• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性

任一杰 赵小亮 王宝忠 向紫骏 杨超福 王海利 马君义 张伟杰

任一杰,赵小亮,王宝忠,等. 油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性[J]. 食品工业科技,2022,43(23):245−251. doi:  10.13386/j.issn1002-0306.2022030302
引用本文: 任一杰,赵小亮,王宝忠,等. 油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性[J]. 食品工业科技,2022,43(23):245−251. doi:  10.13386/j.issn1002-0306.2022030302
REN Yijie, ZHAO Xiaoliang, WANG Baozhong, et al. Optimization of Extraction Process of Polysaccharides from Olea europaea L. Leaves and Its Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(23): 245−251. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030302
Citation: REN Yijie, ZHAO Xiaoliang, WANG Baozhong, et al. Optimization of Extraction Process of Polysaccharides from Olea europaea L. Leaves and Its Physicochemical Properties and Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(23): 245−251. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030302

油橄榄叶多糖的提取工艺优化及其理化性质和抗氧化活性

doi: 10.13386/j.issn1002-0306.2022030302
基金项目: 国家自然科学基金(31860250,32260231);甘肃省自然科学基金(18JR3RA148);甘肃省基础研究创新群体计划项目(1506RJIA116);甘肃省科技创新专项基金项目(2019ZX-05)。
详细信息
    作者简介:

    任一杰(1981−),男,本科,高级工程师,研究方向:天然产物化学,E-mail:471208356@qq.com

    通讯作者:

    赵小亮(1982−),男,博士,副教授,研究方向:糖化学与糖药物,E-mail:zhxl819@163.com

    张伟杰(1975−),男,博士,教授,研究方向:糖基医用生物材料,E-mail:brossica@163.com

  • 中图分类号: TS201.1

Optimization of Extraction Process of Polysaccharides from Olea europaea L. Leaves and Its Physicochemical Properties and Antioxidant Activity

  • 摘要: 为增加油橄榄叶多糖的开发利用价值,以油橄榄叶为实验材料,采用正交试验优化油橄榄叶多糖(OLP)的提取工艺,高效凝胶渗透色谱-多角度激光光散射仪联用(HPGPC-MALLS)测定分子量,PMP柱前衍生高效液相色谱法分析OLP的单糖组成,并评价其抗氧化活性。结果显示,OLP的最佳提取工艺条件为料液比1:27.5 g/mL,温度95 ℃,提取时间3.5 h,在此条件下OLP的得率为2.75%;OLP的重均分子量(Mw)为25.36 kDa,数均分子量(Mn)为19.32 kDa,多分散系数为1.313;OLP主要由葡萄糖(Glc)、半乳糖(Gal)和氨基半乳糖(GalN)组成,还含有鼠李糖(Rha)、阿拉伯糖(Ara)、木糖(Xyl)、甘露糖(Man)和氨基葡萄糖(GlcN)等单糖,各单糖的相对摩尔比为56.2:15.9:10.3:8.3:5.9:2.6:0.5:0.3;抗氧化活性实验结果发现,OLP具有较好的抗氧化活性,对羟自由基、超氧阴离子自由基和DPPH自由基的半数抑制浓度(IC50)分别为0.422、0.302和0.268 mg/mL。本研究所得油橄榄叶多糖的提取工艺简单、得率高、抗氧化活性好,为油橄榄叶多糖的进一步研究和开发利用提供了重要参考。
  • 图  1  料液比对多糖得率的影响

    Figure  1.  Effects of material-liquid ratio on the yield of polysaccharides

    注:不同小写字母表示差异显著(P<0.05);图2~图3同。

    图  2  温度对多糖得率的影响

    Figure  2.  Effects of temperature on the yield of polysaccharides

    图  3  时间对多糖得率的影响

    Figure  3.  Effects of time on the yield of polysaccharides

    图  4  OLP红外光谱图

    Figure  4.  Infrared spectrogram of OLP

    图  5  OLP单糖组成分析HPLC图

    Figure  5.  Monosaccharide composition analysis of OLP by HPLC

    注:1. Man;2. GlcN;3. Rha;4. GlcA;5. GalN;6. GalA;7. Glc;8. Gal;9. Xyl;10. Ara。

    图  6  OLP对羟自由基的清除活性

    Figure  6.  Scavenging activity of OLP on hydroxyl free radical

    图  7  OLP对超氧阴离子自由基的清除活性

    Figure  7.  Scavenging activity of OLP on superoxide anion free radical

    图  8  OLP对DPPH自由基的清除活性

    Figure  8.  Scavenging activity of OLP on DPPH free radical

    表  1  正交试验因素水平

    Table  1.   Orthogonal assay factors and levels

    水平因素
    A 料液比
    (g/mL)
    B 温度
    (℃)
    C 时间
    (h)
    11:27.5852.5
    21:30.0903.0
    31:32.5953.5
    下载: 导出CSV

    表  2  L9(34)正交实验及结果

    Table  2.   L9(34) orthogonal design and experiment results

    序号影响因素多糖得
    率(%)
    A 料液比B 温度C 时间D (空白列)
    111112.10
    212222.51
    313332.74
    421232.07
    522312.42
    623122.24
    731322.19
    832132.44
    933212.46
    K17.356.366.786.98
    K26.737.377.046.94
    K37.097.447.357.25
    k12.452.122.262.33
    k22.242.462.352.31
    k32.362.482.452.42
    R0.210.360.190.11
    下载: 导出CSV

    表  3  OLP分子量分析结果

    Table  3.   OLP molecular weight analysis results

    OLPMw(kDa)Mn(kDa)多分散系数(Mw/Mn)
    25.3619.321.313
    下载: 导出CSV

    表  4  OLP单糖组成及相对摩尔比分析结果

    Table  4.   The analysis results of monosaccharide composition and relative mole ratio

    样品单糖组成及其相对摩尔比
    ManGlcNRhaGalNGlcGalXylAra
    OLP0.50.38.310.356.215.92.65.9
    下载: 导出CSV
  • [1] 赵德刚, 吕立堂, 赵懿琛, 等. 油橄榄研究进展及其在贵州的发展建议[J]. 贵州农业科学,2018,46(3):146−152. [ZHAO D G, LYU L T, ZHAO Y C, et al. Olea europaea developing situation and suggestions for industry development in Guizhou Province[J]. Guizhou Agricultural Sciences,2018,46(3):146−152. doi:  10.3969/j.issn.1001-3601.2018.03.034
    [2] 徐纬英. 中国油橄榄种质资源与利用[M]. 长春: 长春出版社, 2001

    XU W Y. Germplasm resources and utilization of olive in China[M]. Changchun: Changchun Press, 2001.
    [3] 王成章, 陈强, 罗建军, 等. 中国油橄榄发展历程与产业展望[J]. 生物质化学工程,2013,47(2):41−46. [WANG C Z, CHEN Q, LUO J J, et al. Development and industrial prospect of China’s olive[J]. Biomass Chemical Engineering,2013,47(2):41−46. doi:  10.3969/j.issn.1673-5854.2013.02.009
    [4] 周盼. 油橄榄叶主要化学成分分析及降脂功效研究[D]. 合肥: 安徽农业大学, 2018

    ZHOU P. Analysis of main chemical components of olive leaf and lipid-lowering efficacy[D]. Hefei: Anhui Agricultural University, 2018.
    [5] GUINDA A, CASTELLANO J M, SANTOS-LOZANO J M, et al. Determination of major bioactive compounds from olive leaf[J]. LWT-Food Science and Technology,2015,64(1):431−438.
    [6] 李 楠, 赵兴文, 郭美佳, 等. 油橄榄叶有效成分的提取及药理活性的研究进展[J]. 食品工业科技,2020,41(10):327−331, 338. [LI N, ZHAO X W, GUO M J, et al. Advances in extraction and pharmacological activities of effective constituents from Olea europaea Leaf[J]. Science and Technology of Food Industry,2020,41(10):327−331, 338.
    [7] 于广利, 赵峡. 糖药物学[M]. 青岛: 中国海洋大学出版社, 2012: 1−21

    YU G L, ZHAO X. Carbohydrate-based drugs[M]. Qingdao: Ocean University of China Press, 2012: 1−21.
    [8] PATRICIA C, GONZALO V, JOSE A, et al. Polysaccharide-based films and coatings for food packaging: A review[J]. Food Hydrocolloids,2017,68:136−148. doi:  10.1016/j.foodhyd.2016.09.009
    [9] YU Y, SHEN M Y, SONG Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers,2018,183:91−101. doi:  10.1016/j.carbpol.2017.12.009
    [10] 谭婉碧, 王琴飞, 余厚美, 等. 植物源功能活性多糖的提取及其研究进展[J]. 热带农业科学,2022,42(7):90−98. [TAN W B, WANG Q F, YU H M, et al. Research progress, extraction and functional activity of plant polysaccharides[J]. Chinese Journal of Tropical Agriculture,2022,42(7):90−98.
    [11] 邓建梅, 余传波, 刘心怡. 响应面法优化微波辅助提取油橄榄叶多糖工艺研究[J]. 饲料研究,2020,43(6):73−77. [DENG J M, YU C B, LIU X Y. Optimization of microwave-assisted extraction of polysaccharides from olive leaves by response surface method[J]. Feed Research,2020,43(6):73−77. doi:  10.13557/j.cnki.issn1002-2813.2020.06.019
    [12] 原姣姣, 陈锦璇, 张帆, 等. 响应面优化超声-酶辅助强化油橄榄叶多糖的提取[J]. 中国油脂,2019,44(4):128−132. [YUAN J J, CHEN J X, ZHANG F, et al. Ultrasound-assisted enzymatic extraction of polysaccharide from olive leaf optimized by response surface methodology[J]. China Oils and Fats,2019,44(4):128−132. doi:  10.3969/j.issn.1003-7969.2019.04.028
    [13] 王布雷, 王玉洁, 李杨美汇, 等. 油橄榄叶多糖的体外抗氧化和抑菌活性分析[J]. 天然产物研究与开发,2016,28(8):1284−1288, 1261. [WANG B L, WANG Y J, LIYANG M H, et al. Antioxidant and antimicrobial activities of polysaccharide from Olea europaea L. leaf[J]. Natural Product Research and Development,2016,28(8):1284−1288, 1261. doi:  10.16333/j.1001-6880.2016.8.020
    [14] 张璐, 杨莹莹. 高效液相色谱法测定党参多糖的单糖组成及含量[J]. 中国食品添加剂,2021,32(12):163−169. [ZHANG L, YANG Y Y. Determination of monosaccharide composition and content of Codonopsis pilosula polysaccharide by HPLC[J]. China Food Additives,2021,32(12):163−169. doi:  10.19804/j.issn1006-2513.2021.12.022
    [15] 杨海玲, 黄文男, 林婕, 等. 姜黄多糖提取工艺优化研究[J]. 食品研究与开发,2015,36(10):23−25. [YANG H L, HUANG W N, LIN J, et al. Study on the optimal extraction technology of polysaccharide in Curcuma longa L doi:  10.3969/j.issn.1005-6521.2015.10.007

    J]. Food Research and Development,2015,36(10):23−25. doi:  10.3969/j.issn.1005-6521.2015.10.007
    [16] 鲁斌, 张凤明, 蔡正达, 等. 梨园块菌多糖提取工艺优化及其单糖组成分析[J]. 食品工业科技,2022,43(13):218−224. [LU B, ZHANG F M, CAI Z D, et al. Optimization of polysaccharide extraction process from Tuber liyuanum and analysis of its monosaccharide composition[J]. Science and Technology of Food Industry,2022,43(13):218−224. doi:  10.13386/j.issn1002-0306.2021100234
    [17] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi:  10.1021/ac60111a017
    [18] 赵小亮, 吕友晶, 李苗苗, 等. 杜梨 (Pyrus betulifolia Bge.) 多糖提取工艺及其清除自由基活性[J]. 食品与生物技术学报,2012,31(3):276−282. [ZHAO X L, LYU Y J, LI M M, et al. Extracting technology and free radical scavenging activity of polysaccharide from Pyrus betulifolia Bge. fruits[J]. Journal of Food Science and Biotechnology,2012,31(3):276−282. doi:  10.3969/j.issn.1673-1689.2012.03.009
    [19] HONG T, YIN J Y, NIE S P, et al. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective[J]. Food Chemistry,2021,12:1−16.
    [20] CHEONG K L, WU D T, ZHAO J, et al. A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector[J]. Journal of Chromatography A,2015,1400:98−106. doi:  10.1016/j.chroma.2015.04.054
    [21] ZHAO X L, JIAO G L, YANG Y, et al. Structure and immunomodulatory activity of a sulfated agarose with pyruvate and xylose substitutes from Polysiphonia senticulosa Harvey[J]. Carbohydrate Polymers,2017,176:29−37. doi:  10.1016/j.carbpol.2017.08.065
    [22] YANG Y, ZHAO X, LI J, et al. A beta-glucan from Durvillaea antarctica has immunomodulatory effects on RAW264.7 macrophages via toll-like receptor 4[J]. Carbohydrate Polymers,2018:255−265.
    [23] 金鑫, 嵇国利, 赵小亮, 等. 一种刺松藻来源的硫酸阿拉伯聚糖的制备及特征结构表征[J]. 高等学校化学学报,2019,40(4):733−739. [JIN X, JI G L, ZHAO X L, et al. Sulfated arabinose from Codium fragile: Preparation and extensive structural characterization[J]. Chemical Journal of Chinese Universities,2019,40(4):733−739. doi:  10.7503/cjcu20180583
    [24] WANG X J, ZHAO X L, LYU Y J, et al. Extraction, isolation and structural characterization of a novel polysaccharide from Cyclocarya paliurus[J]. International Journal of Biological Macromolecules,2019,132:864−870. doi:  10.1016/j.ijbiomac.2019.03.148
    [25] WANG F F, YE S H, DING Y, et al. Research on structure and antioxidant activity of polysaccharides from Ginkgo biloba leaves[J]. Journal of Molecular Structure,2022,1252:132185. doi:  10.1016/j.molstruc.2021.132185
    [26] MA L Y, XU R, LIN H F, et al. Structural characterization and antioxidant activities of polysaccharides from okra (Abelmoschus esculentus (L.) Moench) pericarp[J]. Bioactive Carbohydrates and Dietary Fibre,2021,26:100277. doi:  10.1016/j.bcdf.2021.100277
    [27] 于小芳. 不同产地、不同年限铁皮石斛多糖中单糖组成的 HPLC 分析[J]. 临床研究,2022,30(5):36−39. [YU X F. HPLC analysis of monosaccharide composition in polysaccharides from dendrobium officinale with different origins and years[J]. Clinical Research,2022,30(5):36−39.
    [28] 吴丰鹏, 李芹英, 吴彦超, 等. 九蒸九制对黄精多糖单糖组成及其抗氧化性的影响[J]. 食品工业科技,2021,42(2):42−46. [WU F P, LI Q Y, WU Y C, et al. Effects of nine-steam-nine-bask on the monosaccharide composition and antioxidant activities of Polygonatum sibiricum polysaccharide[J]. Science and Technology of Food Industry,2021,42(2):42−46. doi:  10.13386/j.issn1002-0306.2020030160
    [29] 杨月娇, 马智玲, 白英. 提取方法对马铃薯渣果胶结构特征及特性的影响[J]. 食品与发酵工业,2021,47(7):146−152. [YANG Y J, MA Z L, BAI Y. Extraction methods on structure and properties of pectin from potato residue[J]. Food and Fermentation Industries,2021,47(7):146−152. doi:  10.13995/j.cnki.11-1802/ts.025710
    [30] 郭淑娟, 朱晟永, 贾悦, 等. 基于主成分分析微波提取圆头蒿多糖工艺中单糖组分变化[J]. 食品工业科技,2020,41(22):267−274. [GUO S J, ZHU S Y, JIA Y, et al. Changes of monosaccharide components in microwave extraction of Artemisia sphaerocephala polysaccharides based on principal component analysis[J]. Science and Technology of Food Industry,2020,41(22):267−274. doi:  10.13386/j.issn1002-0306.2020020089
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  29
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回