes in food samples[J]. Journal of Agricultural and Food Chemistry,2012,60:2116−2122. doi: 10.1021/jf300026x [24] EBRAHIMI-TAZANGI F, BEITOLLAHI H, HEKMATARA H, et al. Design of a new electrochemical sensor based on the CuO/GO nanocomposites: Simultaneous determination of Sudan I and bisphenol A[J]. Journal of the Iranian Chemical Society,2021,18:191−199. doi: 10.1007/s13738-020-02016-8 -