Study on Immune-enhancing Activity of Gonad Saponins from Female of Apostichopus japonicus
-
摘要: 目的:以仿刺参雌性生殖腺皂苷(gonad saponins from female of Apostichopus japonicus,AGS)为研究对象,探究其免疫增强活性。方法:通过对巨噬细胞吞噬能力和细胞因子的测定,研究AGS的体外免疫调节活性;通过对免疫低下小鼠胸腺、脾脏指数,碳廓清指数与吞噬指数,腹腔巨噬细胞增殖活性,脾细胞增殖活性,自然杀伤细胞(natural killer cell,NK cell)活力,T淋巴细胞亚群水平及小鼠血清细胞因子的测定,分析AGS在小鼠体内的免疫调节活性。结果:体外实验表明,AGS能提高小鼠体外巨噬细胞吞噬能力,促进TNF-α、IL-6、IFN-γ的分泌,且各组与正常组相比差异显著(P<0.05);体内实验表明,与模型组相比,中剂量组和高剂量组AGS均能显著提高小鼠胸腺、脾脏指数、碳廓清指数和吞噬指数(P<0.05),显著增强腹腔巨噬细胞和脾细胞增殖活性(P<0.05),显著增强NK细胞的活性(P<0.05),显著提高CD4+/CD8+水平(P<0.05),显著促进TNF-α、IL-6、IFN-γ的分泌(P<0.05)。结论:AGS在体外和体内都表现出增强免疫的活性。Abstract: Objective: Taking gonad saponins from female of Apostichopus japonicus (AGS) as the research object to explore its immune-enhancing activity. Methods: The immunoregulatory activity of AGS in vitro was studied by measuring the phagocytosis and cytokines of macrophages. Thereafter the immunoregulatory activity of AGS in immunocompromised mice was analyzed by measuring thymus and spleen index, carbon clearance index and phagocytic index, proliferation activity of peritoneal macrophages, spleen cells, NK cell activity, T lymphocyte subsets level and serum cytokines of mice. Results: In vitro experiments showed that AGS could improve the phagocytic ability of macrophages and enhance the secretion of TNF-α, IL-6 and IFN-γ, and each group was significantly different from the normal group (P<0.05). In vivo experiments showed that compared with model group, AGS in middle dose group and high dose group could significantly increase thymus and spleen index, carbon clearance index and phagocytosis index (P<0.05), significantly enhance the proliferation activity of peritoneal macrophages and spleen cells (P<0.05), significantly enhance the activity of NK cells (P<0.05), significantly increase the level of CD4+/CD8+ (P<0.05), and significantly promote the secretion of TNF-α, IL-6, and IFN-γ (P<0.05). Conclusion: AGS exhibits immune-enhancing activity both in vitro and in vivo.
-
Key words:
- Apostichopus japonicus /
- gonad /
- saponin /
- immune-enhancing activity
-
表 1 各组小鼠给药处理表
Table 1. Dosing and treatment of mice in each group
序号 组别 是否注射环磷酰胺 第11~20 d灌胃 1 正常组 否 去离子水 2 模型对照组 是 去离子水 3 低剂量组 是 0.5 mg/kg 4 中剂量组 是 5 mg/kg 5 高剂量组 是 20 mg/kg 表 2 AGS对RAW264.7吞噬能力的影响
Table 2. Effects of AGS on the phagocytosis of RAW264.7 cells
组别 吸光度 正常组 0.282±0.014 200(μg/mL) 0.329±0.018* 500(μg/mL) 0.321±0.006* 1000(μg/mL) 0.320±0.007* LPS 0.338±0.015* 注:*表示与正常组相比,差异显著(P<0.05)。 表 3 AGS对免疫低下小鼠脏器指数的影响
Table 3. Effects of AGS on organ indices in immunocompromised mice
表 4 AGS对免疫低下小鼠碳廓清指数、吞噬指数的影响
Table 4. Effect of AGS on carbon clearance index and phagocytic index in immunocompromised mice
组别 碳廓清指数 吞噬指数 正常组 0.0689±0.0019 0.3551±0.0179 模型组 0.0199±0.0015* 0.0993±0.0119* 低剂量组 0.0210±0.0020* 0.1110±0.0116* 中剂量组 0.0339±0.0030*# 0.1888±0.0069*# 高剂量组 0.0409±0.0014*# 0.2489±0.0266*# 表 5 AGS对小鼠脾脏T淋巴细胞亚群的影响
Table 5. Effect of AGS on T lymphocyte subsets of spleen in mice
组别 CD4+(%) CD8+(%) CD4+/CD8+ 正常组 72.33±0.40 21.63±0.64 3.35±0.11 模型组 56.17±0.57* 35.80±0.26* 1.57±0.02* 低剂量组 58.10±1.21* 27.80±0.87*# 2.09±0.11*# 中剂量组 66.23±0.40*# 22.13±0.57# 2.99±0.09*# 高剂量组 58.43±0.32*# 29.50±0.79*# 1.98±0.04*# -
[1] 姜会超, 刘爱英, 宋秀凯, 等. 重金属胁迫对刺参胚胎发育的影响[J]. 水生生物学报,2014,38(2):393−400. [JIANG H C, LIU A Y, SONG X K, et al. The toxic effects of heavy metals on the embryonic development of Apostichopus[J]. Acta Hydrobiologica Sinica,2014,38(2):393−400. doi: 10.7541/2014.56 [2] 段续, 王辉, 任广跃, 等. 海参的干制技术及其研究进展[J]. 食品工业科技,2012,33(10):427−431. [DUAN X, WANG H, REN G Y, et al. Research progress of dry-cure technology of sea cucumber[J]. Science and Technology of Food Industry,2012,33(10):427−431. doi: 10.13386/j.issn1002-0306.2012.10.103 [3] DAI Y L, KIM E A, LUO H M, et al. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus)[J]. International Journal of Food Science and Technology,2020,57(6):2283−2292. doi: 10.1007/s13197-020-04266-z [4] WANG Z, ZHANG H, YUAN W, et al. Antifungal nortriterpene and triterpene glycosides from the sea cucumber Apostichopus japonicus selenka[J]. Food Chemistry,2012,132(1):295−300. doi: 10.1016/j.foodchem.2011.10.080 [5] 刘昕, 刘京熙, 张健, 等. 仿刺参卵多糖的分离纯化及体外抗肿瘤活性[J]. 食品科学,2016,37(23):105−110. [LIU X, LIU J X, ZHANG J, et al. Purification and antitumor activity in vitro of polysaccharides from Apostichopus japonicus spawn[J]. Food Science,2016,37(23):105−110. doi: 10.7506/spkx1002-6630-201623018 [6] 向怡卉, 苏秀榕, 董明敏, 等. 复合蛋白酶水解海参生殖腺工艺的研究[J]. 食品工业科技,2007,28(3):143−144, 146. [XIANG Y H, SU X R, DONG M M, et al. Study on hydrolysis of sea cucumber gonads by compound protease[J]. Science and Technology of Food Industry,2007,28(3):143−144, 146. doi: 10.3969/j.issn.1002-0306.2007.03.042 [7] 钱颖, 黄容容, 孙锐, 等. 人参皂苷Rh2对免疫低下小鼠的免疫调节作用[J]. 医药导报,2018,37(12):1446−1454. [QIAN Y, HUANG R R, SUN Y, et al. Effect of ginsenoside Rh2 on immune regulation of immunocompromised mice[J]. Herald of Medicine,2018,37(12):1446−1454. [8] 吴雨龙, 朱华, 张艺鏻, 等. 菊苣多糖对免疫抑制小鼠免疫功能的影响[J]. 食品工业科技,2021,42(3):284−289, 337. [WU Y L, ZHU H, ZHANG Y L, et al. Effect of chicory polysaccharide on immune function in immunosuppressed mice[J]. Science and Technology of Food Industry,2021,42(3):284−289, 337. doi: 10.13386/j.issn1002-0306.2020030168 [9] GE Y, LI C, REN H, et al. Effects of ginseng saponin Rh_(2) injection on immune function of H_(22) cancer mice[J]. Special Wild Economic Animal and Plant Research,2002,24(3):4−7. [10] 张长城, 姜美杰, 赵海霞, 等. 竹节参总皂苷对环磷酰胺致免疫低下小鼠免疫功能的影响[J]. 中成药,2011,33(7):1134−1138. [ZHANG C C, JIANG M J, ZHAO H X, et al. Effects of total saponins of Panax japonicus rhizoma on cyclophosphamide-induced immunosuppressed mice[J]. Chinese Traditional Patent Medicine,2011,33(7):1134−1138. doi: 10.3969/j.issn.1001-1528.2011.07.011 [11] 王静凤, 傅佳, 王玉明, 等. 革皮氏海参皂苷对小鼠免疫功能的调节作用[J]. 中国海洋大学学报(自然科学版),2010,40(2):28−32. [WANG J F, FU J, WANG Y M, et al. Effects of saponins of Pearsonothuria graeffei on immune regulation in mice[J]. Periodical of Ocean University of China,2010,40(2):28−32. doi: 10.16441/j.cnki.hdxb.2010.02.005 [12] 翟星辰. 壳寡糖免疫增强及对肾癌抑制作用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.ZHAI X C. Research on immune enhancement of chitosan oligosaccharides and its inhibitory effects against renal carcinoma[D]. Harbin: Harbin Institute of Technology, 2019. [13] 董婧媛. 海参皂苷的提取工艺及功能研究[D]. 天津: 天津科技大学, 2020.DONG J Y. Study on extraction process and function of sea cucmber saponin[D]. Tianjing: Tianjin University of Science & Technology, 2020. [14] YU J H, CONG L X, WANG C M, et al. Immunomodulatory effect of Schisandra polysaccharides in cyclophosphamide-induced immunocompromised mice[J]. Experimental and Therapeutic Medicine,2018,15:4755−4762. [15] 刘仁杰, 王春凤, 王刚, 等. 林蛙油活性肽对小鼠免疫功能的影响[J]. 东北林业大学学报,2017,45(1):82−85, 89. [LIU R J, WANG C F, WANG G, et al. Effect of bioactive peptides from the oviductus ranae on immunologic function of mice[J]. Journal of Northeast Forestry University,2017,45(1):82−85, 89. doi: 10.3969/j.issn.1000-5382.2017.01.017 [16] 段炳南, 陈庆林. 绞股蓝总皂甙对小鼠腹腔巨噬细胞内酶活性及吞噬功能的影响[J]. 江西医学院学报,2007,47(3):38−40. [DUAN B N, CHEN Q L. Effects of gypenosides on enzyme activity and phagocytic capacity of peritoneal macrophage in mice[J]. Acta Academiae Medicinae Jiangxi,2007,47(3):38−40. [17] 王军. MIF, TGFβ, IFNγ基因多态性与脊柱结核易感性及在椎间盘中的表达与其临床资料的关联研究[D]. 南宁: 广西医科大学, 2017.WANG J. Relationship between MIF, TGFβ, IFNγ gene polymorphism and spinal tuberculosis suscepyibility and expression in intervertebral disc and its clinical data[D]. Guangxi: Guangxi Medical University, 2017. [18] 张禹. 基于介孔羟基磷灰石与荧光碳点的免疫佐剂效应研究[D]. 广州: 暨南大学, 2017.ZHANG Y. The research on the immune adjuvant effects of mesoporous hydroxylapatite and fluorescent carbon dots[D]. Guangzhou: Jinan University, 2017. [19] AMININ D L, AGAFONOVA I G, BERDYSHEV E V, et al. Immunomodulatory properties of cucumariosides from the edible far-eastern Holothurian Cucumaria japonica[J]. Journal of Medicinal Food,2001,4(3):127−135. doi: 10.1089/109662001753165701 [20] SAMOILOVA E B, HORTON J L, HILLIARD B, et al. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: Roles of IL-6 in the activation and differentiation of autoreactive T cells[J]. The Journal of Immunology,1998,161(12):6480−6486. [21] WANG X, WANG Z Q, WU H H, et al. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress[J]. Accepted Manuscript,2018,120:736−744. [22] BHARDWAJ J, CHAUDHARY N, SEO H J, et al. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway[J]. Immunopharmacology and Immunotoxicology,2014,36(3):202−210. doi: 10.3109/08923973.2014.909849 [23] SINGH K P, GUPTA R K, SHAU H, et al. Effect of ASTA-Z 7575 (INN Maphosphamide) on human lymphokine-activated killer cell induction[J]. Immunopharmacology and Immunotoxicology,1993,15(5):528−538. [24] DENG J, ZHONG Y F, WU Y P, et al. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage[J]. Redox Biology,2018,14:1−6. doi: 10.1016/j.redox.2017.08.003 [25] PRATHEESHKUMAR P, KUTTAN G. Ameliorative action of Vernonia cinerea L. on cyclophosphamide-induced immunosuppression and oxidative stress in mice[J]. Inflammopharmacology,2010,18(4):197−207. doi: 10.1007/s10787-010-0042-8 [26] 王飞. 饲养环境中硫化氢暴露引起小鼠免疫功能变化的初步调查[D]. 保定: 河北农业大学, 2019.WANG F. Preliminary investigation on the changes of immune function in mice induced by hydrogen sulfide exposure in breeding environment[D]. Baoding: Hebei Agricultural University, 2019. [27] 杨杰, 卫东锋, 王文潇, 等. 五指毛桃水提物对免疫抑制小鼠细胞免疫的影响[J]. 中药药理与临床,2015,31(6):111−114. [YANG J, WEI D F, WANG W X, et al. Effects of aqueous extract of Ficus hirta on cellular immunity in immunosuppressed mice[J]. Pharmacology and Clinics of Chinese Materia Medica,2015,31(6):111−114. doi: 10.13412/j.cnki.zyyl.2015.06.033 [28] DUGGINA P, KALLA C M, VARIKASUVU S R, et al. Protective effect of centella triterpene saponins against cyclophosphamide-induced immune and hepatic system dysfunction in rats: Its possible mechanisms of action[J]. Journal of Physiology and Biochemistry,2015,71:435−454. doi: 10.1007/s13105-015-0423-y [29] 杜双双. 蚕丝蛋白肽免疫调节及与化疗的联合作用[D]. 天津: 天津医科大学, 2018.DU S S. The immunomodulation and combinedeffect with chemotherapy of silk fibroinpeptide[D]. Tianjin: Tianjin Medical University, 2018. [30] CHEN L X, QI Y L, QI Z, et al. A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice[J]. Molecules,2019,24(6):1096. doi: 10.3390/molecules24061096 [31] YU Q, NIE S P, LI W J, et al. Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum[J]. Phytotherapy Research,2013,27(2):186−191. doi: 10.1002/ptr.4698 [32] LEIRO J M, CASTRO R, ARRANZ J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh[J]. International Immunopharmacology,2007,7(7):879−888. doi: 10.1016/j.intimp.2007.02.007 [33] 苗明三, 刘会丽, 杨亚蕾, 等. 无花果多糖对免疫抑制小鼠腹腔巨噬细胞产生IL-1α、脾细胞体外增殖、脾细胞产生IL-2及其受体的影响[J]. 中国现代应用药学,2009,26(7):525−528. [MIAO M S, LIU H L, YANG Y L, et al. Effect of Ficus carica oolysaccharide on the levels of interleukin-la produced by peritoneal macro-phages, lymphocyte proliferation, interleukin-2 and its receptor produced by lymphocyte in immu-nosuppressive mice[J]. Chinese Journal of Modern Applied Pharmacy,2009,26(7):525−528. [34] ROSISA M, ALEKSANDAR S, DENITSA A, et al. In vitro antitumour and immunomodulating activity of saponins from Astragalus glycyphyllos[J]. Biotechnology & Biotechnological Equipment,2022,35(1):1948−1955. [35] 董毅, 李瑞. 运动与自然杀伤细胞抗病毒等功能的关系和机制[J]. 中国体育科技,2020,56(5):3−13. [DONG Y, LI R. The relationship and underlying mechanism between exercise and functions of NK Cells[J]. China Sport Science and Technology,2020,56(5):3−13. [36] 王静凤, 王奕, 赵林, 等. 日本刺参的抗肿瘤及免疫调节作用研究[J]. 中国海洋大学学报(自然科学版),2007,37(1):93−96,102. [WANG J F, WANG Y, ZHAO L, et al. Effects of Apostichopus japonicus on antitumor and immune regulation in S180 bearing mice[J]. Periodical of Ocean University of China,2007,37(1):93−96,102. [37] 白军, 李博文, 刘淑红. 金丝桃苷对小鼠T淋巴细胞亚群及血清细胞因子的影响[J]. 动物医学进展,2017,38(6):48−51. [BAI J, LI B W, LIU S H. Effects of hyperoside on T cell subset and serum cytokines in mice[J]. Progress in Veterinary Medicine,2017,38(6):48−51. doi: 10.3969/j.issn.1007-5038.2017.06.011 [38] 曹晓军, 倪慧萍. 传染性单核细胞增多症患儿T细胞亚群变化及临床意义[J]. 江苏大学学报(医学版),2007,17(5):429−431. [CAO X J, NI H P. Change of T cell subsets in children with infectious mononucleosis and its clinical meanings[J]. Journal of Jiangsu University (Medicine Edition),2007,17(5):429−431. doi: 10.13312/j.issn.1671-7783.2007.05.016 [39] 赵建国, 刘玲艳, 朱颖越, 等. 合欢皮总皂苷急性毒理学研究[J]. 天然产物研究与开发,2010,22(4):582−586. [ZHAO J G, LIU L Y, ZHU Y Y, et al. Research on emergency toxicology of total saponin in silktree Albizia bark[J]. Natural Product Reseaech and Development,2010,22(4):582−586. doi: 10.3969/j.issn.1001-6880.2010.04.010 [40] 焦园园, 王萍, 赵凤, 等. 基于氧化应激探究PCI损伤及中医药防治进展[J]. 中国实验方剂学杂志,2020,26(4):214−225. [JIAO Y Y, WANG P, ZHAO F, et al. Research on PCI damage based on oxidative stress and progress in prevention and treatment of traditional Chinese medicine[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(4):214−225. doi: 10.13422/j.cnki.syfjx.20200439 [41] 唐爱存, 王明刚, 卢秋玉, 等. 葫芦茶苷调控JAK/STAT信号通路抗乙肝病毒作用及其机制研究[J]. 中药药理与临床,2017,33(1):74−77. [TANG A C, WANG M G, LU Q Y, et al. Study on anti-hepatitis B virus activities and mechanisms of tadehaginoside by regulating JAK/STAT signaling pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2017,33(1):74−77. doi: 10.13412/j.cnki.zyyl.2017.01.021 -