Volatile Flavor Compositions and the Odorant Feature Analysis of Four Microalgae
-
摘要: 目的:钝顶螺旋藻、富油新绿藻、三角褐指藻和湛江等鞭金藻是常见的食(饲)用微藻,它们可能通过食物链传递作用影响食品或水产及畜禽肉类食品的风味。本研究通过分析这四种微藻的风味特性,为其相关食品风味研究提供基础数据。方法:应用固相微萃取-气相色谱-质谱联用技术结合电子鼻技术,检测微藻的挥发性化合物,进而分析微藻的风味特征。结果:上述四种微藻分别检出挥发性成分33种、35种、23种和29种。钝顶螺旋藻的主要呈味成分为己醇、1-辛烯-3-醇、(E,Z)-2,4-癸二烯醛,(E)-2-壬烯醛、己醛,赋予其青草、泥土和脂肪味;富油新绿藻的主要呈味成分为(E,Z)-2,4-癸二烯醛、(E,E)-2,4-癸二烯醛、辛醛、1-辛烯-3-醇、己醛和己醇,赋予其脂肪、泥土、鱼腥和青草味;三角褐指藻的主要呈味成分是庚醛、萘、辛醛、己醛和1-辛烯-3-醇,赋予其脂肪味;湛江等鞭金藻的主要呈味成分是(E,Z)-2,4-癸二烯醛、(E,E)-2,4-癸二烯醛、1-辛烯-3-醇、己醇、己醛和(E,E)-2,4-庚二烯醛,赋予其脂肪、青草和鱼腥味。结论:四种微藻的主要呈味成分是己醛、己醇、1-辛烯-3-醇和7~10个碳原子的烯醛和二烯醛类,使这几种微藻主要呈现青草、泥土、鱼腥和脂肪等风味特征。Abstract: Objective: Spirulina platensis, Neochloris oleoabundans, Phaeodactylum tricornutum and Isochrysis zhanjiangensis are common microalgae for food and feed. Their odors can affect the flavor of foods made from the aquaculture and farm animals through the food-chain transfer. This study aimed at analyzing the flavor characteristics of these four microalgae to provide fundamental data for the further researches of the relative foods. Methods: HS-SPME-GC-MS and electronic nose techniques were applied to identify the volatile compounds and the flavor profiles of the microalgae were analyzed thereafter. Results: In the four microalgae mentioned above, 33, 35, 23 and 29 volatile compounds were identified respectively. The results showed that hexanol, 1-octen-3-ol, (E,Z)-2,4-decadienal, (E)-2-nonenal and hexanal were the main compounds in S. platensis contributing to its grassy, earthy and fatty odor; (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal, octanal, 1-octen-3-ol, hexanal and hexanol were the key volatile compounds in N. oleoabundans and gave it a flavor feature of fatty, earthy, fishy and grassy note; heptanal, naphthalene, octanal, hexanal and 1-octen-3-ol were the main volatile compounds in P. tricornutum contributing to its fatty odor; (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal, 1-octen-3-ol, hexanol, hexanal and (E,E)-2,4-heptadienal were the primary volatile substances in I. zhanjiangensis giving it fatty, grassy and fishy odor. Conclusion: Hexanal, hexanol, 1-octen-3-ol and olefin/diolefin aldehyde with 7~10 carbon atoms are the main odorous compounds in the four microalgae, contributing to their grassy, earthy, fishy and fatty odorous feature.
-
Key words:
- microalgae /
- volatile compound /
- specific undesirable odor
-
表 1 电子鼻的传感器阵列及其主要特性
Table 1. Sensor array of electronic nose and its main characteristics
序号 传感器名称 主要性能描述 1 W1C 对芳香型化合物敏感 2 W5S 对氮氧化合物敏感 3 W3C 对氨类和芳香型化合物敏感 4 W6S 对氢类敏感 5 W5C 对烷烃、芳香族化合物敏感 6 W1S 对甲基类敏感 7 W1W 对无机硫化物和萜烯类敏感 8 W2S 对醇类和部分芳香族化合物敏感 9 W2W 对芳香族化合物和有机硫化物敏感 10 W3S 对烷烃敏感 表 2 四种微藻挥发性成分
Table 2. Volatile compounds identified in four microalgae
挥发性成分 阈值
(μg/kg)保留指数(RI) 气味
描述[22-29]挥发性成分浓度(μg/kg) OAV 钝顶
螺旋藻富油
新绿藻三角
褐指藻湛江等
鞭金藻钝顶
螺旋藻富油
新绿藻三角
褐指藻湛江等
鞭金藻醛类化合物 己醛 5 698 鱼腥味、青草味 24.29±3.61 220.24±82.62 15.63±3.79 72.35±26.04 5 44 3 14 (E)-2-庚烯醛 13 954 氧化油脂味、刺鼻味 2.75±2.56 163.53±69.63 − − <1 13 − − (E,E)-2,4-庚二烯醛 15.4 1009 脂肪味 − 150.72±70.20 − 108.82±37.27 − 10 − 7 (E)-2-辛烯醛 3 1056 脂肪味 4.12±0.93 39.97±22.57 − 16.16±4.03 1.37 13 − 5 β-环柠檬醛 5 1215 发霉味 4.51±2.78 52.61±15.62 − − <1 11 − − (E,Z)-2,4-癸二烯醛 0.04 1312 鱼腥味 1.15±0.68 6.36±1.31 − 9.14±1.26 15 159 − 229 (E,E)-2,4-癸二烯醛 0.077 1373 脂肪味、煎炸味 8.21±3.75 − 12.75±1.22 − 107 − 166 苯甲醛 350 957 苦杏仁味 20.12±7.83 − 14.28±10.92 1335.64±308.06 <1 − <1 4 苯乙醛 6.3 1040 2.12±1.24 − − 12.47±0.73 <1 − − 2 (E)-2-壬烯醛 0.19 1157 脂肪味、青草味 1.09±0.35 − − − 6 − − − 辛醛 0.587 1002 脂肪味 − 58.44±44.41 6.28±2.07 − − 100 11 − 癸醛 0.1 1202 蜡质味 − 4.52±3.95 4.69±0.60 − − 2 2 − 月桂醛 10 1404 − 7.11±3.85 1.42±0.27 − − <1 <1 − 庚醛 2.8 899 脂肪味、木头味 − − 83.48±6.10 − − − 30 − 2,4-二甲基苯甲醛 1208 − − 155.40±92.83 − − − − − 2-丙基-2-庚醛 1179 − − − 10.16±0.86 − − − − 酮类化合物 3-辛酮 21.4 984 蘑菇味 29.20±3.32 85.99±19.90 − 54.31±10.53 1 4 − 3 α-紫罗兰酮 10.6 1416 甜紫罗兰味 − 12.02±2.44 − − − 1 − − β-紫罗兰酮 8.4 1473 紫罗兰花香味 3.43±0.83 22.58±5.19 − 25.62±8.42 <1 3 − 3 4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮 1475 1.72±0.64 − − − − − − − 6-甲基-5-庚烯-2-酮 983 − − 5.23±0.88 − − − <1 − 异氟尔酮 11000 1115 藏红花味 − − 46.25±16.43 − − − <1 − 香叶基丙酮 1440 − − 2.07±1.22 − − − − − 醇类化合物 1-戊烯3-醇 358.1 629 果香味 − 1780.67±1146.86 − − − 5 − − (Z)-2-戊烯-1-醇 720 676 清新味、鲜草味 − 453.58±102.24 − − − <1 − − 叶醇 110 851 青草味 − 55.54±5.50 − 32.05±3.01 − <1 − <1 己醇 5.6 871 青草味 627.92±105.54 120.81±81.98 − 128.25±8.68 112 22 − 23 (E)-2-庚烯-1-醇 4172 967 10.11±2.83 − − − <1 − − − 1-辛烯-3-醇 1 979 脂肪味、泥土味 77.11±6.40 79.10±29.90 2.79±0.91 64.45±5.64 77 79 3 64 (E)-2-辛烯-1-醇 20 1066 青草味 15.75±2.50 − − − <1 − − − 辛醇 125.8 1070 脂肪味 12.15±7.30 − 14.00±3.25 18.15±11.48 <1 − <1 <1 3-辛烯-2-醇 1106 3.63±1.95 18.39±6.07 − − − − − − 十六烷醇 1679 12.15±3.76 − − − − − − − 戊醇 150.2 674 果香味 78.86±28.80 − − 136.13±17.22 <1 − − <1 正庚醇 5.4 969 坚果味 18.42±3.82 − 20.62±11.88 − 3 − 4 − 2-乙基己醇 300 1028 泥土味 2.33±0.77 36.82±8.96 8.46±1.76 44.25±5.82 <1 <1 <1 <1 (Z)-3-壬烯-1-醇 1151 3.20±0.62 − − − − − − − (E)-2-壬烯-1-醇 1165 1.31±0.38 − − − <1 − − − 壬醇 280 1169 蜡质味 3.03±1.70 − − 12.91±2.28 <1 − − <1 月桂醇 16 1479 脂肪味 0.71±0.09 − − − <1 − − − 2-甲基-3-庚醇 964 − 43.54±5.66 12.25±2.81 18.69±4.18 − <1 <1 <1 苯乙醇 1108 − 20.66±1.42 − − − <1 − − 1-壬烯-3-醇 1079 泥土味 − − 9.31±2.51 − − − − − 3,5-二甲基苯甲醇 1251 − − 5.17±1.67 − − − − − 2,5-二甲基-3-己醇 1032 − − − 31.51±4.84 − − − <1 2,6-二甲基环己醇 1106 − − − 33.27±8.39 − − − − 烃类化合物 − − − − − − − − 十四烷 1396 1.53±0.57 − − − − − − − 十七烷 1700 814.27±448.20 32.35±8.74 − − − − − − 十六烷 1597 鱼腥味 59.78±34.75 38.14±14.34 − − − − − − 十五烷 1496 126.19±54.78 102.43±28.15 − − − − − − 十二烷 10000 1197 − − 2.33±1.21 − − − <1 − (Z,Z)-8,11-庚烷 1264 − − − 27.43±6.07 − − − − 3-乙基-1,5-辛二烯 942 − 120.16±9.06 − − − − − − 2-甲基-2-壬烯 1032 3.84±1.56 52.24±7.72 − − − − − − 1-溴-5-十七碳烯 1669 5.83±1.80 − − − − − − − 3,5,5-三甲基-1-己烯 972 − − − 132.82±13.87 − − − − 3-乙烯基-环己烯 1069 − − − 27.12±8.95 − − − − 酯类化合物 − − − − − − − − 邻苯二甲酸二乙酯 1580 2.72±1.40 29.31±27.85 − 28.34±26.82 − − − − 2-甲基丁基乙酸酯 875 − 103.40±22.40 − − − − − − 茉莉酯 1065 − 15.79±14.73 − − − − − − 苯甲酸丙酯 1265 − 13.37±8.37 − − − − − − 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 1583 − 19.76±7.24 − − − − − − 2-苯基-癸-2-丁酸酯 1168 − − 1.46±0.26 − − − − − 4-辛基戊酸酯 1338 − − − 26.36±1.62 − − − − 肉豆蔻酸乙酯 1794 − − − 15.61±14.66 − − − − 其他化合物 − − − − − − − − 甲氧基苯基胯 901 27.51±8.31 78.87±51.57 − 197.83±44.70 − − − − 2,4-二叔丁基苯酚 500 1500 − 7.45±2.40 6.56±1.48 11.53±3.00 − <1 <1 <1 1,3-二叔丁基苯 1245 − 21.07±2.08 − 49.43±11.97 − − − − 5-甲基茚满 1134 − − 6.70±1.36 − − − − − 1,2,4,5-四甲苯 1111 − − 4.54±0.61 − − − − − 萘 6 1178 樟脑味 − − 89.52±13.54 − − − 15 − 注:阈值:化合物在水中的嗅觉阈值;保留指数(RI):化合物在Rtx-5MS色谱柱上的保留指数;“−”表示该化合物未检出。 -
[1] A. 里士曼. 微藻培养指南: 生物技术与应用藻类学[M]. 北京: 科学出版社, 2014RICHMOND A. Handbook of microalgal culture: Biotechnology and applied phycology[M]. Beijing: Science Press, 2014. [2] 杨青峰, 李雁群, 许英桃, 等. 富油新绿藻在不同培养期油脂的脂肪酸组成[J]. 广东海洋大学学报,2017,37(4):128−132. [YANG Q F, LI Y Q, XU Y T, et al. Fatty acid composition of Neochloris (Ettlia) oleoabundans in different cultivation periods[J]. Journal of Guangdong Ocean University,2017,37(4):128−132. doi: 10.3969/j.issn.1673-9159.2017.04.020 [3] 王冬琴. 微藻油脂湿法提取技术研究[D]. 湛江: 广东海洋大学, 2013WANG D Q. Research on the lipid extraction from wet microalgae[D]. Zhanjiang: Guangdong Ocean University, 2013. [4] SICURO B. Freshwater bivalves rearing: A brief overview[J]. International Aquatic Research,2015,7(2):93−100. doi: 10.1007/s40071-015-0098-6 [5] QIAO H J, CONG C, SUN C X, et al. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum[J]. Aquaculture,2016,452:311−317. doi: 10.1016/j.aquaculture.2015.11.011 [6] GAO B Y, CHEN A L, ZHANG W Y, et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Pha-eodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions[J]. Journal of Ocean University of China,2017,16(5):916−924. doi: 10.1007/s11802-017-3174-2 [7] 蔺红苹, 卢冬梅. 湛江等鞭金藻培养条件优化[J]. 基因组学与应用生物学,2020,39(4):1751−1757. [LIN H P, LU D M. Optimization of culture conditions of Isochrysis zhanjiangsis[J]. Jiyinzuxue Yu Yingyong Shengwuxue (Genomics and Applied Bio-logy),2020,39(4):1751−1757. doi: 10.13417/j.gab.039.001751 [8] 李微, 阿曼尼萨·买买提, 徐继林, 等. 不同海域不同品种坛紫菜(Pyropia haitanensis)挥发性成分的比较分析[J]. 渔业科学进展,2016,37(5):147−156. [LI W, OMANNISA·MAMAT, XU J L, et al. Comparative study of volatile components from two strains of Pyropia haitanensis in different culture areas[J]. Progress in Fishery Sciences,2016,37(5):147−156. [9] 徐玉雪, 陈艳红, 陈昭华, 等. 红毛藻复合脱腥工艺的优化及其挥发性成分GC-MS分析[J]. 食品研究与开发,2021,42(16):99−106. [XU Y X, CHENG Y H, CHENG Z H, et al. Optimization of compound deodorization progress and GC-MS analysis of volatile components of Bangia fusco-purpurea[J]. Food Research and Development,2021,42(16):99−106. doi: 10.12161/j.issn.1005-6521.2021.16.015 [10] 李红, 党晨阳, 张金荣. 三种马尾藻不同部位挥发性成分的比较分析[J]. 食品工业科技,2018,39(24):281−288, 293. [LI H, DANG C Y, ZHANG J R. Comparative analysis of volatile components in different parts of three species of Sargassum[J]. Science and Technology of Food Industry,2018,39(24):281−288, 293. doi: 10.13386/j.issn1002-0306.2018.24.047 [11] ZHANG K J, LIN T F, ZHANG T Q, et al. Characterization of typical taste and odor compounds formed by Microcystis aeruginosa[J]. Journal of Environmental Sciences (China),2013,25(8):1539−1548. doi: 10.1016/S1001-0742(12)60232-0 [12] LEE J, RAI P K, JEON Y J, et al. The role of algae and cyanobacteria in the production and release of odorants in water[J]. Environmental Pollution,2017,227:252−262. doi: 10.1016/j.envpol.2017.04.058 [13] LAFARGE C, CAYOT N. Insight on a comprehensive profile of volatile compounds of Chlorella vulgaris extracted by two "green" methods[J]. Food Science & Nutrition,2019,7(3):918−929. [14] ZEN C K, TIEPO C B V, SILVA R V, et al. Development of functional pasta with microencapsulated Spirulina: Technological and sensorial effects[J]. Journal of the Science of Food and Agriculture,2020,100(5):2018−2026. doi: 10.1002/jsfa.10219 [15] ISLETEN H M. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry[J]. Food Chemistry,2018,240:1210−1218. doi: 10.1016/j.foodchem.2017.08.052 [16] PENNARUN A L, PROST C, HAURE J, et al. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas)[J]. Journal of Agricultural & Food Chemistry,2003,51(7):2011−2018. [17] GOLMAKANI M T, SOLEIMANIAN-ZAD S, ALAVI N, et al. Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese[J]. Journal of Applied Phycology,2018,31(2):1085−1094. [18] 岳敏, 赵熙宁, 宋亚楠, 等. 蛋白核小球藻超声波破壁方法的优化[J]. 山西农业大学学报(自然科学版),2018,38(10):37−42. [YUE M, ZHAO X N, SONG Y N, et al. Optimization study on the ultrasonictreatment for cell wall disruption of Chlorella pyrenoidosa[J]. Journalof Shanxi Agricultural University (Nature Science Edition),2018,38(10):37−42. doi: 10.13842/j.cnki.issn1671-8151.201807016 [19] 卢佳芳, 朱煜康, 徐大伦, 等. 不同剂量电子束辐照对花鲈鱼肉风味的影响[J]. 食品科学,2021,42(12):153−158. [LU J F, ZHU Y K, XU D L, et al. Effect of electron beam irradiation on with different doses on flavor of Lateolabrax japonicus meat[J]. Food Science,2021,42(12):153−158. doi: 10.7506/spkx1002-6630-20191104-046 [20] 闫爽, 王黎颖, 王聪, 等. 杜氏盐藻挥发性物质的HS-SPME-GC-MS分析[J]. 食品工业科技,2017,38(1):304−307. [YAN S, WANG L Y, WANG C, et al. Analysis of volatile compounds in Dunaliella salina with HS-SPME-GC-MS method[J]. Science and Technology of Food Industry,2017,38(1):304−307. doi: 10.13386/j.issn1002-0306.2017.01.053 [21] 潘晓倩, 周慧敏, 李素, 等. 卤牛肉贮藏过程中气味活性化合物变化及异味分析[J]. 食品科学,2021,42(22):240−248. [PAN X Q, ZHOU H M, LI S, et al. Changes in odor-active compounds during storage and analysis of offflavor substances in stewed marinated beef[J]. Food Science,2021,42(22):240−248. doi: 10.7506/spkx1002-6630-20201217-208 [22] MISHRA P K, TRIPATHI J, GUPTA S, et al. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality[J]. Food Chemistry,2017,215:401−409. doi: 10.1016/j.foodchem.2016.07.149 [23] GIRI A, OSAKO K, OHSHIMA T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing[J]. Food Chemistry,2010,120(2):621−631. doi: 10.1016/j.foodchem.2009.10.036 [24] WATSON S B, SATCHWILL T, DIXON E, et al. Under-ice blooms and source-water odour in a nutrient-poor reservoir: Biological, ecological and applied perspectives[J]. Freshwater Biology,2010,46(11):1553−1567. [25] 雷乙, 陈竟豪, 涂金金, 等. 鱼肉加工过程特征气味物质变化研究进展[J]. 食品研究与开发,2020,41(15):201−210. [LEI Y, CHEN J H, TU J J, et al. Research progress on changes of characteristic odor substances in fish processing[J]. Food Research and Development,2020,41(15):201−210. doi: 10.12161/j.issn.1005-6521.2020.15.034 [26] CZERNY M, CHRISTLBAUER M, CHRISTLBAUER M, et al. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions[J]. European Food Research and Technology,2008,228(2):265−273. doi: 10.1007/s00217-008-0931-x [27] CHEN Q Q, SONG J X, BI J F, et al. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose[J]. Food Research International,2018,105:605−615. doi: 10.1016/j.foodres.2017.11.054 [28] KALUA C M, ALLEN M S, BEDGOOD D R, et al. Olive oil volatile compounds, flavour development and quality: A critical review[J]. Food Chemistry,2007,100(1):273−286. doi: 10.1016/j.foodchem.2005.09.059 [29] VAN DURME J, GOIRIS K, DE WINNE A, et al. Evaluation of the volatile composition and sensory properties of five species of microalgae[J]. Journal of Agricultural & Food Chemistry,2013,61(46):10881−10890. [30] 解万翠, 卢宽, 于靖, 等. 水产品香气研究进展[J]. 食品科学技术学报,2022,40(1):11−21. [JIE W C, LU K, YU J, et al. Research progress on aroma of aquatic products[J]. Journal of Food Science and Technology,2022,40(1):11−21. doi: 10.12301/spxb202100404 [31] SELLI S, CAYHAN G G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation-extraction (SDE) and GC-MS[J]. Microchemical Journal,2009,93(2):232−235. doi: 10.1016/j.microc.2009.07.010 [32] ZHAO Y Y, YU J W, SU M, et al. A fishy odor episode in a north China reservoir: Occurrence, origin, and possible odor causing compounds[J]. Journal of Environmental Sciences (China),2013,25(12):2361−2366. doi: 10.1016/S1001-0742(12)60317-9 [33] GRIMM C, CHAMPAGNE E, OHTSUBO K I. Analysis of volatile compounds in the headspace of rice using SPME/GC/MS[M]. Flavor, Fragrance, and Odor Analysis, 2002. [34] GUNESER O, DEMIRKOL A, YUCEER Y K, et al. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis[J]. Brazilian Journal of Microbiology,2017,48(2):275−285. doi: 10.1016/j.bjm.2016.08.003 [35] 金星. 藻类代谢产物中典型异味物质及其变化规律研究[D]. 南京: 南京理工大学, 2009JIN X. Research on typical odorous compounds from algae metabolites and the variation rule[D]. Nanjing: Nanjing University of Science & Technology, 2009. [36] KHIARI D. AWWA's taste and odor committee: Seeks to understand and solve taste and odor problems in drinking water[J]. Journal-American Water Works Association,2004,96(2):32−36. doi: 10.1002/j.1551-8833.2004.tb10539.x -