• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响

宋玉 郑健 黄峰 李侠 韩东 张春晖

宋玉,郑健,黄峰,等. 不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响[J]. 食品工业科技,2022,43(23):103−111. doi:  10.13386/j.issn1002-0306.2022030282
引用本文: 宋玉,郑健,黄峰,等. 不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响[J]. 食品工业科技,2022,43(23):103−111. doi:  10.13386/j.issn1002-0306.2022030282
SONG Yu, ZHENG Jian, HUANG Feng, et al. Effects of Different Salting Methods on the Quality Traits, Histomorphology and Protein Structure of Cooked Pork Steaks[J]. Science and Technology of Food Industry, 2022, 43(23): 103−111. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030282
Citation: SONG Yu, ZHENG Jian, HUANG Feng, et al. Effects of Different Salting Methods on the Quality Traits, Histomorphology and Protein Structure of Cooked Pork Steaks[J]. Science and Technology of Food Industry, 2022, 43(23): 103−111. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030282

不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响

doi: 10.13386/j.issn1002-0306.2022030282
基金项目: “十四五”国家重点研发计划(2021YFD2100103);中央级公益性科研院所基本业务费专项(S2020JBKY-23)。
详细信息
    作者简介:

    宋玉(1992−),女,博士研究生,研究方向:畜产品加工利用,E-mail:song_yuu@163.com

    通讯作者:

    张春晖(1971−),男,博士,研究员,研究方向:肉品科学,E-mail:dr_zch@163.com

  • 中图分类号: TS251.51

Effects of Different Salting Methods on the Quality Traits, Histomorphology and Protein Structure of Cooked Pork Steaks

  • 摘要: 为探究不同腌制方式对煮制猪肉品质、组织形态和蛋白结构的影响,为猪肉制品的加工提供理论依据。以猪背最长肌为试验材料,采用湿腌,干腌及超声辅助腌制3种方式对猪肉进行腌制处理,测定煮制肉样的品质,组织形态及蛋白结构。结果表明:不同腌制方式对煮制猪肉品质特性(色泽、质构、保水性)影响显著,相较于其他2种腌制方式,超声辅助腌制的煮制猪肉红度值和嫩度最高,纵向(T1)、横向(T2)弛豫强度和不易流动水的比例(P21)最高,但自由水比例(P22)最低。组织形态结果表明,腌制处理显著影响了猪肉肌纤维组织形态,超声腌制的煮制猪肉肌纤维肿胀最明显,肌内膜分离降解,微观结构破坏最严重。蛋白结构结果表明,超声腌制的煮制猪肉表面疏水性最高,α-螺旋和β-转角含量最低,β-折叠和无规卷曲含量最高,说明超声腌制改变了蛋白质的空间结构,增加了蛋白质聚集程度。不同腌制方式处理的煮制猪肉品质与组织形态和蛋白结构显著相关。
  • 图  1  不同处理组的二维低场核磁共振图谱

    Figure  1.  2D LF-NMR T1-T2 relaxation spectra of cooked meat samples in different treatment groups

    注:A、B、C和D分别代表未腌制、湿腌、干腌和超声腌制的肉样。

    图  2  不同腌制方式的煮制猪肉的氢质子密度图像

    Figure  2.  Hydrogen proton density images of cooked meat samples in different treatment groups

    注:A、B、C和D分别代表未腌制、湿腌、干腌和超声腌制的肉样。

    图  3  不同腌制方式后煮制猪肉的组织形态

    Figure  3.  Microstructural changes of muscle fiber structure of cooked meat samples in different treatment groups

    注:A、B、C和D分别为未腌制、湿腌、干腌和超声腌制的煮制猪肉横切面的观察结果;E、F、G和H分别为未腌制、湿腌、干腌和超声腌制的煮制猪肉纵切面的观察结果。

    图  4  不同处理组猪肉蛋白表面疏水性和二级结构的相对含量变化

    Figure  4.  Changes of relative content of protein surface hydrophobicity and secondary structure in meat samples at different treatment groups

    注:同一指标不同小写字母代表不同处理组间存在显著性差异(P<0.05)。

    图  5  不同腌制方式的煮制猪肉各指标间的相关性分析

    Figure  5.  Correlation analysis of quality traits of cooked meat samples in different treatment groups

    注:蓝色代表显著负相关(P<0.05);红色代表显著正相关(P<0.05);×代表无显著相关性(P>0.05)。

    表  1  不同腌制方式对煮制猪肉色泽的影响

    Table  1.   Effects of different salting methods on color of cooked pork meat

    对照组湿腌干腌超声腌制
    L*60.91±1.02d70.99±1.08a62.89±2.51c67.15±1.32b
    a*2.20±0.22d2.54±0.26c3.77±0.40b4.61±0.19a
    b*8.92±0.32c10.14±0.81a9.55±0.36ab9.13±0.25b
    注:同行不同小写字母代表不同处理组间存在显著性差异(P<0.05);表2~表4同。
    下载: 导出CSV

    表  2  不同腌制方式对煮制猪肉质构的影响

    Table  2.   Effects of different salting methods on texture analysis of cooked pork meat

    对照组湿腌干腌超声腌制
    硬度(N)28.16±0.96a21.69±1.75c26.38±1.57b17.69±1.29d
    黏性(N)9.72±0.61c14.28±0.72b10.19±0.57c17.30±0.88a
    咀嚼性(N)15.10±0.69a10.75±0.78c13.63±1.37b7.93±1.11d
    弹性(mm)76.71±2.22a73.76±3.07a75.16±4.87a72.39±3.30a
    内聚性(g.s)0.60±0.04b0.62±0.01b0.61±0.02b0.66±0.02a
    剪切力(N)35.94±0.84a28.55±1.35b34.43±1.31a21.77±1.10c
    下载: 导出CSV

    表  3  不同腌制方式对煮制猪肉出品率和水分含量的影响

    Table  3.   Effects of different salting methods on yield and water content of cooked pork meat

    对照组湿腌干腌超声腌制
    出品率(%)74.64±0.83d78.74±0.78b75.70±0.69c80.04±0.69a
    水分(%)61.01±0.75d64.48±0.67b62.30±0.83c66.79±1.18a
    下载: 导出CSV

    表  4  不同腌制方式对煮制猪肉水分分布的影响

    Table  4.   Effects of different salting methods on water distribution of cooked pork meat

    水分分布指标对照组湿腌干腌超声腌制
    T1(a.u)455.89±9.27d551.67±13.87b477.50±12.15c647.67±17.75a
    T2(a.u)726.01±8.26d849.33±17.58b754.33±17.83c1017.00±37.76a
    T2b(ms)0.55±0.09a0.51±0.09a0.57±0.13a0.58±0.10a
    T21(ms)28.88±0.99d31.82±0.92b30.22±1.04c34.28±1.00a
    T22(ms)238.69±10.77c261.64±15.65c318.23±11.54b388.92±40.618a
    P2b(%)2.55±0.69a2.16±0.41a2.44±0.91a2.34±0.52a
    P21(%)94.02±0.46d95.74±0.13b94.82±0.69c96.38±0.19a
    P22(%)3.93±0.68a2.10±0.37c2.74±0.30b1.28±0.54d
    下载: 导出CSV
  • [1] 孟彬, 王小乔, 张静. 中国肉制品发展趋势[J]. 肉类工业,2011(8):6−8. [MENG Bin, WANG Xiaoqiao, ZHANG Jing. Development trend of meat products in China[J]. Meat Industry,2011(8):6−8. doi:  10.3969/j.issn.1008-5467.2011.08.003
    [2] 郭昕, 黄峰, 张春江, 等. 静态变压腌制技术对猪肉品质的影响[J]. 中国农业科学,2015,48(11):2229−2240. [GUO Xin, HUANG Feng, ZHANG Chunjiang, et al. Effects of pressure varied static brining on pork quality[J]. Scientia Agricultura Sinica,2015,48(11):2229−2240. doi:  10.3864/j.issn.0578-1752.2015.11.014
    [3] 王静帆, 黄峰, 沈青山, 等. 低温长时蒸煮对猪肉品质的影响[J]. 中国农业科学,2021,54(3):643−652. [WANG Jingfan, HUANG Feng, ZHANG Chunhui, et al. Effects of low temperature and long time cooking on pork quality[J]. Agricultural Sciences in China,2021,54(3):643−652. doi:  10.3864/j.issn.0578-1752.2021.03.017
    [4] 康大成. 超声波辅助腌制对牛肉品质的影响及其机理研究[D]. 南京: 南京农业大学, 2017.

    KANG Dacheng. Effects and mechanism of ultrasound-assisted curing on the quality of beef[D]. Nanjing: Nanjing Agricultural University, 2017.
    [5] CHEN X, LUO A, WANG Y, et al. Duck breast muscle proteins, free fatty acids and volatile compounds ad affected by curing methods[J]. Food Chemistry,2021,338:128138. doi:  10.1016/j.foodchem.2020.128138
    [6] 黄瀚, 不同腌制方式对兔肉及其产品加工过程品质的影响[D]. 重庆: 西南大学, 2016.

    HUANG Han. Effects of different curing methods on the quality of rabbit meat and its products during processing[D]. Chongqing: Southwest University, 2016.
    [7] 郭雅, 卞欢, 江芸等. 不同腌制方式对风干鳊鱼理化指标的影响[J]. 食品工业科技,2020,36(4):228−234. [ZHANG Jingjing, LIU Guiqin, WEI Zixiang, et al. Dynamic change of physicochemical properties of dry-cured donkey ham during processing[J]. Modern Food Technology,2020,36(4):228−234. doi:  10.13386/j.issn1002-0306.2016.14.046
    [8] QIN N, ZHANG L T, ZHANG J B, et al. Influence of lightly salting and sugaring on the quality and water distribution of grass carp (Ctenopharyngodon idellus) during super-chilled storage[J]. Journal of Food Engineering,2017,215:104−112. doi:  10.1016/j.jfoodeng.2017.07.011
    [9] WANG X J, MUHOZA B, WANG X W, et al. Comparison between microwave and traditional water bath cooking on salting perception, water distribution and microstructure of grass crap meat[J]. Food Research International,2019,125:108521. doi:  10.1016/j.foodres.2019.108521
    [10] CAO C N, FENG Y Y, KONG B H, et al. Texture and gel properties of frankfurters as influenced by various k-carrageenan incorporation methods[J]. Meat Science,2021,176:108483. doi:  10.1016/j.meatsci.2021.108483
    [11] WANG S Q, LIN R, CHENG S S. Water dynamics changes and protein denaturation in surf clam evaluated by two-dimensional LF-NMR T1-T2 relaxation technique during heating process[J]. Food Chemistry,2020,320:126622. doi:  10.1016/j.foodchem.2020.126622
    [12] 王策. 含氧气调包装对冷却肉持水性的影响机制[D]. 北京: 中国农业科学院, 2018.

    WANG Ce. The effect of different oxygen concentrations modified atmosphere packaging on water holding capacity of chilled meat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
    [13] JIANG Q Q, JIA R, NAKAZAWA N, et al. Changes in protein properties and tissue histology of tuna meat as affected by salting and subsequent freezing[J]. Food Chemistry,2019,271:550−560. doi:  10.1016/j.foodchem.2018.07.219
    [14] MITRA B, RINNANA, RUIZ-CARRASCAL J, et al. Tracking hydrophobicity state, aggregation behavior and structural modifications of pork proteins under the influence of associated heat treatments[J]. Food Research International,2017,101:266−273. doi:  10.1016/j.foodres.2017.09.027
    [15] 戴研. 欧姆加热对猪肉蛋白质降解、氧化以及凝胶特性的影响[D]. 北京: 中国农业大学, 2014.

    DAI Yan. Effects of ohmic heating on protein degradation, oxidation and gel properties of pork [D]. Beijing: China Agricultural University, 2014.
    [16] HUGHES J, CLARKE F, LI Y, et al. Differences in light scattering between pale and dark beef Longissimus thoracis muscles are primarily caused by differences in the myofilament lattice, myofibril and muscle fiber transverse spacings[J]. Meat Science,2019,149:96−106. doi:  10.1016/j.meatsci.2018.11.006
    [17] BECKER A, BOULAABE A, PINGEN S, et al. Low temperature cooking of pork meat-physicochemical and sensory aspects[J]. Meat Science,2016,118:82−88. doi:  10.1016/j.meatsci.2016.03.026
    [18] 刘成花, 李顺, 张雅伟, 等. 低钠干腌肉加工过程中肌肉结缔组织特性[J]. 食品科学,2018,39(1):91−98. [LIU Chenghua, LI Shun, ZHANG Yawei, et al. Characteristics of muscle connective tissue during low-sodium dry-cured meat processing[J]. Food Science,2018,39(1):91−98.
    [19] 潘琼. 超声辅助干腌对低钠盐培根品质的影响及机理研究[D]. 合肥: 合肥工业大学, 2020.

    PAN Qiong. Effect and mechanism of ultrasound-assisted dry curing on the quality of low sodium bacon[D]. Hefei: Hefei University of Technology, 2020.
    [20] SIRO I, VENN C, BALLA C, et al. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat[J]. Journal of Food Engineering,2009,91:353−362. doi:  10.1016/j.jfoodeng.2008.09.015
    [21] BERTRAM H C, PURSLOW P P, ANDERSEN H J. Relationship between meat structure, water mobility, and distribution: A low-field nuclear magnetic resonance study[J]. Journal of Agricultural and Food Chemistry,2002,50:824−829. doi:  10.1021/jf010738f
    [22] SHAO J H, DENG Y M, JIA N. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition[J]. Food Chemistry,2016,200:308−314. doi:  10.1016/j.foodchem.2016.01.013
    [23] MCDONNELLC K, ALLEN P, MORIN C, et al. The effect of ultrasonic salting on protein and water-protein interactions in meat[J]. Food Chemistry,2014,147:245−251. doi:  10.1016/j.foodchem.2013.09.125
    [24] SUN Y, MA L, FU Y. The improvement of gel and physicochemical properties of porcine myosin under low salt concentrations by pulsed ultrasound treatment and its mechanism[J]. Food Research International,2021,141:110056. doi:  10.1016/j.foodres.2020.110056
    [25] PAN J J, LI C L, LIU X J, et al. A multivariate insight into the organoleptic properties of porcine muscle by ultrasound-assisted brining: Protein oxidation, water state and microstructure[J]. LWT-Food Science and Technology,2022,159:113136. doi:  10.1016/j.lwt.2022.113136
    [26] CONTRERAS M, BENEDITO J, QUILES A, et al. Correction of defective textures in packaged dry-cured pork ham by applying conventional and ultrasonically-assisted mild thermal treatments[J]. LWT-Food Science and Technology,2020,126:109283. doi:  10.1016/j.lwt.2020.109283
    [27] BOUHRARA M, CLERJON S, DAMEZ J L, et al. Dynamic MRI and thermal simulation to interpret deformation and water transfer in meat during heating[J]. Journal of Agricultural and Food Chemistry,2011,59:1229−1235. doi:  10.1021/jf103384d
    [28] WU Z Y, BERTRAM H C, KOHLER A. Influence of aging and salting on protein secondary structures and water distribution in uncooked and cooked pork. A combined FT-IR micro spectroscopy and 1H NMR relaxometry study[J]. Journal of Agricultural and Food Chemistry,2006,54:8589−8597. doi:  10.1021/jf061576w
    [29] HAN Z Y, ZHANG J L, ZHENG J Y. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy[J]. Food Chemistry,2019,280:263−269. doi:  10.1016/j.foodchem.2018.12.071
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  70
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回