• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

浒苔多糖对肥胖金黄地鼠肠道菌群及粪便短链脂肪酸的影响

黄诗颖 陈杰东 韩梦圆 徐彩红 郭福川

黄诗颖,陈杰东,韩梦圆,等. 浒苔多糖对肥胖金黄地鼠肠道菌群及粪便短链脂肪酸的影响[J]. 食品工业科技,2023,44(3):381−390. doi:  10.13386/j.issn1002-0306.2022030170
引用本文: 黄诗颖,陈杰东,韩梦圆,等. 浒苔多糖对肥胖金黄地鼠肠道菌群及粪便短链脂肪酸的影响[J]. 食品工业科技,2023,44(3):381−390. doi:  10.13386/j.issn1002-0306.2022030170
HUANG Shiying, CHEN Jiedong, HAN Mengyuan, et al. Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters[J]. Science and Technology of Food Industry, 2023, 44(3): 381−390. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030170
Citation: HUANG Shiying, CHEN Jiedong, HAN Mengyuan, et al. Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters[J]. Science and Technology of Food Industry, 2023, 44(3): 381−390. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030170

浒苔多糖对肥胖金黄地鼠肠道菌群及粪便短链脂肪酸的影响

doi: 10.13386/j.issn1002-0306.2022030170
基金项目: 福建医科大学高层次人才科研启动经费(XRCZX2017002)。
详细信息
    作者简介:

    黄诗颖(1997−),女,硕士研究生,研究方向:营养与食品卫生学,E-mail:906446350@qq.com

    陈杰东(1996−),男,硕士研究生,研究方向:营养与食品卫生学,E-mail:1373798277@qq.com

    通讯作者:

    郭福川(1982−),男,博士,副教授,研究方向:营养与慢性病,E-mail:guo2016fuchuan@163.com

  • 中图分类号: R151.1

Effect of Enteromorpha Polysaccharide on Intestinal Bacteria and Short Chain Fatty Acids in Obese Golden Hamsters

  • 摘要: 目的:探讨浒苔多糖对肥胖金黄地鼠血脂和肠道菌群构成的影响。方法:将40只雄性金黄地鼠按体重随机分为正常对照组(ND组)、高脂模型组(HFD组)、低剂量浒苔多糖组(LEP组,300 mg/kg·BW)和高剂量浒苔多糖组(HEP组,450 mg/kg·BW)。除对照组(ND 组)以普通饲料喂养外,其余组均以高脂饲料喂养。其中低、高剂量浒苔多糖组连续灌胃浒苔多糖水溶液。干预12周后,检测血脂水平,并采用16S rDNA高通量测序和气相色谱法分别比较各组间肠道菌群的多样性以及粪便中短链脂肪酸含量差异。结果:干预12周后,HFD组地鼠的体重、血清总胆固醇(Cholesterol,TC)、甘油三酯(Triglyceride,TG)和低密度脂蛋白胆固醇(Low density lipoprotein- cholesterol,LDL-C)显著高于ND组(P<0.05)。高剂量浒苔多糖可显著降低血清TC、TG、LDL-C和谷丙转氨酶(Alanine aminotransferase,ALT)水平(P<0.05)。16S rDNA高通量测序结果表明,在门水平上,HFD组厚壁菌门/拟杆菌门比例显著高于ND组(P<0.05)。与HFD组相比,HEP组的厚壁菌门/拟杆菌门比例显著降低(P<0.05);在属水平上,HFD组的Eubacterium_coprostanoligenes_group(真杆菌属)、Lachnospiraceae_UCG-006(毛螺菌科 UCG-006)的相对丰度显著高于ND组(P<0.05),经高剂量浒苔多糖干预后,Eubacterium_coprostanoligenes_group(真杆菌属)、Lachnospiraceae_UCG-006(毛螺菌科 UCG-006)的相对丰度相对于HFD组显著降低(P<0.05)。此外,高脂饮食导致粪便中短链脂肪酸含量减少,高剂量浒苔多糖干预可显著增加粪便中短链脂肪酸含量(P<0.05)。结论:浒苔多糖可以通过调节高脂饲料喂养金黄地鼠肠道菌群构成以及短链脂肪酸生成,从而改善肥胖金黄地鼠的脂质代谢紊乱。
  • 图  1  PCoA得分图

    Figure  1.  Principal coordinate analysis score plot

    图  2  门分类水平各组肠道微生物群落组成(A)以及差异菌门多重比较(B)

    Figure  2.  Intestinal microbial community composition of each group (A) and multiple comparison test (B) at phylum level

    注:图(B)使用方差分析并通过Duncan法作多重比较 ;不同小写字母表示组间差异有统计学意义(P<0.05);图3同。

    图  3  属分类水平各组肠道微生物群落组成(A)以及多重比较(B)

    Figure  3.  Intestinal microbial community composition of each group (A) and multiple comparison test (B) at genus level

    图  4  LEfSe分析的LDA分值柱状图

    Figure  4.  The LDA score histogram of LEfSe analysis

    图  5  属分类水平差异肠道微生物物种与肥胖相关指标的相关性分析

    Figure  5.  Correlation analysis between gut microbiota at genus level and biochemical serum levels

    注:*P<0.05,**P<0.01,***P<0.001表示有统计学差异;BW:体重,PTFC:睾周脂肪系数,PRFC:肾周脂肪系数;Higher in HFD表示该菌属在HFD组显著增加;Lower in HFD表示该菌属在HFD组显著减少。

    图  6  菌群与短链脂肪酸的Spearman相关性分析

    Figure  6.  Spearman correlation analysis between gut microbiota and short-chain fatty acid

    注:*P<0.05,**P<0.01,***P<0.001表示有统计学差异;Higher in HFD表示该菌属在HFD组显著增加;Lower in HFD表示该菌属在HFD组显著减少。

    图  7  SCFAs与肥胖相关指标的Spearman相关性分析

    Figure  7.  Spearman correlation analysis between short-chain fatty acid and obesity-related parameters

    注:*P<0.05,**P<0.01,***P<0.001表示有统计学差异;BW:体重,PTFC:睾周脂肪系数,PRFC:肾周脂肪系数;Lower in HFD表示在HFD组显著减少的短链脂肪酸;No sig表示在组间无统计学差异的短链脂肪酸。

    表  1  浒苔多糖对金黄地鼠体重、脏器系数、血脂和肝功能的影响

    Table  1.   Effect of Enteromorpha polysaccharide on body weight, organ coefficient, blood lipid and liver function in golden hamster

    分组ND组HFD组LEP组HEP组
    体重(BW,g)初始体重129.28±6.12a126.69±9.43a128.07±6.53a123.12±6.68a
    最终体重156.12±12.19b174.71±13.96a168.08±8.35ab159.52±12.35b
    脏器系数(g/100 g BW)睾周脂肪系数2.20±0.29b3.07±0.36a2.97±0.35a2.47±0.38b
    肾周脂肪系数1.48±0.27b2.35±0.39a2.04±0.43a1.69±0.26b
    血脂参数(mmol/L)TC4.55±0.37c10.53±1.05a8.91±1.20b7.97±0.57b
    TG1.10±0.21c5.45±2.09a5.10±1.02a3.78±0.74b
    LDL-C1.14±0.39c4.60±1.05a3.48±0.72b2.84±0.37b
    HDL-C3.61±0.49a2.60±0.49b2.79±0.53b2.06±0.29c
    肝功能(U/L)血清ALT19.23±6.12c41.99±13.34a28.30±10.45b17.82±6.13c
    血清AST16.40±4.49a15.16±4.84a13.10±2.61a12.77±1.41a
    注:同行不同小写字母表示组间差异有统计学意义(P<0.05);表2同。
    下载: 导出CSV

    表  2  浒苔多糖对金黄地鼠粪便短链脂肪酸含量的影响(mg/g)

    Table  2.   Effect of Enteromorpha polysaccharide on short-chain fatty acid content in feces of golden hamsters (mg/g)

    分组ND组HFD组HEP组
    Acetic acid1.433±0.440a0.507±0.074b0.594±0.136b
    Propanoic acid0.275±0.149a0.063±0.021b0.143±0.067a
    Isobutyric acid0.016±0.007a0.011±0.006b0.019±0.006a
    Butyric acid0.363±0.178a0.103±0.075b0.214±0.138ab
    Isovaleric acid0.034±0.013a0.019±0.011b0.036±0.011a
    Valeric acid0.143±0.068a0.020±0.008c0.048±0.020bc
    Hexanoic acid0.234±0.132a0.017±0.002b0b
    Heptylic acid0.013±0.006a0b0b
    下载: 导出CSV
  • [1] NITTARI G, SCURI S, PETRELLI F, et al. Fighting obesity in children from European World Health Organization Member States. Epidemiological data, medical-social aspects, and prevention programs[J]. Clin Ter,2019,170(3):e223−e230.
    [2] PAN X F, WANG L, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol,2021,9(6):373−392. doi:  10.1016/S2213-8587(21)00045-0
    [3] LEE S J, SHIN S W. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med,2017,376(15):1491−1492.
    [4] LIU B N, LIU X T, LIANG Z H, et al. Gut microbiota in obesity[J]. World Journal of Gastroenterology,2021,27(25):3837−3850. doi:  10.3748/wjg.v27.i25.3837
    [5] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027−1031. doi:  10.1038/nature05414
    [6] 高鑫, 山珊, 曾德永, 等. 石莼属绿藻多糖的生物活性研究进展[J]. 食品工业科技,2021,42(2):364−369. [GAO X, SHAN S, ZENG D Y, et al. Research progress on biological activity of ulvan[J]. Science and Technology of Food Industry,2021,42(2):364−369. doi:  10.13386/j.issn1002-0306.2020040007
    [7] TENG Z, QIAN L, ZHOU Y. Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera[J]. Int J Biol Macromol,2013,62:254−256. doi:  10.1016/j.ijbiomac.2013.09.010
    [8] SHANG Q, WANG Y, PAN L, et al. Dietary polysaccharide from Enteromorpha clathrata modulates gut microbiota and promotes the growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp.[J]. Mar Drugs,2018,16(5):167. doi:  10.3390/md16050167
    [9] REN X, LIU L, GAMALLAT Y, et al. Enteromorpha and polysaccharides from Enteromorpha ameliorate loperamide-induced constipation in mice[J]. Biomed Pharmacother,2017,96:1075−1081. doi:  10.1016/j.biopha.2017.11.119
    [10] KONG Q, DONG S Y, GAO J, et al. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota[J]. Int J Biol Macromol,2016,91:867−871. doi:  10.1016/j.ijbiomac.2016.06.036
    [11] 张宵, 刘杨, 滕博, 等. 基于肠道菌群的海藻多糖对部分疾病影响的研究进展[J]. 食品工业科技,2021,42(18):421−426. [ZHANG X, LIU Y, TENG B, et al. Research progress of the effects of seaweed polysaccharides on some diseases based on intestinal flora[J]. Science and Technology of Food Industry,2021,42(18):421−426. doi:  10.13386/j.issn1002-0306.2020080239
    [12] CABRAL L, PERSINOTI G F, PAIXAO D A A, et al. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides[J]. Nature Communications, 2022, 13(1): 629-629.
    [13] LITVAK Y, BYNDLOSS M X, TSOLIS R M, et al. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction[J]. Curr Opin Microbiol,2017,39:1−6. doi:  10.1016/j.mib.2017.07.003
    [14] GOMEZ-ARANGO L F, BARRETT H L, MCINTYRE H D, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women[J]. Diabetes,2016,65(8):2214−2223. doi:  10.2337/db16-0278
    [15] VOJINOVIC D, RADJABZADEH D, KURILSHIKOV A, et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts[J]. Nature Communications,2019,10(1):5813. doi:  10.1038/s41467-019-13721-1
    [16] TUN H M, BRIDGMAN S L, CHARI R, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. Jama Pediatr,2018,172(4):368−377. doi:  10.1001/jamapediatrics.2017.5535
    [17] ZHAO L, ZHANG Q, MA W N, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J]. Food Funct,2017,8(12):4644−4656. doi:  10.1039/C7FO01383C
    [18] WEI W, JIANG W B, TIAN Z, et al. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice[J]. Clin Nutr,2021,40(6):4234−4245. doi:  10.1016/j.clnu.2021.01.031
    [19] PETERSEN C, BELL R, KIAG K A, et al. T cell-mediated regulation of the microbiota protects against obesity[J]. Science,2019,365:340.
    [20] PIDCOCK S E, SKVORTSOV T, SANTOS F G, et al. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms[J]. Microb Genomics,2021,7(10):000638.
    [21] CANI P D. Microbiota and metabolites in metabolic diseases[J]. Nat Rev Endocrinol,2019,15(2):69−70. doi:  10.1038/s41574-018-0143-9
    [22] DENG X L, MA J, SONG M T, et al. Effects of products designed to modulate the gut microbiota on hyperlipidaemia[J]. Eur J Nutr,2019,58(7):2713−2729. doi:  10.1007/s00394-018-1821-z
    [23] SCHOELER M, CAESAR R J R I E, DISORDERS M. Dietary lipids, gut microbiota and lipid metabolism[J]. 2019, 20(4): 461-472.
    [24] FU J, BONDER M J, CENIT M C, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids[J]. Circulation Research,2015,117(9):817−824. doi:  10.1161/CIRCRESAHA.115.306807
    [25] MESLIER V, LAIOLA M, ROAGER H M, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake[J]. Gut,2020,69(7):1258−1268. doi:  10.1136/gutjnl-2019-320438
    [26] MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705−715. doi:  10.1016/j.chom.2018.05.012
    [27] KLANCIC T, REIMER R A. Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health[J]. J Sport Health Sci,2020,9(2):110−118. doi:  10.1016/j.jshs.2019.04.004
    [28] MO X, SUN Y, LIANG X, et al. Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites[J]. 2022, 281: 119046.
    [29] XU S, AWEYA J, LI N, et al. Microbial catabolism of porphyra haitanensis polysaccharides by human gut microbiota[J]. 2019, 289: 177-186.
    [30] TANG C, DING R, SUN J, et al. The impacts of natural polysaccharides on intestinal microbiota and immune response-A review[J]. 2019, 10(5): 2290-2312.
    [31] NGUYEN S, KIM J, GUEVARRA R, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet[J]. Food & Function,2016,7(10):4193−4201.
    [32] CHEN Y F, JIN L, LI Y H, et al. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice[J]. Journal of Functional Foods,2018,49:20−31. doi:  10.1016/j.jff.2018.08.015
    [33] LI S Y, WANG L N, LIU B, et al. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice[J]. Food Funct,2020,11(5):4773−4784. doi:  10.1039/C9FO02857A
    [34] LAGKOUVARDOS I, LESKER T R, HITCH T C A, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome,2019,7(1):28. doi:  10.1186/s40168-019-0637-2
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海