• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

四种微藻的风味成分及其特征分析

郭桂筱 苏伟明 岳瑶 李雁群 胡雪琼

郭桂筱,苏伟明,岳瑶,等. 四种微藻的风味成分及其特征分析[J]. 食品工业科技,2022,43(23):291−300. doi:  10.13386/j.issn1002-0306.2022030151
引用本文: 郭桂筱,苏伟明,岳瑶,等. 四种微藻的风味成分及其特征分析[J]. 食品工业科技,2022,43(23):291−300. doi:  10.13386/j.issn1002-0306.2022030151
GUO Guixiao, SU Weiming, YUE Yao, et al. Volatile Flavor Compositions and the Odorant Feature Analysis of Four Microalgae[J]. Science and Technology of Food Industry, 2022, 43(23): 291−300. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030151
Citation: GUO Guixiao, SU Weiming, YUE Yao, et al. Volatile Flavor Compositions and the Odorant Feature Analysis of Four Microalgae[J]. Science and Technology of Food Industry, 2022, 43(23): 291−300. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030151

四种微藻的风味成分及其特征分析

doi: 10.13386/j.issn1002-0306.2022030151
基金项目: 广东省国际合作项目(2017A050501038)。
详细信息
    作者简介:

    郭桂筱(1997−),女,硕士研究生,研究方向:微藻生物活性物质研究与开发,E-mail:951489414@qq.com

    通讯作者:

    李雁群(1963−),男,博士,教授,研究方向:微藻与微生物工程,E-mail:yqli@gdou.edu.cn

  • 中图分类号: TS207.3

Volatile Flavor Compositions and the Odorant Feature Analysis of Four Microalgae

  • 摘要: 目的:钝顶螺旋藻、富油新绿藻、三角褐指藻和湛江等鞭金藻是常见的食(饲)用微藻,它们可能通过食物链传递作用影响食品或水产及畜禽肉类食品的风味。本研究通过分析这四种微藻的风味特性,为其相关食品风味研究提供基础数据。方法:应用固相微萃取-气相色谱-质谱联用技术结合电子鼻技术,检测微藻的挥发性化合物,进而分析微藻的风味特征。结果:上述四种微藻分别检出挥发性成分33种、35种、23种和29种。钝顶螺旋藻的主要呈味成分为己醇、1-辛烯-3-醇、(E,Z)-2,4-癸二烯醛,(E)-2-壬烯醛、己醛,赋予其青草、泥土和脂肪味;富油新绿藻的主要呈味成分为(E,Z)-2,4-癸二烯醛、(E,E)-2,4-癸二烯醛、辛醛、1-辛烯-3-醇、己醛和己醇,赋予其脂肪、泥土、鱼腥和青草味;三角褐指藻的主要呈味成分是庚醛、萘、辛醛、己醛和1-辛烯-3-醇,赋予其脂肪味;湛江等鞭金藻的主要呈味成分是(E,Z)-2,4-癸二烯醛、(E,E)-2,4-癸二烯醛、1-辛烯-3-醇、己醇、己醛和(E,E)-2,4-庚二烯醛,赋予其脂肪、青草和鱼腥味。结论:四种微藻的主要呈味成分是己醛、己醇、1-辛烯-3-醇和7~10个碳原子的烯醛和二烯醛类,使这几种微藻主要呈现青草、泥土、鱼腥和脂肪等风味特征。
  • 图  1  四种微藻电子鼻检测Loadings分析(a)和LDA分析(b)

    Figure  1.  Loadings analysis (a) and LDA analysis (b) of electronic nose detection of four microalgae

    图  2  四种微藻中挥发性化合物韦恩图(a)和动态热图(b)

    Figure  2.  Venn diagram (a) and dynamic heat map (b) of volatile compounds in four microalgae

    图  3  四种微藻OAV≥1的挥发性化合物动态热图

    Figure  3.  Dynamic heat map of volatile compounds of four microalgae with OAV≥1

    图  4  钝顶螺旋藻中OAV≥1的挥发性化合物

    Figure  4.  The volatile compounds in S. platensis with OAV≥1

    图  5  富油新绿藻中OAV≥1的挥发性化合物

    Figure  5.  The volatile compounds in N. oleoabundans with OAV≥1

    图  6  三角褐指藻中OAV≥1的挥发性化合物

    Figure  6.  The volatile compounds in P. tricornutum with OAV≥1

    图  7  湛江等鞭金藻中OAV≥1的挥发性化合物

    Figure  7.  The volatile compounds in I. zhanjiangensis with OAV≥1

    表  1  电子鼻的传感器阵列及其主要特性

    Table  1.   Sensor array of electronic nose and its main characteristics

    序号传感器名称主要性能描述
    1W1C对芳香型化合物敏感
    2W5S对氮氧化合物敏感
    3W3C对氨类和芳香型化合物敏感
    4W6S对氢类敏感
    5W5C对烷烃、芳香族化合物敏感
    6W1S对甲基类敏感
    7W1W对无机硫化物和萜烯类敏感
    8W2S对醇类和部分芳香族化合物敏感
    9W2W对芳香族化合物和有机硫化物敏感
    10W3S对烷烃敏感
    下载: 导出CSV

    表  2  四种微藻挥发性成分

    Table  2.   Volatile compounds identified in four microalgae

    挥发性成分阈值
    (μg/kg)
    保留指数(RI)气味
    描述[22-29]
    挥发性成分浓度(μg/kg)OAV
    钝顶
    螺旋藻
    富油
    新绿藻
    三角
    褐指藻
    湛江等
    鞭金藻
    钝顶
    螺旋藻
    富油
    新绿藻
    三角
    褐指藻
    湛江等
    鞭金藻
    醛类化合物
    己醛5698鱼腥味、青草味24.29±3.61220.24±82.6215.63±3.7972.35±26.04544314
    (E)-2-庚烯醛13954氧化油脂味、刺鼻味2.75±2.56163.53±69.63<113
    (E,E)-2,4-庚二烯醛15.41009脂肪味150.72±70.20108.82±37.27107
    (E)-2-辛烯醛31056脂肪味4.12±0.9339.97±22.5716.16±4.031.37135
    β-环柠檬醛51215发霉味4.51±2.7852.61±15.62<111
    (E,Z)-2,4-癸二烯醛0.041312鱼腥味1.15±0.686.36±1.319.14±1.2615159229
    (E,E)-2,4-癸二烯醛0.0771373脂肪味、煎炸味8.21±3.7512.75±1.22107166
    苯甲醛350957苦杏仁味20.12±7.8314.28±10.921335.64±308.06<1<14
    苯乙醛6.310402.12±1.2412.47±0.73<12
    (E)-2-壬烯醛0.191157脂肪味、青草味1.09±0.356
    辛醛0.5871002脂肪味58.44±44.416.28±2.0710011
    癸醛0.11202蜡质味4.52±3.954.69±0.6022
    月桂醛1014047.11±3.851.42±0.27<1<1
    庚醛2.8899脂肪味、木头味83.48±6.1030
    2,4-二甲基苯甲醛1208155.40±92.83
    2-丙基-2-庚醛117910.16±0.86
    酮类化合物
    3-辛酮21.4984蘑菇味29.20±3.3285.99±19.9054.31±10.53143
    α-紫罗兰酮10.61416甜紫罗兰味12.02±2.441
    β-紫罗兰酮8.41473紫罗兰花香味3.43±0.8322.58±5.1925.62±8.42<133
    4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮14751.72±0.64
    6-甲基-5-庚烯-2-酮9835.23±0.88<1
    异氟尔酮110001115藏红花味46.25±16.43<1
    香叶基丙酮14402.07±1.22
    醇类化合物
    1-戊烯3-醇358.1629果香味1780.67±1146.865
    (Z)-2-戊烯-1-醇720676清新味、鲜草味453.58±102.24<1
    叶醇110851青草味55.54±5.5032.05±3.01<1<1
    己醇5.6871青草味627.92±105.54120.81±81.98128.25±8.681122223
    (E)-2-庚烯-1-醇417296710.11±2.83<1
    1-辛烯-3-醇1979脂肪味、泥土味77.11±6.4079.10±29.902.79±0.9164.45±5.647779364
    (E)-2-辛烯-1-醇201066青草味15.75±2.50<1
    辛醇125.81070脂肪味12.15±7.3014.00±3.2518.15±11.48<1<1<1
    3-辛烯-2-醇11063.63±1.9518.39±6.07
    十六烷醇167912.15±3.76
    戊醇150.2674果香味78.86±28.80136.13±17.22<1<1
    正庚醇5.4969坚果味18.42±3.8220.62±11.8834
    2-乙基己醇3001028泥土味2.33±0.7736.82±8.968.46±1.7644.25±5.82<1<1<1<1
    (Z)-3-壬烯-1-醇11513.20±0.62
    (E)-2-壬烯-1-醇11651.31±0.38<1
    壬醇2801169蜡质味3.03±1.7012.91±2.28<1<1
    月桂醇161479脂肪味0.71±0.09<1
    2-甲基-3-庚醇96443.54±5.6612.25±2.8118.69±4.18<1<1<1
    苯乙醇110820.66±1.42<1
    1-壬烯-3-醇1079泥土味9.31±2.51
    3,5-二甲基苯甲醇12515.17±1.67
    2,5-二甲基-3-己醇103231.51±4.84<1
    2,6-二甲基环己醇110633.27±8.39
    烃类化合物
    十四烷13961.53±0.57
    十七烷1700814.27±448.2032.35±8.74
    十六烷1597鱼腥味59.78±34.7538.14±14.34
    十五烷1496126.19±54.78102.43±28.15
    十二烷1000011972.33±1.21<1
    (Z,Z)-8,11-庚烷126427.43±6.07
    3-乙基-1,5-辛二烯942120.16±9.06
    2-甲基-2-壬烯10323.84±1.5652.24±7.72
    1-溴-5-十七碳烯16695.83±1.80
    3,5,5-三甲基-1-己烯972132.82±13.87
    3-乙烯基-环己烯106927.12±8.95
    酯类化合物
    邻苯二甲酸二乙酯15802.72±1.4029.31±27.8528.34±26.82
    2-甲基丁基乙酸酯875103.40±22.40
    茉莉酯106515.79±14.73
    苯甲酸丙酯126513.37±8.37
    2,2,4-三甲基-1,3-戊二醇二异丁酸酯158319.76±7.24
    2-苯基-癸-2-丁酸酯11681.46±0.26
    4-辛基戊酸酯133826.36±1.62
    肉豆蔻酸乙酯179415.61±14.66
    其他化合物
    甲氧基苯基胯90127.51±8.3178.87±51.57197.83±44.70
    2,4-二叔丁基苯酚50015007.45±2.406.56±1.4811.53±3.00<1<1<1
    1,3-二叔丁基苯124521.07±2.0849.43±11.97
    5-甲基茚满11346.70±1.36
    1,2,4,5-四甲苯11114.54±0.61
    61178樟脑味89.52±13.5415
    注:阈值:化合物在水中的嗅觉阈值;保留指数(RI):化合物在Rtx-5MS色谱柱上的保留指数;“−”表示该化合物未检出。
    下载: 导出CSV
  • [1] A. 里士曼. 微藻培养指南: 生物技术与应用藻类学[M]. 北京: 科学出版社, 2014

    RICHMOND A. Handbook of microalgal culture: Biotechnology and applied phycology[M]. Beijing: Science Press, 2014.
    [2] 杨青峰, 李雁群, 许英桃, 等. 富油新绿藻在不同培养期油脂的脂肪酸组成[J]. 广东海洋大学学报,2017,37(4):128−132. [YANG Q F, LI Y Q, XU Y T, et al. Fatty acid composition of Neochloris (Ettlia) oleoabundans in different cultivation periods[J]. Journal of Guangdong Ocean University,2017,37(4):128−132. doi:  10.3969/j.issn.1673-9159.2017.04.020
    [3] 王冬琴. 微藻油脂湿法提取技术研究[D]. 湛江: 广东海洋大学, 2013

    WANG D Q. Research on the lipid extraction from wet microalgae[D]. Zhanjiang: Guangdong Ocean University, 2013.
    [4] SICURO B. Freshwater bivalves rearing: A brief overview[J]. International Aquatic Research,2015,7(2):93−100. doi:  10.1007/s40071-015-0098-6
    [5] QIAO H J, CONG C, SUN C X, et al. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum[J]. Aquaculture,2016,452:311−317. doi:  10.1016/j.aquaculture.2015.11.011
    [6] GAO B Y, CHEN A L, ZHANG W Y, et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Pha-eodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions[J]. Journal of Ocean University of China,2017,16(5):916−924. doi:  10.1007/s11802-017-3174-2
    [7] 蔺红苹, 卢冬梅. 湛江等鞭金藻培养条件优化[J]. 基因组学与应用生物学,2020,39(4):1751−1757. [LIN H P, LU D M. Optimization of culture conditions of Isochrysis zhanjiangsis[J]. Jiyinzuxue Yu Yingyong Shengwuxue (Genomics and Applied Bio-logy),2020,39(4):1751−1757. doi:  10.13417/j.gab.039.001751
    [8] 李微, 阿曼尼萨·买买提, 徐继林, 等. 不同海域不同品种坛紫菜(Pyropia haitanensis)挥发性成分的比较分析[J]. 渔业科学进展,2016,37(5):147−156. [LI W, OMANNISA·MAMAT, XU J L, et al. Comparative study of volatile components from two strains of Pyropia haitanensis in different culture areas[J]. Progress in Fishery Sciences,2016,37(5):147−156.
    [9] 徐玉雪, 陈艳红, 陈昭华, 等. 红毛藻复合脱腥工艺的优化及其挥发性成分GC-MS分析[J]. 食品研究与开发,2021,42(16):99−106. [XU Y X, CHENG Y H, CHENG Z H, et al. Optimization of compound deodorization progress and GC-MS analysis of volatile components of Bangia fusco-purpurea[J]. Food Research and Development,2021,42(16):99−106. doi:  10.12161/j.issn.1005-6521.2021.16.015
    [10] 李红, 党晨阳, 张金荣. 三种马尾藻不同部位挥发性成分的比较分析[J]. 食品工业科技,2018,39(24):281−288, 293. [LI H, DANG C Y, ZHANG J R. Comparative analysis of volatile components in different parts of three species of Sargassum[J]. Science and Technology of Food Industry,2018,39(24):281−288, 293. doi:  10.13386/j.issn1002-0306.2018.24.047
    [11] ZHANG K J, LIN T F, ZHANG T Q, et al. Characterization of typical taste and odor compounds formed by Microcystis aeruginosa[J]. Journal of Environmental Sciences (China),2013,25(8):1539−1548. doi:  10.1016/S1001-0742(12)60232-0
    [12] LEE J, RAI P K, JEON Y J, et al. The role of algae and cyanobacteria in the production and release of odorants in water[J]. Environmental Pollution,2017,227:252−262. doi:  10.1016/j.envpol.2017.04.058
    [13] LAFARGE C, CAYOT N. Insight on a comprehensive profile of volatile compounds of Chlorella vulgaris extracted by two "green" methods[J]. Food Science & Nutrition,2019,7(3):918−929.
    [14] ZEN C K, TIEPO C B V, SILVA R V, et al. Development of functional pasta with microencapsulated Spirulina: Technological and sensorial effects[J]. Journal of the Science of Food and Agriculture,2020,100(5):2018−2026. doi:  10.1002/jsfa.10219
    [15] ISLETEN H M. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry[J]. Food Chemistry,2018,240:1210−1218. doi:  10.1016/j.foodchem.2017.08.052
    [16] PENNARUN A L, PROST C, HAURE J, et al. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas)[J]. Journal of Agricultural & Food Chemistry,2003,51(7):2011−2018.
    [17] GOLMAKANI M T, SOLEIMANIAN-ZAD S, ALAVI N, et al. Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese[J]. Journal of Applied Phycology,2018,31(2):1085−1094.
    [18] 岳敏, 赵熙宁, 宋亚楠, 等. 蛋白核小球藻超声波破壁方法的优化[J]. 山西农业大学学报(自然科学版),2018,38(10):37−42. [YUE M, ZHAO X N, SONG Y N, et al. Optimization study on the ultrasonictreatment for cell wall disruption of Chlorella pyrenoidosa[J]. Journalof Shanxi Agricultural University (Nature Science Edition),2018,38(10):37−42. doi:  10.13842/j.cnki.issn1671-8151.201807016
    [19] 卢佳芳, 朱煜康, 徐大伦, 等. 不同剂量电子束辐照对花鲈鱼肉风味的影响[J]. 食品科学,2021,42(12):153−158. [LU J F, ZHU Y K, XU D L, et al. Effect of electron beam irradiation on with different doses on flavor of Lateolabrax japonicus meat[J]. Food Science,2021,42(12):153−158. doi:  10.7506/spkx1002-6630-20191104-046
    [20] 闫爽, 王黎颖, 王聪, 等. 杜氏盐藻挥发性物质的HS-SPME-GC-MS分析[J]. 食品工业科技,2017,38(1):304−307. [YAN S, WANG L Y, WANG C, et al. Analysis of volatile compounds in Dunaliella salina with HS-SPME-GC-MS method[J]. Science and Technology of Food Industry,2017,38(1):304−307. doi:  10.13386/j.issn1002-0306.2017.01.053
    [21] 潘晓倩, 周慧敏, 李素, 等. 卤牛肉贮藏过程中气味活性化合物变化及异味分析[J]. 食品科学,2021,42(22):240−248. [PAN X Q, ZHOU H M, LI S, et al. Changes in odor-active compounds during storage and analysis of offflavor substances in stewed marinated beef[J]. Food Science,2021,42(22):240−248. doi:  10.7506/spkx1002-6630-20201217-208
    [22] MISHRA P K, TRIPATHI J, GUPTA S, et al. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality[J]. Food Chemistry,2017,215:401−409. doi:  10.1016/j.foodchem.2016.07.149
    [23] GIRI A, OSAKO K, OHSHIMA T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing[J]. Food Chemistry,2010,120(2):621−631. doi:  10.1016/j.foodchem.2009.10.036
    [24] WATSON S B, SATCHWILL T, DIXON E, et al. Under-ice blooms and source-water odour in a nutrient-poor reservoir: Biological, ecological and applied perspectives[J]. Freshwater Biology,2010,46(11):1553−1567.
    [25] 雷乙, 陈竟豪, 涂金金, 等. 鱼肉加工过程特征气味物质变化研究进展[J]. 食品研究与开发,2020,41(15):201−210. [LEI Y, CHEN J H, TU J J, et al. Research progress on changes of characteristic odor substances in fish processing[J]. Food Research and Development,2020,41(15):201−210. doi:  10.12161/j.issn.1005-6521.2020.15.034
    [26] CZERNY M, CHRISTLBAUER M, CHRISTLBAUER M, et al. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions[J]. European Food Research and Technology,2008,228(2):265−273. doi:  10.1007/s00217-008-0931-x
    [27] CHEN Q Q, SONG J X, BI J F, et al. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose[J]. Food Research International,2018,105:605−615. doi:  10.1016/j.foodres.2017.11.054
    [28] KALUA C M, ALLEN M S, BEDGOOD D R, et al. Olive oil volatile compounds, flavour development and quality: A critical review[J]. Food Chemistry,2007,100(1):273−286. doi:  10.1016/j.foodchem.2005.09.059
    [29] VAN DURME J, GOIRIS K, DE WINNE A, et al. Evaluation of the volatile composition and sensory properties of five species of microalgae[J]. Journal of Agricultural & Food Chemistry,2013,61(46):10881−10890.
    [30] 解万翠, 卢宽, 于靖, 等. 水产品香气研究进展[J]. 食品科学技术学报,2022,40(1):11−21. [JIE W C, LU K, YU J, et al. Research progress on aroma of aquatic products[J]. Journal of Food Science and Technology,2022,40(1):11−21. doi:  10.12301/spxb202100404
    [31] SELLI S, CAYHAN G G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation-extraction (SDE) and GC-MS[J]. Microchemical Journal,2009,93(2):232−235. doi:  10.1016/j.microc.2009.07.010
    [32] ZHAO Y Y, YU J W, SU M, et al. A fishy odor episode in a north China reservoir: Occurrence, origin, and possible odor causing compounds[J]. Journal of Environmental Sciences (China),2013,25(12):2361−2366. doi:  10.1016/S1001-0742(12)60317-9
    [33] GRIMM C, CHAMPAGNE E, OHTSUBO K I. Analysis of volatile compounds in the headspace of rice using SPME/GC/MS[M]. Flavor, Fragrance, and Odor Analysis, 2002.
    [34] GUNESER O, DEMIRKOL A, YUCEER Y K, et al. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis[J]. Brazilian Journal of Microbiology,2017,48(2):275−285. doi:  10.1016/j.bjm.2016.08.003
    [35] 金星. 藻类代谢产物中典型异味物质及其变化规律研究[D]. 南京: 南京理工大学, 2009

    JIN X. Research on typical odorous compounds from algae metabolites and the variation rule[D]. Nanjing: Nanjing University of Science & Technology, 2009.
    [36] KHIARI D. AWWA's taste and odor committee: Seeks to understand and solve taste and odor problems in drinking water[J]. Journal-American Water Works Association,2004,96(2):32−36. doi:  10.1002/j.1551-8833.2004.tb10539.x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  10
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名