Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters
-
摘要: 目的:探讨浒苔多糖对肥胖金黄地鼠血脂和肠道菌群构成的影响。方法:将40只雄性金黄地鼠按体重随机分为正常对照组(ND组)、高脂模型组(HFD组)、低剂量浒苔多糖组(LEP组,300 mg/kg·BW)和高剂量浒苔多糖组(HEP组,450 mg/kg·BW)。除对照组(ND 组)以普通饲料喂养外,其余组均以高脂饲料喂养。其中低、高剂量浒苔多糖组连续灌胃浒苔多糖水溶液。干预12周后,检测血脂水平,并采用16S rDNA高通量测序和气相色谱法分别比较各组间肠道菌群的多样性以及粪便中短链脂肪酸含量差异。结果:干预12周后,HFD组地鼠的体重、血清总胆固醇(Cholesterol,TC)、甘油三酯(Triglyceride,TG)和低密度脂蛋白胆固醇(Low density lipoprotein- cholesterol,LDL-C)显著高于ND组(P<0.05)。高剂量浒苔多糖可显著降低血清TC、TG、LDL-C和谷丙转氨酶(Alanine aminotransferase,ALT)水平(P<0.05)。16S rDNA高通量测序结果表明,在门水平上,HFD组厚壁菌门/拟杆菌门比例显著高于ND组(P<0.05)。与HFD组相比,HEP组的厚壁菌门/拟杆菌门比例显著降低(P<0.05);在属水平上,HFD组的Eubacterium_coprostanoligenes_group(真杆菌属)、Lachnospiraceae_UCG-006(毛螺菌科 UCG-006)的相对丰度显著高于ND组(P<0.05),经高剂量浒苔多糖干预后,Eubacterium_coprostanoligenes_group(真杆菌属)、Lachnospiraceae_UCG-006(毛螺菌科 UCG-006)的相对丰度相对于HFD组显著降低(P<0.05)。此外,高脂饮食导致粪便中短链脂肪酸含量减少,高剂量浒苔多糖干预可显著增加粪便中短链脂肪酸含量(P<0.05)。结论:浒苔多糖可以通过调节高脂饲料喂养金黄地鼠肠道菌群构成以及短链脂肪酸生成,从而改善肥胖金黄地鼠的脂质代谢紊乱。Abstract: Objective: To investigate the effect of Enteromorpha polysaccharide (EP) on blood lipids and intestinal bacteria in obese golden hamsters. Method: Forty male golden hamsters were randomly divided into four groups, including control group (ND), model group (HFD), low-dose EP group (LEP, 300 mg/kg·BW), and high-dose EP group (HEP, 450 mg/kg·BW). The ND group was fed an ordinary diet, while the other three groups were given a high-fat diet. Among the high-fat diet groups, the LEP and HEP groups were continuously administered EP aqueous solution intragastrically. Twelve weeks later, the serum lipid levels were evaluated, the diversity and structural changes in the gut bacteria were examined using 16S rDNA sequencing, and the short-chain fatty acid concentration in faeces was examined using a gas chromatography flame ionisation detector (GC-FID). Results: After 12 weeks, the body weight, serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) of hamsters in the HFD group were considerably higher than those in the ND group (P<0.05). In contrast, high-dose EP treatment led to a significant decrease in serum TC, TG, LDL-C, and alanine aminotransferase (ALT) levels (P<0.05). Results of 16S rDNA sequencing revealed that at the phylum level the proportion of Firmicutes/Bacteroidetes was substantially higher in the HFD group than in the ND group (P<0.05). However, the level of Firmicutes/Bacteroidetes was much lower in the HEP group, compared to the HFD group (P<0.05). At the genus level, Eubacterium_coprostanoligenes_group and Lachnospiraceae UCG-006 were more abundant in the HFD group than in the ND group (P<0.05). Following high-dose EP intervention, the relative abundance of Eubacterium_coprostanoligenes_group and Lachnospiraceae_UCG-006 fell significantly, compared to the HFD group (P<0.05). Additionally, a high-fat diet feeding resulted in a decrease in the content of short-chain fatty acids in faeces, while high-dose EP intervention significantly increased the short-chain fatty acid content in faeces (P<0.05). Conclusion: The administration of EP alleviates the metabolic disorders of obese golden hamsters fed with a high-fat diet by moderating the composition of intestinal bacteria and enhancing the production of short-chain fatty acids.
-
Key words:
- Enteromorpha polysaccharides /
- high-fat diet /
- gut microbiota /
- short-chain fatty acids
-
表 1 浒苔多糖对金黄地鼠体重、脏器系数、血脂和肝功能的影响
Table 1. Effect of Enteromorpha polysaccharide on body weight, organ coefficient, blood lipid and liver function in golden hamster
分组 ND组 HFD组 LEP组 HEP组 体重(BW,g) 初始体重 129.28±6.12a 126.69±9.43a 128.07±6.53a 123.12±6.68a 最终体重 156.12±12.19b 174.71±13.96a 168.08±8.35ab 159.52±12.35b 脏器系数(g/100 g BW) 睾周脂肪系数 2.20±0.29b 3.07±0.36a 2.97±0.35a 2.47±0.38b 肾周脂肪系数 1.48±0.27b 2.35±0.39a 2.04±0.43a 1.69±0.26b 血脂参数(mmol/L) TC 4.55±0.37c 10.53±1.05a 8.91±1.20b 7.97±0.57b TG 1.10±0.21c 5.45±2.09a 5.10±1.02a 3.78±0.74b LDL-C 1.14±0.39c 4.60±1.05a 3.48±0.72b 2.84±0.37b HDL-C 3.61±0.49a 2.60±0.49b 2.79±0.53b 2.06±0.29c 肝功能(U/L) 血清ALT 19.23±6.12c 41.99±13.34a 28.30±10.45b 17.82±6.13c 血清AST 16.40±4.49a 15.16±4.84a 13.10±2.61a 12.77±1.41a 注:同行不同小写字母表示组间差异有统计学意义(P<0.05);表2同。 表 2 浒苔多糖对金黄地鼠粪便短链脂肪酸含量的影响(mg/g)
Table 2. Effect of Enteromorpha polysaccharide on short-chain fatty acid content in feces of golden hamsters (mg/g)
分组 ND组 HFD组 HEP组 Acetic acid 1.433±0.440a 0.507±0.074b 0.594±0.136b Propanoic acid 0.275±0.149a 0.063±0.021b 0.143±0.067a Isobutyric acid 0.016±0.007a 0.011±0.006b 0.019±0.006a Butyric acid 0.363±0.178a 0.103±0.075b 0.214±0.138ab Isovaleric acid 0.034±0.013a 0.019±0.011b 0.036±0.011a Valeric acid 0.143±0.068a 0.020±0.008c 0.048±0.020bc Hexanoic acid 0.234±0.132a 0.017±0.002b 0b Heptylic acid 0.013±0.006a 0b 0b -
[1] NITTARI G, SCURI S, PETRELLI F, et al. Fighting obesity in children from European World Health Organization Member States. Epidemiological data, medical-social aspects, and prevention programs[J]. Clin Ter,2019,170(3):e223−e230. [2] PAN X F, WANG L, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol,2021,9(6):373−392. doi: 10.1016/S2213-8587(21)00045-0 [3] LEE S J, SHIN S W. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med,2017,376(15):1491−1492. [4] LIU B N, LIU X T, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi: 10.3748/wjg.v27.i25.3837 [5] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027−1031. doi: 10.1038/nature05414 [6] 高鑫, 山珊, 曾德永, 等. 石莼属绿藻多糖的生物活性研究进展[J]. 食品工业科技,2021,42(2):364−369. [GAO X, SHAN S, ZENG D Y, et al. Research progress on biological activity of ulvan[J]. Science and Technology of Food Industry,2021,42(2):364−369. doi: 10.13386/j.issn1002-0306.2020040007 [7] TENG Z, QIAN L, ZHOU Y. Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera[J]. Int J Biol Macromol,2013,62:254−256. doi: 10.1016/j.ijbiomac.2013.09.010 [8] SHANG Q, WANG Y, PAN L, et al. Dietary polysaccharide from Enteromorpha clathrata modulates gut microbiota and promotes the growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp.[J]. Mar Drugs,2018,16(5):167. doi: 10.3390/md16050167 [9] REN X, LIU L, GAMALLAT Y, et al. Enteromorpha and polysaccharides from Enteromorpha ameliorate loperamide-induced constipation in mice[J]. Biomed Pharmacother,2017,96:1075−1081. doi: 10.1016/j.biopha.2017.11.119 [10] KONG Q, DONG S Y, GAO J, et al. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota[J]. Int J Biol Macromol,2016,91:867−871. doi: 10.1016/j.ijbiomac.2016.06.036 [11] 张宵, 刘杨, 滕博, 等. 基于肠道菌群的海藻多糖对部分疾病影响的研究进展[J]. 食品工业科技,2021,42(18):421−426. [ZHANG X, LIU Y, TENG B, et al. Research progress of the effects of seaweed polysaccharides on some diseases based on intestinal flora[J]. Science and Technology of Food Industry,2021,42(18):421−426. doi: 10.13386/j.issn1002-0306.2020080239 [12] CABRAL L, PERSINOTI G F, PAIXAO D A A, et al. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides[J]. Nature Communications, 2022, 13(1): 629-629. [13] LITVAK Y, BYNDLOSS M X, TSOLIS R M, et al. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction[J]. Curr Opin Microbiol,2017,39:1−6. doi: 10.1016/j.mib.2017.07.003 [14] GOMEZ-ARANGO L F, BARRETT H L, MCINTYRE H D, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women[J]. Diabetes,2016,65(8):2214−2223. doi: 10.2337/db16-0278 [15] VOJINOVIC D, RADJABZADEH D, KURILSHIKOV A, et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts[J]. Nature Communications,2019,10(1):5813. doi: 10.1038/s41467-019-13721-1 [16] TUN H M, BRIDGMAN S L, CHARI R, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. Jama Pediatr,2018,172(4):368−377. doi: 10.1001/jamapediatrics.2017.5535 [17] ZHAO L, ZHANG Q, MA W N, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct,2017,8(12):4644−4656. doi: 10.1039/C7FO01383C [18] WEI W, JIANG W B, TIAN Z, et al. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice[J]. Clin Nutr,2021,40(6):4234−4245. doi: 10.1016/j.clnu.2021.01.031 [19] PETERSEN C, BELL R, KIAG K A, et al. T cell-mediated regulation of the microbiota protects against obesity[J]. Science,2019,365:340. [20] PIDCOCK S E, SKVORTSOV T, SANTOS F G, et al. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms[J]. Microb Genomics,2021,7(10):000638. [21] CANI P D. Microbiota and metabolites in metabolic diseases[J]. Nat Rev Endocrinol,2019,15(2):69−70. doi: 10.1038/s41574-018-0143-9 [22] DENG X L, MA J, SONG M T, et al. Effects of products designed to modulate the gut microbiota on hyperlipidaemia[J]. Eur J Nutr,2019,58(7):2713−2729. doi: 10.1007/s00394-018-1821-z [23] SCHOELER M, CAESAR R J R I E, DISORDERS M. Dietary lipids, gut microbiota and lipid metabolism[J]. 2019, 20(4): 461-472. [24] FU J, BONDER M J, CENIT M C, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids[J]. Circulation Research,2015,117(9):817−824. doi: 10.1161/CIRCRESAHA.115.306807 [25] MESLIER V, LAIOLA M, ROAGER H M, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake[J]. Gut,2020,69(7):1258−1268. doi: 10.1136/gutjnl-2019-320438 [26] MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705−715. doi: 10.1016/j.chom.2018.05.012 [27] KLANCIC T, REIMER R A. Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health[J]. J Sport Health Sci,2020,9(2):110−118. doi: 10.1016/j.jshs.2019.04.004 [28] MO X, SUN Y, LIANG X, et al. Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites[J]. 2022, 281: 119046. [29] XU S, AWEYA J, LI N, et al. Microbial catabolism of porphyra haitanensis polysaccharides by human gut microbiota[J]. 2019, 289: 177-186. [30] TANG C, DING R, SUN J, et al. The impacts of natural polysaccharides on intestinal microbiota and immune response-A review[J]. 2019, 10(5): 2290-2312. [31] NGUYEN S, KIM J, GUEVARRA R, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet[J]. Food & Function,2016,7(10):4193−4201. [32] CHEN Y F, JIN L, LI Y H, et al. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice[J]. Journal of Functional Foods,2018,49:20−31. doi: 10.1016/j.jff.2018.08.015 [33] LI S Y, WANG L N, LIU B, et al. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice[J]. Food Funct,2020,11(5):4773−4784. doi: 10.1039/C9FO02857A [34] LAGKOUVARDOS I, LESKER T R, HITCH T C A, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome,2019,7(1):28. doi: 10.1186/s40168-019-0637-2 -