• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

多肽类ACE抑制剂的设计合成及生物活性

周佳琪 马春燕 李晓晖

周佳琪,马春燕,李晓晖. 多肽类ACE抑制剂的设计合成及生物活性[J]. 食品工业科技,2022,43(23):26−34. doi:  10.13386/j.issn1002-0306.2022030117
引用本文: 周佳琪,马春燕,李晓晖. 多肽类ACE抑制剂的设计合成及生物活性[J]. 食品工业科技,2022,43(23):26−34. doi:  10.13386/j.issn1002-0306.2022030117
ZHOU Jiaqi, MA Chunyan, LI Xiaohui. Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors[J]. Science and Technology of Food Industry, 2022, 43(23): 26−34. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030117
Citation: ZHOU Jiaqi, MA Chunyan, LI Xiaohui. Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors[J]. Science and Technology of Food Industry, 2022, 43(23): 26−34. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022030117

多肽类ACE抑制剂的设计合成及生物活性

doi: 10.13386/j.issn1002-0306.2022030117
详细信息
    作者简介:

    周佳琪(1997−),女,硕士研究生,研究方向:功能性多肽药物的设计与合成,E-mail:jqzhoudut@163.com

    通讯作者:

    李晓晖(1964−),女,博士,教授,研究方向:多肽药物研究,E-mail:lxhxh@dlut.edu.cn

  • 中图分类号: TS201.1

Design, Synthesis and Bioactivity of Polypeptide ACE Inhibitors

  • 摘要: 本研究以血管紧张素I转化酶(angiotensin converting enzyme, ACE)抑制肽PHP1和PHP2为研究母肽,通过替换氨基酸残基改变目标多肽的疏水性、带电性等因素,利用生物信息学工具评估多肽潜在的生物活性,设计了19个多肽类似物。采用多肽固相合成法合成目的多肽类似物,并进行体外生物活性检测。结果显示多肽类似物均具有较高的ACE抑制活性,其中,PHP1A-6(IC50=3.87 μmol/L)、PHP2A-3(IC50=3.33 μmol/L)、PHP2A-4(IC50=2.86 μmol/L)和PHP2A-7(IC50=4.58 μmol/L)的ACE抑制活性最高,较母肽有显著提高(P<0.05),PHP1A-3、PHP1A-4、PHP1A-7、PHP2A-1和PHP2A-10具有同母肽相当的抑制活性,IC50<10 μmol/L。绝大部分多肽类似物的α-葡萄糖苷酶抑制活性与母肽相比均有明显提高,PHP1A-3(IC50=3.09 μmol/L)、PHP1A-7(IC50=9.51 μmol/L)、PHP2A-6(IC50=5.58 μmol/L)、PHP2A-11(IC50=2.35 μmol/L)和PHP2A-12(IC50=3.98 μmol/L)的活性最高。其中,PHP1A-3和PHP1A-7具备较强的ACE抑制和α-葡萄糖苷酶抑制双重活性。含Cys的多肽类似物在1 mg/mL浓度下,ABTS + · 清除率均在85%以上,具备潜在的抗氧化活性。分子对接研究了ACE抑制肽与ACE的构效关系,表明抑制肽可以与ACE的氨基酸残基产生多个稳定的氢键、疏水相互作用、π-π堆积及盐桥,增加了对ACE的抑制作用。
  • 图  1  ACE与多肽类似物的复合物模型

    Figure  1.  The models of ACE in complex with the peptide analogues

    表  1  PHP1、PHP2及其类似物的序列

    Table  1.   Sequence of PHP1, PHP2 and their analogues

    名称序列名称序列
    PHP1Val-Val-Tyr-Pro-Trp-ThrPHP2Thr-Lys-Thr-Tyr-Phe-Pro-His-Phe
    PHP1A-1Cys-Val-Tyr-Pro-Trp-ThrPHP2A-1Thr-Lys-Leu-Tyr-Phe-Pro-His-Phe
    PHP1A-2Val-Cys-Tyr-Pro-Trp-ThrPHP2A-2Ile-Lys-Leu-Tyr-Phe-Pro-His-Phe
    PHP1A-3Val-Val-Tyr-Pro-Trp-PhePHP2A-3Ala-Lys-Leu-Tyr-Phe-Pro-His-Phe
    PHP1A-4Cys-Val-Tyr-Pro-Trp-PhePHP2A-4Ile-Ala-Leu-Tyr-Phe-Pro-His-Phe
    PHP1A-5Val-Cys-Tyr-Pro-Trp-PhePHP2A-5Ala-Ala-Leu-Tyr-Phe-Pro-His-Phe
    PHP1A-6Gly-Val-Tyr-Pro-Trp-PhePHP2A-6Ala-Ala-Leu-Tyr-Phe-Pro-Leu-Phe
    PHP1A-7Val-Ala-Tyr-Pro-Trp-PhePHP2A-7Ala-Lys-Ala-Tyr-Phe-Pro-Arg-Phe
    PHP2A-8Gly-Lys-Leu-Tyr-Phe-Pro-His-Phe
    PHP2A-9Ile-Gly-Leu-Tyr-Phe-Pro-His-Phe
    PHP2A-10Gly-Gly-Leu-Tyr-Phe-Pro-His-Phe
    PHP2A-11Gly-Gly-Leu-Tyr-Phe-Pro-Leu-Phe
    PHP2A-12Gly-Lys-Gly-Tyr-Phe-Pro-Arg-Phe
    注:PHP1/2A(Analogue of Pig Hemoglobin Peptide 1/2,猪血红蛋白源多肽1/2的类似物)。
    下载: 导出CSV

    表  2  PHP1、PHP2及其类似物的理化性质

    Table  2.   Physicochemical properties of PHP1, PHP2 and their analogues

    名称pIGRAVY净电荷脂肪族氨基酸指数非稳定性指数半衰期(h)生物活性预测分数
    mammalian reticulocytesYeast cellE.coli
    PHP15.490.650096.67−13.52100>20>100.50
    PHP1A-15.520.367048.33−26.081.2>20>100.82
    PHP1A-25.490.367048.33−0.95100>20>100.82
    PHP1A-35.491.233096.6711.53100>20>100.83
    PHP1A-45.520.950048.33−1.301.2>20>100.91
    PHP1A-55.490.950048.3324.10100>20>100.98
    PHP1A-65.520.467048.3311.5330>20>100.98
    PHP1A-75.490.833065.0024.10100>20>100.97
    PHP28.29−0.725+10.0019.867.2>20>100.60
    PHP2A-18.29−0.163+148.759.257.2>20>100.76
    PHP2A-28.600.487+197.50−1.36200.5>100.87
    PHP2A-38.640.150+161.259.254.4>20>100.92
    PHP2A-46.741.2000110.0019.86200.5>100.92
    PHP2A-56.780.863073.7519.864.4>20>100.95
    PHP2A-65.571.7380122.5032.834.4>20>100.97
    PHP2A-79.99−0.263+225.0023.404.4>20>100.95
    PHP2A-88.60−0.125+148.75−1.3630>20>100.94
    PHP2A-96.740.925097.5019.86200.5>100.93
    PHP2A-106.740.312048.7535.2930>20>100.96
    PHP2A-115.521.188097.5048.2530>20>100.98
    PHP2A-129.99−0.812+20.00−8.4430>20>100.96
    注:mammalian reticulocytes:哺乳动物的红细胞;Yeast cell:酵母细胞;E.coli:大肠杆菌。
    下载: 导出CSV

    表  3  合成肽的生物活性

    Table  3.   Bioactivity of synthetic peptides

    名称(MW m/z)RP-HPLCACE IC50
    (μmol/L)
    α-Glucosidase IC50
    (μmol/L)
    ABTS+·清除率
    (%)
    Calcd.[M+H]+Rt(min)Purity(%)
    PHP1763.39764.45.55998.316.34±0.378897.09±1.795.80±0.51
    PHP1A-1767.33768.35.25198.6720.25±5.54**116.03±1.09**95.89±0.43**
    PHP1A-2767.33768.25.22799.7336.66±7.90**88.87±1.74**89.76±1.22**
    PHP1A-3809.41810.47.36099.678.48±0.783.09±0.43**8.18±0.69
    PHP1A-4813.35814.57.39197.978.64±1.92104.46±1.79**94.00±0.28**
    PHP1A-5813.35814.47.32998.9513.34±2.2854.49±2.39**85.53±4.26**
    PHP1A-6767.36768.46.98499.843.87±0.21*331.95±2.60**10.10±0.59**
    PHP1A-7781.38782.46.48399.579.67±0.429.51±0.25**12.00±1.21**
    PHP21039.511040.510.16998.048.64±0.14296.79±2.1427.73±0.37
    PHP2A-11051.551052.26.53398.149.48±1.061889.59±1.30**23.28±1.11**
    PHP2A-21063.591064.28.47495.8040.06±2.84**1872.49±1.12**25.73±0.50*
    PHP2A-31021.541022.46.57298.493.33±0.34**306.32±3.76**25.53±1.30*
    PHP2A-41006.531007.59.81797.432.86±0.46**278.23±1.71**28.54±0.69
    PHP2A-5964.48965.18.37098.3558.11±2.30**21.24±2.32**35.43±1.52**
    PHP2A-6940.51941.512.75298.2333.93±2.87**5.58±0.88**37.62±0.28**
    PHP2A-7998.53999.110.99598.154.58±0.57*7949.34±0.96**18.47±1.47**
    PHP2A-81007.521008.46.27298.4815.18±2.72**957.91±1.71**23.14±0.60**
    PHP2A-9992.51993.49.86698.1125.13±1.86**90.82±1.27**30.44±1.15**
    PHP2A-10936.45937.38.19297.738.22±1.021022.05±1.97**28.60±0.84
    PHP2A-11912.47913.210.33999.2911.08±1.472.35±0.27**29.88±1.32*
    PHP2A-12970.50971.34.13499.8724.94±2.71**3.98±0.25**21.49±1.73**
    注:Rt为多肽在液相分析图中的保留时间;PHP1系列设计肽与PHP1比较,PHP2系列设计肽与PHP2比较,“*”代表差异显著(0.01<P<0.05),“**”代表差异极显著(P<0.01)。
    下载: 导出CSV
  • [1] WEI D, FAN W L, XU Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis[J]. Food Chemistry,2021,353(15):129521.
    [2] MELO J A F, DALPIAZ P L M, ESCOUTO L D S, et al. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR[J]. Life Sciences,2020,257(15):118138.
    [3] XU Z Q, WU C P, SUN W D, et al. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE[J]. Food Chemistry,2021,345(30):128855.
    [4] FAN Y, YU Z P, ZHAO W Z, et al. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea Titin[J]. Food Science and Human Wellness,2020,9(3):257−263. doi:  10.1016/j.fshw.2020.04.001
    [5] LI M Y, FAN W L, XU Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste[J]. LWT,2021,151(3):112221.
    [6] GIACOMETTI C F, PARRA B D, DOMINGUES G B, et al. High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity[J]. Food Chemistry,2020,333(6):127482.
    [7] GONZALEZ A J A, CABRERA D Z, MATALLANA A M, et al. In-silico design of new enalapril analogs (ACE inhibitors) using QSAR and molecular docking models[J]. Informatics in Medicine Unlocked,2020,19(13):100336.
    [8] ISHAK N H, SHAIK M I, YELLAPU N K, et al. Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus macrosoma) protein hydrolysate[J]. Journal of Food Science and Technology,2021,58(12):4567−4577. doi:  10.1007/s13197-020-04944-y
    [9] GUO Y T, WANG K, WU B G, et al. Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect[J]. Journal of Functional Foods,2020,64(9):103584.
    [10] CHAMATA Y, WATSON K A, JAUREGI P. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors[J]. International Journal of Molecular Sciences,2020,21(3):864. doi:  10.3390/ijms21030864
    [11] ZOHRAB F, ASKARIAN S, JALILI A, et al. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily[J]. International Journal of Peptide Research and Therapeutics,2019,25(1):39−48. doi:  10.1007/s10989-018-9723-8
    [12] SU L Y, XIN H Y, LIU Y L, et al. Anticancer bioactive peptide (ACBP) inhibits gastric cancer cells by upregulating growth arrest and DNA damage-inducible gene 45A (GADD45A)[J]. Tumor Biology,2014,35(10):10051−10056. doi:  10.1007/s13277-014-2272-7
    [13] MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. In vitro and in silico studies of novel synthetic ACE-inhibitory peptides derived from Saccharomyces cerevisiae protein hydrolysate[J]. Bioorganic Chemistry,2019,87(1):647−654.
    [14] ACHARYA K R, STURROCK E D, RIORDAN J F, et al. Ace revisited: A new target for structure-based drug design[J]. Nature Reviews Drug Discovery,2003,2(11):891−902. doi:  10.1038/nrd1227
    [15] WU J, ALUKO R E, NAKAI S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides[J]. Journal of Agricultural and Food Chemistry,2006,54(3):732−738. doi:  10.1021/jf051263l
    [16] KO J Y, KANG N, LEE J H, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent[J]. Journal of Agricultural and Food Chemistry,2016,51(4):535−541.
    [17] GUERRERO L, CASTILLO J, QUIÑONES M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies[J]. PLoS One,2012,7(11):e49493. doi:  10.1371/journal.pone.0049493
    [18] ZHANG P, CHANG C, LIU H J, et al. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa[J]. Journal of Functional Foods,2020,65(5):103751.
    [19] GARCÍA M P, MARTÍN M M, ANGELES B M, et al. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities[J]. Food Chemistry,2017,221(26):464−472.
    [20] MIRZAEI M, MIRDAMADI S, SAFAVI M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure,2020,1213(5):128199.
    [21] ASHOK A, BRIJESHA N, APARNA H S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity[J]. European Journal of Medicinal Chemistry,2019,180(15):99−110.
    [22] DENG X, MAI R Y, ZHANG C Y, et al. Synthesis and pharmacological evaluation of a novel synthetic peptide CWHTH based on the styela clava-derived natural peptide LWHTH with improved antioxidant, hepatoprotective and angiotensin converting enzyme inhibitory activities[J]. International Journal of Pharmaceutics,2021,605(10):120852.
    [23] AMSO Z, KOWALCZYK R, WATSON M, et al. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis[J]. Organic & Biomolecular Chemistry,2016,14(39):9225−9238.
    [24] YU Y K, HU J E, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides,2006,27(11):2950−2956. doi:  10.1016/j.peptides.2006.05.025
    [25] HUI L X, LI Y H, EN H J, et al. Synthesis and biological activities of hemoglobin fragments[J]. Chemical Research in Chinese Universities,2008,29(3):542−545.
    [26] GASTEIGER E, HOOGLAND C, GATTIKER A, et al. Protein identification and analysis tools on the ExPASy server[M]. Paterson: Humana Press, 2005: 571-607.
    [27] KUMAR R, CHAUDHARY K, SINGH C J, et al. An in silico platform for predicting, screening and designing of antihypertensive peptides[J]. Scientific Reports,2015,5(1):12512. doi:  10.1038/srep12512
    [28] MOONEY C, HASLAM N J, POLLASTRI G, et al. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity[J]. PloS One,2012,7(10):e45012. doi:  10.1371/journal.pone.0045012
    [29] ZHANG Y, HE S D, RUI X, et al. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase[J]. Food Chemistry,2022,367(1):130695.
    [30] KAISER E, COLESCOTT R L, BOSSINGER C D, et al. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides[J]. Analytical Biochemistry,1970,34(2):595−598. doi:  10.1016/0003-2697(70)90146-6
    [31] 骆琳, 丁青芝, 马海乐. 96孔板法用于高通量血管紧张素转化酶抑制剂体外检测[J]. 分析化学,2012,40(1):129−134. [LUO L, DING Q Z, MA H L. Establishment of in vitro high-throughputactivity detection method for angiotensin converting enzyme inhibitors based on 96 well plates[J]. Chinese Journal of Analytical Chemistry,2012,40(1):129−134.
    [32] XU H W, DAI G F, LIU G Z, et al. Synthesis of andrographolide derivatives: A new family of α-glucosidase inhibitors[J]. Bioorganic & Medicinal Chemistry,2007,15(12):4247−4255.
    [33] LIU C, LIU J B, WANG M Q, et al. Construction and application of membrane-bound angiotensin-I converting enzyme system: A new approach for the evaluation of angiotensin-I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2020,68(20):5723−5731. doi:  10.1021/acs.jafc.9b08082
    [34] HAO L, GAO X C, ZHOU T Y, et al. Angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity of umami peptides after in vitro gastrointestinal digestion[J]. Journal of Agricultural and Food Chemistry,2020,68(31):8232−8241. doi:  10.1021/acs.jafc.0c02797
    [35] 林凯. 基于结构信息学定向水解曲拉酪蛋白及新型降压肽的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020

    LIN K. Screening of novel antihypertensive peptides by directed hydrolysis in Qula casein based on the structural informatics[D]. Harbin: Harbin Institute of Technology, 2020
    [36] IBRAHIM H R, AHMED A S, MIYATA T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk[J]. Journal of Advanced Research,2017,8(1):63−71. doi:  10.1016/j.jare.2016.12.002
    [37] GUANG C, PHILLIPS R D. Plant food-derived angiotensin I converting enzyme inhibitory peptides[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5113−5120. doi:  10.1021/jf900494d
    [38] MAESTRI E, PAVLICEVIC M, MONTORSI M, et al. Meta-analysis for correlating structure of bioactive peptides in foods of animal origin with regard to effect and stability[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(1):3−30. doi:  10.1111/1541-4337.12402
    [39] IBRAHIM M A, BESTER M J, NEITZ A W H, et al. Structural properties of bioactive peptides with α-glucosidase inhibitory activity[J]. Chemical Biology & Drug Design,2018,91(2):370−379.
    [40] MUDGIL P, KAMAL H, PRIYA K B, et al. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides[J]. Food Chemistry,2021,353(15):129374.
    [41] ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT,2022,156(15):113062.
    [42] ARISE R O, IDI J J, MIC B I M, et al. In vitro angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L. ) M. Roem seed protein hydrolysate[J]. Heliyon,2019,5(5):e01634. doi:  10.1016/j.heliyon.2019.e01634
    [43] ZHENG L, ZHAO Y J, DONG H Z, et al. Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues[J]. Journal of Functional Foods,2016,21(13):485−496.
    [44] MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences[J]. LWT,2020,130(26):109710.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  25
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回