Preparation and Characterization of Yak Ghee Microcapsules
-
摘要: 为提高传统牦牛酥油的抗氧化性能,延长保质期,本文以阿拉伯胶和明胶为壁材,采用复合凝聚法对牦牛酥油进行包埋制备牦牛酥油微胶囊。以包埋率为指标,通过单因素和正交试验优化其制备工艺,并研究其理化特性、形貌结构、稳定性和模拟胃肠消化特性。结果表明,牦牛酥油微胶囊最优工艺为:芯壁比1:1.5、壁材质量分数1.5%、复凝pH4.2、复凝温度40 ℃,包埋率达81.39%;牦牛酥油微胶囊的平均粒径、水分含量、溶解度、休止角分别为19.728 μm、3.62%、96.48%、37.7°;扫描电子显微镜和傅里叶红外光谱分析表明,牦牛酥油微胶囊表面光滑,形状结构不规则,牦牛酥油被壁材成功包埋;差式扫描量热和热重分析表明,牦牛酥油微胶囊的热稳定性较好;此外,牦牛酥油微胶囊可以实现牦牛酥油在模拟胃肠液中的控制释放,其中,人工肠液中释放率达99.74%;贮藏实验表明,微胶囊化能减缓牦牛酥油氧化速度、延长货架期。本研究为提高牦牛酥油的生物利用率提供理论依据。Abstract: In order to improve the oxidation resistance of traditional yak ghee, extend the shelf life, the yak ghee was embedded in gum Arabic and gelatin by complex coacervation method to prepare yak ghee microcapsules. The optimal preparation technology was obtained via single factor and orthogonal experiment with embedding rate as an index, and the physical and chemical properties, morphology structure, stability and properties in simulate gastrointestinal digestion were also investigated. The results showed that the best parameters of yak ghee microcapsules were as follows: Core-to-wall ratio was 1:1.5, mass fraction of wall material was 1.5%, complex coacervation pH was 4.2, the complex coacervation temperature was 40 ℃, and encapsulation efficiency of microcapsules was 81.39%. The average particle size, moisture content, solubility and angle of repose were 19.728 μm, 3.62%, 96.48% and 37.7°, respectively. Scanning electron microscope and fourier transform infrared spectroscopy showed that the surface of yak ghee microcapsules was smooth, the morphology was irregular, and yak ghee was successfully embedded in wall materials. Differential scanning calorimeter and thermogravimetric analysis proved that yak ghee microcapsules possessed good thermal stability. In addition, the release of yak ghee microcapsules could be controlled in simulated gastric and intestinal fluid, and the release rate in simulated intestinal fluid was 99.74%. Storage experiments exhibited that microencapsulation could slow down the oxidation rate of yak ghee and prolong the shelf life. This study will help provide theoretical basis for improving the bioavailability of yak ghee.
-
Key words:
- yak ghee /
- complex coacervation /
- microcapsule /
- simulated gastrointestinal digestion
-
表 1 正交因素水平表
Table 1. Orthogonal factor level table
水平 因素 A芯壁比 B壁材质量分数(%) C复凝pH D复凝温度(℃) 1 1:1 1.0 4.0 35 2 1:1.5 1.5 4.2 40 3 1:2 2.0 4.4 45 表 2 正交试验设计与结果
Table 2. Design and results of orthogonal tests
实验号 A芯壁比 B壁材质量分数 C复凝pH D复凝温度 包埋率(%) 1 1 1 1 1 54.31 2 1 2 2 2 78.68 3 1 3 3 3 65.13 4 2 1 2 3 68.12 5 2 2 3 1 74.84 6 2 3 1 2 77.83 7 3 1 3 2 55.87 8 3 2 1 3 72.39 9 3 3 2 1 75.81 K1 66.04 59.43 68.18 68.32 K2 73.60 75.30 74.20 70.79 K3 68.02 72.92 65.28 68.55 R 7.56 15.87 8.92 2.47 表 3 牦牛酥油微胶囊的物理指标
Table 3. The physical index of yak ghee microcapsules
检测项目 结果 水分含量(%) 3.62±0.07 休止角(°) 37.7±0.22 溶解度(%) 96.48±0.81 表 4 激光粒度分析结果
Table 4. Laser particle size analysis results
检测项目 结果 百分比 平均粒径(μm) 19.728 − 径距 4.832 − 粒径比例(μm) 8.934~10.024 3.75% 表 5 体外人工模拟胃液释放拟合结果
Table 5. Fitting results of in vitro artificial simulation of gastric juice release
动力学模型 模型方程式 释放机理 拟合方程 R2 零级 $ \mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{t} $ 恒速释放 $ \mathrm{y}=5.02\mathrm{t}+6.228 $ 0.955 一级 $ \mathrm{y}=\mathrm{a}(1-{\mathrm{e}}^{\mathrm{b}\mathrm{t}}) $ 一级释放 $ \mathrm{y}=28.38(1-{\mathrm{e}}^{-0.49\mathrm{t}}) $ 0.992 Higuchi模型 $ \mathrm{y}=\mathrm{a}+\mathrm{b}\sqrt{\mathrm{t}} $ Fick扩散 $ \mathrm{y}=14.1\sqrt{\mathrm{t}}-2.8 $ 0.981 Peppas模型 $ \mathrm{y}=\mathrm{a}{\mathrm{t}}^{\mathrm{b}} $ 扩散 $ \mathrm{y}=11.4{\mathrm{t}}^{0.58} $ 0.988 Logistic模型 $ \mathrm{y}={\mathrm{A}}_{2}+\frac{{\mathrm{A}}_{1}-{\mathrm{A}}_{2}}{1+{\dfrac{\mathrm{t}}{{\mathrm{X}}_{0}}}^{\mathrm{P}}} $ S型模型 $ \mathrm{y}=201.5-\dfrac{215.56}{1+{\dfrac{\mathrm{t}}{280.69}}^{0.356}} $ 0.997 表 6 体外人工模拟肠液释放拟合结果
Table 6. Fitting results of artificial simulated intestinal fluid release in vitro
模型方程式 释放机理 拟合方程 R2 零级 $ \mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{t} $ 恒速释放 $ \mathrm{y}=24.547\mathrm{t}+7.261 $ 0.989 一级 $ \mathrm{y}=\mathrm{a}(1-{\mathrm{e}}^{\mathrm{b}\mathrm{t}}) $ 一级释放 $ \mathrm{y}=224.842(1-{\mathrm{e}}^{-0.152\mathrm{t}}) $ 0.982 Higuchi模型 $ \mathrm{y}=\mathrm{a}+\mathrm{b}\sqrt{\mathrm{t}} $ Fick扩散 $ \mathrm{y}=67.702\sqrt{\mathrm{t}}-35.084 $ 0.988 Peppas模型 $ \mathrm{y}=\mathrm{a}{\mathrm{t}}^{\mathrm{b}} $ 扩散 $\mathrm{y}=32.238{\mathrm{t} }^{0.842}$ 0.993 Logistic模型 $ \mathrm{y}={\mathrm{A}}_{2}+\dfrac{{\mathrm{A}}_{1}-{\mathrm{A}}_{2}}{1+{\dfrac{\mathrm{t}}{{\mathrm{X}}_{0}}}^{\mathrm{P}}} $ S型模型 $ \mathrm{y}=146.19-\dfrac{133.823}{1+{\dfrac{\mathrm{t}}{2.79}}^{1.863}} $ 0.987 表 7 贮藏试验线性回归分析
Table 7. Linear regression analysis of storage test
样品 零级反应回归方程 零级R2 一级反应回归方程 一级R2 货架期(d) 避光牦牛酥油 $ \mathrm{y}=5.28+0.33\mathrm{t} $ 0.993 $ \mathrm{y}=5.28\times \mathrm{e}\mathrm{x}\mathrm{p}0.0502\mathrm{t} $ 0.973 31 避光牦牛酥油微胶囊 $ \mathrm{y}=6.64+0.0619\mathrm{t} $ 0.992 $ \mathrm{y}=6.64\times \mathrm{e}\mathrm{x}\mathrm{p}0.0089\mathrm{t} $ 0.948 147 光照牦牛酥油 $ \mathrm{y}=5.28+0.435\mathrm{t} $ 0.997 $ \mathrm{y}=5.28\times \mathrm{e}\mathrm{x}\mathrm{p}0.0603\mathrm{t} $ 0.991 24 光照牦牛酥油微胶囊 $ \mathrm{y}=6.64+0.0773\mathrm{t} $ 0.991 $ \mathrm{y}=6.64\times \mathrm{e}\mathrm{x}\mathrm{p}0.0109\mathrm{t} $ 0.975 117 25 ℃牦牛酥油 $ \mathrm{y}=5.28+0.441\mathrm{t} $ 0.993 $ \mathrm{y}=5.28\times \mathrm{e}\mathrm{x}\mathrm{p}0.064\mathrm{t} $ 0.986 23 25 ℃牦牛酥油微胶囊 $ \mathrm{y}=6.64+0.0694\mathrm{t} $ 0.991 $ \mathrm{y}=6.64\times \mathrm{e}\mathrm{x}\mathrm{p}0.01\mathrm{t} $ 0.979 131 60 ℃牦牛酥油 $ \mathrm{y}=5.17+5.62\mathrm{t} $ 0.996 $ \mathrm{y}=5.88\times \mathrm{e}\mathrm{x}\mathrm{p}0.288\mathrm{t} $ 0.822 1 60 ℃牦牛酥油微胶囊 $ \mathrm{y}=6.52+0.747\mathrm{t} $ 0.991 $ \mathrm{y}=6.64\times \mathrm{e}\mathrm{x}\mathrm{p}0.0788\mathrm{t} $ 0.988 12 -
[1] 孙美青, 马莺, 程金菊. 牦牛酥油理化性质研究[J]. 中国乳品工业,2016,44(3):9−11. [SUN M Q, MA Y, CHENG J J. Physical and chemical properties of yak butter[J]. China Dairy Industry,2016,44(3):9−11. doi: 10.3969/j.issn.1001-2230.2016.03.002 [2] AGYARE A N, LIANG Q. Nutrition of yak milk fat-focusing on milk fat globule membrane and fatty acids[J]. Journal of Functional Foods,2021,83:104404. doi: 10.1016/j.jff.2021.104404 [3] SUGANYA V, ANURADHA V, Research C. Microencapsulation and nanoencapsulation: A review[J]. International Journal of Pharmaceutical & Clinical Research,2017,9(3):233−239. [4] 姚云平, 陈丽媛, 刘丹, 等. 茶多酚微胶囊的理化特性及其在油脂中的抗氧化性能[J]. 中国油脂,2021,46(10):116−120. [YAO Y P, CHEN L Y, LIU D, et al. Physicochemical characteristics of tea polyphenol microcapsules and its antioxidant properties in oils[J]. China Grease,2021,46(10):116−120. doi: 10.19902/j.cnki.zgyz.1003-7969.200686 [5] MATULYTE I, MARKSA M, BERNATONIENE J. Development of innovative chewable gel tablets containing nutmeg essential oil microcapsules and their physical properties evaluation[J]. Pharmaceutics,2021,13(6):873. doi: 10.3390/pharmaceutics13060873 [6] 张维, 陈丽蕊, 时孟杰, 等. 榛子油微胶囊的制备及其稳定性研究[J]. 食品工业科技,2022,43(2):206−214. [ZHANG W, CHEN L R, SHI M J, et al. Preparation and stability of hazelnut oil microcapsules[J]. Food Industry Science and Technology,2022,43(2):206−214. doi: 10.13386/j.issn1002-0306.2021040331 [7] 姚泽晨, 张根义. 植物乳杆菌微胶囊包载效果、物化性质及其胃肠道性能[J]. 食品工业科技,2019,40(14):112−117, 133. [YAO Z C, ZHANG G Y. Encapsulation effect, physicochemical and gastrointestinal properties of Lactobacillus plantarum microcapsules[J]. Food Industry Science and Technology,2019,40(14):112−117, 133. doi: 10.13386/j.issn1002-0306.2019.14.019 [8] 王月月, 段续, 任广跃, 等. 洋葱精油微胶囊制备工艺优化及其品质分析[J]. 食品科学,2018,39(12):232−238. [WANG Y Y, DUAN X, REN G Y, et al. Optimization of preparation technology and quality of onion essential oil microcapsule[J]. Food Science,2018,39(12):232−238. doi: 10.7506/spkx1002-6630-201812036 [9] 陈欣, 王志耕, 梅林, 等. 喷雾干燥法制备乳脂微胶囊及其特性的研究[J]. 中国粮油学报,2017,32(1):74−79,84. [CHEN X, WANG Z G, MEI L, et al. Preparation and characterization of milk fat microcapsules by spray drying method[J]. Chinese Journal of Grain and Oil,2017,32(1):74−79,84. doi: 10.3969/j.issn.1003-0174.2017.01.013 [10] ROUSI Z, MALHIAC C, FATOUROS D G, et al. Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization[J]. Food Hydrocolloids,2019,96:577−588. doi: 10.1016/j.foodhyd.2019.06.009 [11] MOHAMMED A S Y, DYAB A K F, TAHA F, et al. Encapsulation of folic acid (vitamin B 9) into sporopollenin microcapsules: Physicochemical characterization, in vitro controlled release and photoprotection study[J]. Materials Science and Engineering: C,2021,128:112271. doi: 10.1016/j.msec.2021.112271 [12] 姜雪, 段蕾, 包尕红, 等. 酸枣仁油微胶囊的制备与表征[J]. 粮食与油脂,2020,33(9):56−59. [JIANG X, DUAN L, BAO G H, et al. Preparation and characterization of spine date seed oil microcapsules[J]. Grain and Oil,2020,33(9):56−59. doi: 10.3969/j.issn.1008-9578.2020.09.013 [13] LI F F, WANG H F, MEI X H. Preparation and characterization of phytosterol-loaded microcapsules based on the complex coacervation[J]. Journal of Food Engineering,2021,311(9):110728. [14] 程翎. 白术挥发油微胶囊的制备、表征及释放特性研究[D]. 长沙: 长沙理工大学, 2018CHENG L. Preparation, characterization and release characteristics of microcapsules of volatile oil from atractylodes macrocephala koidz[D]. Changsha: Changsha University of Technology, 2018. [15] 李孟瑶. 生姜精油微胶囊复合膜的制备及应用研究[D]. 长春: 吉林大学, 2020LI M Y. Study on preparation and application of ginger essential oil microcapsule composite film[D]. Changchun: Jilin University, 2020. [16] SOLOMANDO J C, ANTEQUERA T, PEREZ-PALACIOS T. Lipid digestion products in meat derivatives enriched with fish oil microcapsules[J]. Journal of Functional Foods,2020,68:103916. doi: 10.1016/j.jff.2020.103916 [17] 王悦. 微藻油微胶囊的制备及其性质研究[D]. 无锡: 江南大学, 2020WANG Y. Study on preparation and properties of algal oil microcapsules[D]. Wuxi: Jiangnan University, 2020. [18] 谭睿, 申瑾, 董文江, 等. 复合凝聚法制备绿咖啡油微胶囊及其性能[J]. 食品科学,2020,41(23):144−152. [TAN R, SHEN J, DONG W J, et al. Preparation of green coffee oil microcapsules by complex coacervation method and its physicochemical properties[J]. Food Science,2020,41(23):144−152. doi: 10.7506/spkx1002-6630-20191128-273 [19] DUHORANIMANA E, KARANGWA E, LAI L F, et al. Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism[J]. Food Hydrocolloids,2017,69:111−120. doi: 10.1016/j.foodhyd.2017.01.035 [20] MAHAK G, KUMAR B B. Functional characterization of potential probiotic lactic acid bacteria isolated from Kalarei and development of probiotic fermented oat flour[J]. Probiotics and Antimicrobial Proteins,2017,10(4):654−611. [21] TRINH T H, SHAARI K Z K, BASIT A, et al. Effect of particle size and coating thickness on the release of urea using multi-diffusion model[J]. International Journal of Chemical Engineering and Applications,2014,5(1):351. [22] 张丽红, 黄梦, 王桂瑛, 等. 木姜子精油微胶囊制备工艺优化及其品质分析[J]. 食品工业科技,2022,43(2):157−165. [ZHANG L H, HUANG M, WAMG G Y, et al. Preparation process optimization and quality analysis of Litsea pungens Hemsl essential oil microcapsules[J]. Science and Technology of Food Industry,2022,43(2):157−165. doi: 10.13386/j.issn1002-0306.2021040232 [23] 李一喆. 橘皮油微胶囊制备及其理化性质研究[D]. 大连: 大连理工大学, 2020LI Y Z. R. Research on the microencapsulated mandarin oil preparation technology and the physicochemical property of the microcapsule[D]. Dalian: Dalian University of technology, 2020. [24] 杜歌. 谷胱甘肽的复合凝聚微胶囊化技术研究[D]. 无锡: 江南大学, 2015DU G. Study on complex coacervation microencapsulation of glutathione[D]. Wuxi: Jiangnan University, 2015. [25] LONG X Y, YAN Q, CAI L J, et al. Box-behnken design-based optimization for deproteinization of crude polysaccharides in Lyceum barbarum berry residue using the Sevag method[J]. Heliyon,2020,6(5):e03888. doi: 10.1016/j.heliyon.2020.e03888 [26] 郭阳, 包怡红, 赵楠. 复凝聚法制备松籽油微胶囊工艺优化及其氧化稳定性分析[J]. 食品科学,2017,38(18):229−236. [GUO Y, BAO Y H, ZHAO N. Preparation and oxidative stability of microcapsules containing pine nut oil by complex coacervation[J]. Food Science,2017,38(18):229−236. doi: 10.7506/spkx1002-6630-201718036 [27] 葛双双, 李坤, 涂行浩, 等. 余甘子核仁油微胶囊的制备及其稳定性分析[J]. 食品科学,2018,39(20):253−259. [GE S S, LI K, TU X H, et al. Preparation and stability of Phyllanthus emblica kernel oil microcapsule[J]. Food Science,2018,39(20):253−259. doi: 10.7506/spkx1002-6630-201820037 [28] 江连洲, 王朝云, 古力那孜·买买提努, 等. 干燥工艺对鱼油微胶囊结构和品质特性的影响[J]. 食品科学,2020,41(3):86−92. [JIANG L Z, WAMG C Z, GHLINAZI M M T N, et al. Effect of drying processes on structural and quality properties of fish oil microcapsules[J]. Food Science,2020,41(3):86−92. doi: 10.7506/spkx1002-6630-20181228-344 [29] GOYAL A, SHARMA V, SIHAG M K, et al. Effect of microencapsulation and spray drying on oxidative stability of flaxseed oil and its release behavior under simulated gastrointestinal conditions[J]. Drying Technology,2016,34(7):810−821. doi: 10.1080/07373937.2015.1081929 [30] TIMILSENA Y P, ADHIKARI R, BARROW C J, et al. Digestion behaviour of Chia seed oil encapsulated in Chia seed protein-gum complex coacervates[J]. Food Hydrocolloids,2017,66:71−81. [31] 杨小斌, 周爱梅, 王爽, 等. 蓝圆鲹鱼油微胶囊的结构表征与体外消化特性[J]. 食品科学,2019,40(1):117−122. [YANG X B, ZHOU A M, WANG S, et al. Structure characterization and in vitro digestibility of microencapsulated Decapterus maruadsi fish oil[J]. Food Science,2019,40(1):117−122. doi: 10.7506/spkx1002-6630-20171205-066 [32] WOLD J P, SKARET J, DALSGAARD T K. Assessment of the action spectrum for photooxidation in full fat bovine milk[J]. Food Chemistry,2015,179:68−75. doi: 10.1016/j.foodchem.2015.01.124 [33] 刘成祥. 牡丹籽油微胶囊的制备及其性质研究[D]. 无锡: 江南大学, 2016LIU C X. Study on preparation of peony seed oil microcapsule[D]. Wuxi: Jiangnan University, 2016. [34] 张雯静, 吕秋冰, 陈雨柔, 等. 冬瓜籽油氧化稳定性研究及货架期预测[J]. 粮食与油脂,2020,33(12):68−71. [ZHANG W J, LÜ Q B, CHENG Y R, et al. Study on oxidative stability of wax gourd seeds oil and its shelf life prediction[J]. Grain and Oil,2020,33(12):68−71. doi: 10.3969/j.issn.1008-9578.2020.12.019 -