Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors
-
摘要: 本研究以血管紧张素I转化酶(angiotensin converting enzyme, ACE)抑制肽PHP1和PHP2为研究母肽,通过替换氨基酸残基改变目标多肽的疏水性、带电性等因素,利用生物信息学工具评估多肽潜在的生物活性,设计了19个多肽类似物。采用多肽固相合成法合成目的多肽类似物,并进行体外生物活性检测。结果显示多肽类似物均具有较高的ACE抑制活性,其中,PHP1A-6(IC50=3.87 μmol/L)、PHP2A-3(IC50=3.33 μmol/L)、PHP2A-4(IC50=2.86 μmol/L)和PHP2A-7(IC50=4.58 μmol/L)的ACE抑制活性最高,较母肽有显著提高(P<0.05),PHP1A-3、PHP1A-4、PHP1A-7、PHP2A-1和PHP2A-10具有同母肽相当的抑制活性,IC50<10 μmol/L。绝大部分多肽类似物的α-葡萄糖苷酶抑制活性与母肽相比均有明显提高,PHP1A-3(IC50=3.09 μmol/L)、PHP1A-7(IC50=9.51 μmol/L)、PHP2A-6(IC50=5.58 μmol/L)、PHP2A-11(IC50=2.35 μmol/L)和PHP2A-12(IC50=3.98 μmol/L)的活性最高。其中,PHP1A-3和PHP1A-7具备较强的ACE抑制和α-葡萄糖苷酶抑制双重活性。含Cys的多肽类似物在1 mg/mL浓度下,ABTS + · 清除率均在85%以上,具备潜在的抗氧化活性。分子对接研究了ACE抑制肽与ACE的构效关系,表明抑制肽可以与ACE的氨基酸残基产生多个稳定的氢键、疏水相互作用、π-π堆积及盐桥,增加了对ACE的抑制作用。
-
关键词:
- 多肽固相合成 /
- 新型ACE抑制肽类似物 /
- 生物活性 /
- 分子对接
Abstract: In this study, using angiotensin converting enzyme (ACE) inhibitory peptides PHP1 and PHP2 as the parent peptides, the hydrophobicity and electrical properties of target polypeptides were altered by substituting amino acid residues. In addition, the potential bioactivity of these polypeptides was assessed using bioinformatics tools. Following this analysis, 19 polypeptide analogues were designed and synthesized using solid-phase synthesis, and their bioactivities were detected in vitro. The results revealed that the polypeptide analogues showed relatively high ACE inhibitory activities, PHP1A-6 (IC50=3.87 μmol/L), PHP2A-3 (IC50=3.33 μmol/L), PHP2A-4 (IC50=2.86 μmol/L), and PHP2A-7 (IC50=4.58 μmol/L) exhibited the highest ACE inhibitory activity levels, significantly higher than the parent peptides (P<0.05). PHP1A-3, PHP1A-4, PHP1A-7, PHP2A-1 and PHP2A-10 displayed equal levels of inhibitory activity in comparison to the parent peptides (IC50<10 μmol/L). Compared with the parent peptides, the α-glucosidase inhibitory activity levels demonstrated by most of the polypeptide analogues were significantly enhanced, PHP1A-3 (IC50=3.09 μmol/L), PHP1A-7 (IC50=9.51 μmol/L), PHP2A-6 (IC50=5.58 μmol/L), PHP2A-11 (IC50=2.35 μmol/L), and PHP2A-12 (IC50=3.98 μmol/L) exhibited the highest activities. Additionally, PHP1A-3 and PHP1A-7 displayed relatively strong inhibitory activity against both ACE and α-glucosidase. At concentrations of 1 mg/mL, the polypeptides containing Cys displayed an ABTS+· scavenging rate of higher than 85%, demonstrating a potential antioxidant activity. The structure-activity relationship between the ACE inhibitory peptides and ACE were explored using molecular docking. The results reflected that inhibitory peptides produced multiple stable hydrogen bonds, hydrophobic interactions, π-π stacking interactions, and salt bridges with ACE amino acid residues, thereby improving the inhibitory effects exerted on ACE. -
表 1 PHP1、PHP2及其类似物的序列
Table 1. Sequence of PHP1, PHP2 and their analogues
名称 序列 名称 序列 PHP1 Val-Val-Tyr-Pro-Trp-Thr PHP2 Thr-Lys-Thr-Tyr-Phe-Pro-His-Phe PHP1A-1 Cys-Val-Tyr-Pro-Trp-Thr PHP2A-1 Thr-Lys-Leu-Tyr-Phe-Pro-His-Phe PHP1A-2 Val-Cys-Tyr-Pro-Trp-Thr PHP2A-2 Ile-Lys-Leu-Tyr-Phe-Pro-His-Phe PHP1A-3 Val-Val-Tyr-Pro-Trp-Phe PHP2A-3 Ala-Lys-Leu-Tyr-Phe-Pro-His-Phe PHP1A-4 Cys-Val-Tyr-Pro-Trp-Phe PHP2A-4 Ile-Ala-Leu-Tyr-Phe-Pro-His-Phe PHP1A-5 Val-Cys-Tyr-Pro-Trp-Phe PHP2A-5 Ala-Ala-Leu-Tyr-Phe-Pro-His-Phe PHP1A-6 Gly-Val-Tyr-Pro-Trp-Phe PHP2A-6 Ala-Ala-Leu-Tyr-Phe-Pro-Leu-Phe PHP1A-7 Val-Ala-Tyr-Pro-Trp-Phe PHP2A-7 Ala-Lys-Ala-Tyr-Phe-Pro-Arg-Phe − − PHP2A-8 Gly-Lys-Leu-Tyr-Phe-Pro-His-Phe − − PHP2A-9 Ile-Gly-Leu-Tyr-Phe-Pro-His-Phe − − PHP2A-10 Gly-Gly-Leu-Tyr-Phe-Pro-His-Phe − − PHP2A-11 Gly-Gly-Leu-Tyr-Phe-Pro-Leu-Phe − − PHP2A-12 Gly-Lys-Gly-Tyr-Phe-Pro-Arg-Phe 注:PHP1/2A(Analogue of Pig Hemoglobin Peptide 1/2,猪血红蛋白源多肽1/2的类似物)。 表 2 PHP1、PHP2及其类似物的理化性质
Table 2. Physicochemical properties of PHP1, PHP2 and their analogues
名称 pI GRAVY 净电荷 脂肪族氨基酸指数 非稳定性指数 半衰期(h) 生物活性预测分数 mammalian reticulocytes Yeast cell E.coli PHP1 5.49 0.650 0 96.67 −13.52 100 >20 >10 0.50 PHP1A-1 5.52 0.367 0 48.33 −26.08 1.2 >20 >10 0.82 PHP1A-2 5.49 0.367 0 48.33 −0.95 100 >20 >10 0.82 PHP1A-3 5.49 1.233 0 96.67 11.53 100 >20 >10 0.83 PHP1A-4 5.52 0.950 0 48.33 −1.30 1.2 >20 >10 0.91 PHP1A-5 5.49 0.950 0 48.33 24.10 100 >20 >10 0.98 PHP1A-6 5.52 0.467 0 48.33 11.53 30 >20 >10 0.98 PHP1A-7 5.49 0.833 0 65.00 24.10 100 >20 >10 0.97 PHP2 8.29 −0.725 +1 0.00 19.86 7.2 >20 >10 0.60 PHP2A-1 8.29 −0.163 +1 48.75 9.25 7.2 >20 >10 0.76 PHP2A-2 8.60 0.487 +1 97.50 −1.36 20 0.5 >10 0.87 PHP2A-3 8.64 0.150 +1 61.25 9.25 4.4 >20 >10 0.92 PHP2A-4 6.74 1.200 0 110.00 19.86 20 0.5 >10 0.92 PHP2A-5 6.78 0.863 0 73.75 19.86 4.4 >20 >10 0.95 PHP2A-6 5.57 1.738 0 122.50 32.83 4.4 >20 >10 0.97 PHP2A-7 9.99 −0.263 +2 25.00 23.40 4.4 >20 >10 0.95 PHP2A-8 8.60 −0.125 +1 48.75 −1.36 30 >20 >10 0.94 PHP2A-9 6.74 0.925 0 97.50 19.86 20 0.5 >10 0.93 PHP2A-10 6.74 0.312 0 48.75 35.29 30 >20 >10 0.96 PHP2A-11 5.52 1.188 0 97.50 48.25 30 >20 >10 0.98 PHP2A-12 9.99 −0.812 +2 0.00 −8.44 30 >20 >10 0.96 注:mammalian reticulocytes:哺乳动物的红细胞;Yeast cell:酵母细胞;E.coli:大肠杆菌。 表 3 合成肽的生物活性
Table 3. Bioactivity of synthetic peptides
名称 (MW m/z) RP-HPLC ACE IC50
(μmol/L)α-Glucosidase IC50
(μmol/L)ABTS+·清除率
(%)Calcd. [M+H]+ Rt(min) Purity(%) PHP1 763.39 764.4 5.559 98.31 6.34±0.37 8897.09±1.79 5.80±0.51 PHP1A-1 767.33 768.3 5.251 98.67 20.25±5.54** 116.03±1.09** 95.89±0.43** PHP1A-2 767.33 768.2 5.227 99.73 36.66±7.90** 88.87±1.74** 89.76±1.22** PHP1A-3 809.41 810.4 7.360 99.67 8.48±0.78 3.09±0.43** 8.18±0.69 PHP1A-4 813.35 814.5 7.391 97.97 8.64±1.92 104.46±1.79** 94.00±0.28** PHP1A-5 813.35 814.4 7.329 98.95 13.34±2.28 54.49±2.39** 85.53±4.26** PHP1A-6 767.36 768.4 6.984 99.84 3.87±0.21* 331.95±2.60** 10.10±0.59** PHP1A-7 781.38 782.4 6.483 99.57 9.67±0.42 9.51±0.25** 12.00±1.21** PHP2 1039.51 1040.5 10.169 98.04 8.64±0.14 296.79±2.14 27.73±0.37 PHP2A-1 1051.55 1052.2 6.533 98.14 9.48±1.06 1889.59±1.30** 23.28±1.11** PHP2A-2 1063.59 1064.2 8.474 95.80 40.06±2.84** 1872.49±1.12** 25.73±0.50* PHP2A-3 1021.54 1022.4 6.572 98.49 3.33±0.34** 306.32±3.76** 25.53±1.30* PHP2A-4 1006.53 1007.5 9.817 97.43 2.86±0.46** 278.23±1.71** 28.54±0.69 PHP2A-5 964.48 965.1 8.370 98.35 58.11±2.30** 21.24±2.32** 35.43±1.52** PHP2A-6 940.51 941.5 12.752 98.23 33.93±2.87** 5.58±0.88** 37.62±0.28** PHP2A-7 998.53 999.1 10.995 98.15 4.58±0.57* 7949.34±0.96** 18.47±1.47** PHP2A-8 1007.52 1008.4 6.272 98.48 15.18±2.72** 957.91±1.71** 23.14±0.60** PHP2A-9 992.51 993.4 9.866 98.11 25.13±1.86** 90.82±1.27** 30.44±1.15** PHP2A-10 936.45 937.3 8.192 97.73 8.22±1.02 1022.05±1.97** 28.60±0.84 PHP2A-11 912.47 913.2 10.339 99.29 11.08±1.47 2.35±0.27** 29.88±1.32* PHP2A-12 970.50 971.3 4.134 99.87 24.94±2.71** 3.98±0.25** 21.49±1.73** 注:Rt为多肽在液相分析图中的保留时间;PHP1系列设计肽与PHP1比较,PHP2系列设计肽与PHP2比较,“*”代表差异显著(0.01<P<0.05),“**”代表差异极显著(P<0.01)。 -
[1] WEI D, FAN W L, XU Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis[J]. Food Chemistry,2021,353(15):129521. [2] MELO J A F, DALPIAZ P L M, ESCOUTO L D S, et al. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR[J]. Life Sciences,2020,257(15):118138. [3] XU Z Q, WU C P, SUN W D, et al. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE[J]. Food Chemistry,2021,345(30):128855. [4] FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea Titin[J]. Food Science and Human Wellness,2020,9(3):257−263. doi: 10.1016/j.fshw.2020.04.001 [5] LI M Y, FAN W L, XU Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste[J]. LWT,2021,151(3):112221. [6] GIACOMETTI C F, PARRA B D, DOMINGUES G B, et al. High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity[J]. Food Chemistry,2020,333(6):127482. [7] GONZALEZ A J A, CABRERA D Z, MATALLANA A M, et al. In-silico design of new enalapril analogs (ACE inhibitors) using QSAR and molecular docking models[J]. Informatics in Medicine Unlocked,2020,19(13):100336. [8] ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. Journal of Food Science and Technology,2021,58(12):4567−4577. doi: 10.1007/s13197-020-04944-y [9] GUO Y T, WANG K, WU B G, et al. Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect[J]. Journal of Functional Foods,2020,64(9):103584. [10] CHAMATA Y, WATSON K A, JAUREGI P. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors[J]. International Journal of Molecular Sciences,2020,21(3):864. doi: 10.3390/ijms21030864 [11] ZOHRAB F, ASKARIAN S, JALILI A, et al. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily[J]. International Journal of Peptide Research and Therapeutics,2019,25(1):39−48. doi: 10.1007/s10989-018-9723-8 [12] SU L Y, XIN H Y, LIU Y L, et al. Anticancer bioactive peptide (ACBP) inhibits gastric cancer cells by upregulating growth arrest and DNA damage-inducible gene 45A (GADD45A)[J]. Tumor Biology,2014,35(10):10051−10056. doi: 10.1007/s13277-014-2272-7 [13] MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. In vitro and in silico studies of novel synthetic ACE-inhibitory peptides derived from Saccharomyces cerevisiae protein hydrolysate[J]. Bioorganic Chemistry,2019,87(1):647−654. [14] ACHARYA K R, STURROCK E D, RIORDAN J F, et al. Ace revisited: A new target for structure-based drug design[J]. Nature Reviews Drug Discovery,2003,2(11):891−902. doi: 10.1038/nrd1227 [15] WU J, ALUKO R E, NAKAI S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides[J]. Journal of Agricultural and Food Chemistry,2006,54(3):732−738. doi: 10.1021/jf051263l [16] KO J Y, KANG N, LEE J H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent[J]. Journal of Agricultural and Food Chemistry,2016,51(4):535−541. [17] GUERRERO L, CASTILLO J, QUIÑONES M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies[J]. PLoS One,2012,7(11):e49493. doi: 10.1371/journal.pone.0049493 [18] ZHANG P, CHANG C, LIU H J, et al. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa[J]. Journal of Functional Foods,2020,65(5):103751. [19] GARCÍA M P, MARTÍN M M, ANGELES B M, et al. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities[J]. Food Chemistry,2017,221(26):464−472. [20] MIRZAEI M, MIRDAMADI S, SAFAVI M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure,2020,1213(5):128199. [21] ASHOK A, BRIJESHA N, APARNA H S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity[J]. European Journal of Medicinal Chemistry,2019,180(15):99−110. [22] DENG X, MAI R Y, ZHANG C Y, et al. Synthesis and pharmacological evaluation of a novel synthetic peptide CWHTH based on the styela clava-derived natural peptide LWHTH with improved antioxidant, hepatoprotective and angiotensin converting enzyme inhibitory activities[J]. International Journal of Pharmaceutics,2021,605(10):120852. [23] AMSO Z, KOWALCZYK R, WATSON M, et al. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis[J]. Organic & Biomolecular Chemistry,2016,14(39):9225−9238. [24] YU Y K, HU J E, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides,2006,27(11):2950−2956. doi: 10.1016/j.peptides.2006.05.025 [25] HUI L X, LI Y H, EN H J, et al. Synthesis and biological activities of hemoglobin fragments[J]. Chemical Research in Chinese Universities,2008,29(3):542−545. [26] GASTEIGER E, HOOGLAND C, GATTIKER A, et al. Protein identification and analysis tools on the ExPASy server[M]. Paterson: Humana Press, 2005: 571-607. [27] KUMAR R, CHAUDHARY K, SINGH C J, et al. An in silico platform for predicting, screening and designing of antihypertensive peptides[J]. Scientific Reports,2015,5(1):12512. doi: 10.1038/srep12512 [28] MOONEY C, HASLAM N J, POLLASTRI G, et al. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity[J]. PloS One,2012,7(10):e45012. doi: 10.1371/journal.pone.0045012 [29] ZHANG Y, HE S D, RUI X, et al. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase[J]. Food Chemistry,2022,367(1):130695. [30] KAISER E, COLESCOTT R L, BOSSINGER C D, et al. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides[J]. Analytical Biochemistry,1970,34(2):595−598. doi: 10.1016/0003-2697(70)90146-6 [31] 骆琳, 丁青芝, 马海乐. 96孔板法用于高通量血管紧张素转化酶抑制剂体外检测[J]. 分析化学,2012,40(1):129−134. [LUO L, DING Q Z, MA H L. Establishment of in vitro high-throughputactivity detection method for angiotensin converting enzyme inhibitors based on 96 well plates[J]. Chinese Journal of Analytical Chemistry,2012,40(1):129−134. [32] XU H W, DAI G F, LIU G Z, et al. Synthesis of andrographolide derivatives: A new family of α-glucosidase inhibitors[J]. Bioorganic & Medicinal Chemistry,2007,15(12):4247−4255. [33] LIU C, LIU J B, WANG M Q, et al. Construction and application of membrane-bound angiotensin-I converting enzyme system: A new approach for the evaluation of angiotensin-I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2020,68(20):5723−5731. doi: 10.1021/acs.jafc.9b08082 [34] HAO L, GAO X C, ZHOU T Y, et al. Angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity of umami peptides after in vitro gastrointestinal digestion[J]. Journal of Agricultural and Food Chemistry,2020,68(31):8232−8241. doi: 10.1021/acs.jafc.0c02797 [35] 林凯. 基于结构信息学定向水解曲拉酪蛋白及新型降压肽的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020LIN K. Screening of novel antihypertensive peptides by directed hydrolysis in Qula casein based on the structural informatics[D]. Harbin: Harbin Institute of Technology, 2020 [36] IBRAHIM H R, AHMED A S, MIYATA T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk[J]. Journal of Advanced Research,2017,8(1):63−71. doi: 10.1016/j.jare.2016.12.002 [37] GUANG C, PHILLIPS R D. Plant food-derived angiotensin I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5113−5120. doi: 10.1021/jf900494d [38] MAESTRI E, PAVLICEVIC M, MONTORSI M, et al. Meta-analysis for correlating structure of bioactive peptides in foods of animal origin with regard to effect and stability[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(1):3−30. doi: 10.1111/1541-4337.12402 [39] IBRAHIM M A, BESTER M J, NEITZ A W H, et al. Structural properties of bioactive peptides with α-glucosidase inhibitory activity[J]. Chemical Biology & Drug Design,2018,91(2):370−379. [40] MUDGIL P, KAMAL H, PRIYA K B, et al. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides[J]. Food Chemistry,2021,353(15):129374. [41] ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT,2022,156(15):113062. [42] ARISE R O, IDI J J, MIC B I M, et al. In vitro angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L. ) M. Roem seed protein hydrolysate[J]. Heliyon,2019,5(5):e01634. doi: 10.1016/j.heliyon.2019.e01634 [43] ZHENG L, ZHAO Y J, DONG H Z, et al. Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues[J]. Journal of Functional Foods,2016,21(13):485−496. [44] MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences[J]. LWT,2020,130(26):109710. -