• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

多光谱学与分子模拟技术表征甜菜苷与乳清蛋白的相互作用

胡婷 耿勤 付敏 陈军 何雪梅 孙健 戴涛涛

胡婷,耿勤,付敏,等. 多光谱学与分子模拟技术表征甜菜苷与乳清蛋白的相互作用[J]. 食品工业科技,2022,43(23):86−94. doi:  10.13386/j.issn1002-0306.2022020243
引用本文: 胡婷,耿勤,付敏,等. 多光谱学与分子模拟技术表征甜菜苷与乳清蛋白的相互作用[J]. 食品工业科技,2022,43(23):86−94. doi:  10.13386/j.issn1002-0306.2022020243
HU Ting, GENG Qin, FU Min, et al. The Interaction between Betanin and Whey Protein: Based on Multi-spectroscopy and Molecular Simulation[J]. Science and Technology of Food Industry, 2022, 43(23): 86−94. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020243
Citation: HU Ting, GENG Qin, FU Min, et al. The Interaction between Betanin and Whey Protein: Based on Multi-spectroscopy and Molecular Simulation[J]. Science and Technology of Food Industry, 2022, 43(23): 86−94. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020243

多光谱学与分子模拟技术表征甜菜苷与乳清蛋白的相互作用

doi: 10.13386/j.issn1002-0306.2022020243
基金项目: 广西农业科学院博士后基金项目资助(桂农科博2020037);中国博士后基金项目资助(2020M6832211)。
详细信息
    作者简介:

    胡婷(1998−),女,硕士研究生,研究方向:食品组分相互作用,E-mail:huting_1998@163.com

    通讯作者:

    戴涛涛(1991−),男,博士,研究方向:农副产品综合利用,E-mail:ncubamboo@163.com

  • 中图分类号: Q513

The Interaction between Betanin and Whey Protein: Based on Multi-spectroscopy and Molecular Simulation

  • 摘要: 为研究甜菜苷(Betanin)与乳清分离蛋白(Whey protein isolate, WPI)的相互作用及乳清分离蛋白对甜菜苷热稳定的影响,本文通过自组装法构建了WPI-Betanin复合物,利用紫外可见光谱验证了复合物的形成,并通过荧光光谱和圆二色谱探究了复合物形成的作用机制及蛋白质结构的变化,最后采用分子模拟技术将复合物相互作用可视化。结果表明,甜菜苷与乳清分离蛋白主要通过氢键与范德华力形成复合物,结合位点数约为1。复合物的形成导致蛋白的浊度增加,表面疏水性降低,内源荧光猝灭,且猝灭机制为静态猝灭,常温下的猝灭常数为1.78×103 L/mol。相互作用改变了乳清分离蛋白中色氨酸、酪氨酸的微环境和二级结构含量,使甜菜苷在80 ℃下加热1 h的保留率从6.17%提高到27.26%。本研究为功能性蛋白色素复合物的应用开发和甜菜苷的护色提供了理论基础。
  • 图  1  不同比例甜菜苷对乳清分离蛋白浊度的影响

    Figure  1.  Effect of different proportions of betanin on turbidity of WPI

    注:图中不同小写字母表示差异显著(P<0.05)。

    图  2  不同浓度甜菜苷对乳清分离蛋白紫外吸收的影响

    Figure  2.  Ultraviolet spectra of WPI treated by betanin with different betanin concentrations

    图  3  不同浓度乳清分离蛋白的荧光强度和不同浓度甜菜苷对乳清分离蛋白的荧光猝灭

    Figure  3.  Fluorescence intensity of WPI at different concentrations and fluorescence quenching of WPI at different concentrations of betanin

    注:A:不同浓度乳清分离蛋白的荧光强度;B:298 K;C:304 K;D:310 K。

    图  4  乳清分离蛋白-甜菜苷在298、304、310 K温度下Stern-Volmer拟合(A)和静态猝灭方程的拟合(B)

    Figure  4.  Stern-Volmer fitting (A) and static quenching equation fitting (B) at 298, 304 and 310 K for WPI and betanin

    图  5  不同浓度甜菜苷对乳清分离蛋白表面疏水性的影响

    Figure  5.  Effect of different concentrations of betanin on surface hydrophobicity of WPI

    注:a、b、c、d、e、f、g、h、i分别表示甜菜苷的浓度为0、0.025、0.05、0.075、0.1、0.125、0.15、0.175、0.2 mg/mL。

    图  6  不同浓度甜菜苷对乳清分离蛋白圆二色谱的影响

    Figure  6.  Effect of different concentrations of betanin on circular dichroism spectrum of WPI

    7  甜菜苷分别与(A)α-乳白蛋白(1NFZ)、(B)牛血清蛋白(3VO3)、(C)乳铁蛋白(1BLF)、(D)β-乳球蛋白(3NPO)的分子对接图

    7.  Molecular docking of betanin with (A) α-lactalbumin (1NFZ), (B) bovine serum protein (3VO3), (C) lactoferrin (1BLF), and (D) β -lactoglobulin (3NPO)

    图  8  WPI-Betanin复合物加热过程中甜菜苷保留率的变化

    Figure  8.  Change of retention rate of betanin in WPI-Betanin complex during heating

    表  1  乳清分离蛋白与甜菜苷的结合参数

    Table  1.   Binding parameters of WPI and betanin

    温度
    (K)
    KSV
    (102·mol−1
    Kq
    (1010 L·mol−1·s−1
    nKa
    (L/mol)
    ΔH
    (kJ/mol)
    ΔS
    (J·mol−1·K−1
    ΔG
    (kJ/mol)
    2982.063.321.26±0.031783.16−18.55
    3042.263.651.13±0.03672.59−123.28−351.42−16.44
    3102.584.161.00±0.04259.81−14.34
    下载: 导出CSV

    表  2  不同浓度甜菜苷对乳清分离蛋白二级结构的影响

    Table  2.   Effects of different concentrations of betanin on secondary structure of WPI

    样品α-螺旋(%)β-折叠(%)β-转角(%)无规卷曲(%)
    空白12.531.124.431.9
    0.1 mg/mL甜菜苷10.833.624.031.6
    0.2 mg/mL 甜菜苷10.134.223.831.9
    下载: 导出CSV
  • [1] AZEREDO H M C. Betalains: Properties, sources, applications, and stability-A review[J]. International Journal of Food Science & Technology,2009,44(12):2365−2376.
    [2] ESATBEYOGLU T, WAGNER A E, SCHINI-KERTH V B, et al. Betanin a food colorant with biological activity[J]. Molecular Nutrition & Food Research,2015,59(1):36−47.
    [3] GANDIA-HERRERO F, ESCRIBANO J, GARCIA-CARMONA F. Biological activities of plant pigments betalains[J]. Critical Reviews in Food Science and Nutrition,2016,56(6):937−945. doi:  10.1080/10408398.2012.740103
    [4] TEIXEIRA DA SILVA D V, BAIAO D D S, SILVA F D O, et al. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments[J]. Molecules,2019,24:458. doi:  10.3390/molecules24030458
    [5] CHEN L Y, REMONDETTO G E, SUBIRADE M. Food protein-based materials as nutraceutical delivery systems[J]. Trends in Food Science & Technology,2006,17(5):272−283.
    [6] 汪姣玲. 乳清蛋白美拉德改性及其产物功能特性研究 [D]. 无锡: 江南大学, 2015.

    WANG J L. Study on characteristics and functional properties of Maillard reaction products from whey protein[D]. Wuxi: Jiangnan University, 2015.
    [7] 倪莹宙. 乳清分离蛋白乳状液/冷凝胶制备和消化研究 [D]. 无锡: 江南大学, 2016.

    NI Y Z. Study on the preparation and in vitro digestion of whey protein isolate emulsions/cold-set gels[D]. Wuxi: Jiangnan University, 2016.
    [8] ZHAO H S, MA Z, JING P. Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability[J]. Food Research International,2020,135:109289. doi:  10.1016/j.foodres.2020.109289
    [9] MARTÍNEZ J H, VELÁZQUEZ F, BURRIEZA H P, et al. Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity[J]. Food Hydrocolloids,2019,87:880−890. doi:  10.1016/j.foodhyd.2018.09.016
    [10] HUANG Y, LI A J, QIU C Y, et al. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions[J]. Food & Function,2017,8(9):3145−3154.
    [11] LI C H, DAI T T, CHEN J, et al. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin[J]. Food Chemistry,2021,339:128145. doi:  10.1016/j.foodchem.2020.128145
    [12] CAI X, YU J N, XU L M, et al. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic alpha-amylase[J]. Food Chemistry,2015,174:291−298. doi:  10.1016/j.foodchem.2014.10.131
    [13] DAI T T, CHEN J, MCCLEMENTS D J, et al. Protein-polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin-procyanidin dimer interactions[J]. Food & Function,2019,10(2):765−774.
    [14] DAI T T, LI R Y, LIU C M, et al. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study[J]. Food Hydrocolloids,2019,97:105234. doi:  10.1016/j.foodhyd.2019.105234
    [15] LAKOWICZ J R, WEBER G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale[J]. Biochemistry,1973,12(21):4171−4179. doi:  10.1021/bi00745a021
    [16] KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica Et Biophysica Acta,1980,624(1):13−20. doi:  10.1016/0005-2795(80)90220-2
    [17] LI Y Q, CHEN Z X, MO H Z. Effects of pulsed electric fields on physicochemical properties of soybean protein isolates[J]. LWT-Food Science and Technology,2007,40(7):1167−1175. doi:  10.1016/j.lwt.2006.08.015
    [18] 王晓霞, 聂智华, 李松波, 等. 多光谱法与分子对接法研究盐酸四环素与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2018,38(8):2468−2476. [WANG X X, NIE Z H, LI S B, et al. Study on the interaction between etracycline hydrochloride and bovine serum albumin by multispectral and molecular docking[J]. Spectroscopy and Spectral Analysis,2018,38(8):2468−2476.
    [19] LIU H, ZHANG Y, ZHANG J B, et al. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin[J]. Food Hydrocolloids,2022,124:107329. doi:  10.1016/j.foodhyd.2021.107329
    [20] DAI T T, CHEN J, LI Q, et al. Investigation the interaction between procyanidin dimer and alpha-amylase: Spectroscopic analyses and molecular docking simulation[J]. International Journal of Biological Macromolecules,2018,113:427−433. doi:  10.1016/j.ijbiomac.2018.01.189
    [21] 吴云雪, 李娟, 高晴, 等. EGCG与乳清蛋白相互作用的光谱分析[J]. 食品研究与开发,2020,41(1):7−13. [WU Y X, LI J, GAO Q, et al. Spectral analysis of the interaction between EGCG and whey protein isolate[J]. Food Research and Development,2020,41(1):7−13. doi:  10.12161/j.issn.1005-6521.2020.01.002
    [22] PESSATO T B, DE MORAIS F P R, DE CARVALHO N C, et al. Protein structure modification and allergenic properties of whey proteins upon interaction with tea and coffee phenolic compounds[J]. Journal of Functional Foods,2018,51:121−129. doi:  10.1016/j.jff.2018.10.019
    [23] JOYE I J, DAVIDOV-PARDO G, LUDESCHER R D, et al. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins[J]. Food Chemistry,2015,185:261−267. doi:  10.1016/j.foodchem.2015.03.128
    [24] ZHU J X, LI K J, WU H, et al. Multi-spectroscopic, conformational, and computational atomic-level insights into the interaction of beta-lactoglobulin with apigenin at different pH levels[J]. Food Hydrocolloids,2020,105:105810. doi:  10.1016/j.foodhyd.2020.105810
    [25] 张蕊, 吴超仪, 刘宇, 等. 分子对接和荧光光谱法研究麦角甾醇与牛血清白蛋白的相互作用[J]. 食品科学,2015,36(23):38−42. [ZHANG R, WU C Y, LIU Y, et al. Studies on the interaction of ergosterol with bovine serum albumin (BSA) by fluorescence spectroscopy and molecular docking[J]. Food Science,2015,36(23):38−42. doi:  10.7506/spkx1002-6630-201523008
    [26] ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry,1981,20:3096−3102. doi:  10.1021/bi00514a017
    [27] JIANG J, ZHANG Z P, ZHAO J, et al. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests[J]. Food Chemistry,2018,268:334−341. doi:  10.1016/j.foodchem.2018.06.015
    [28] CAO Y Y, XIONG Y L. Interaction of whey proteins with phenolic derivatives under neutral and acidic ph conditions[J]. Journal of Food Science,2017,82(2):409−419. doi:  10.1111/1750-3841.13607
    [29] FARRELL H M, WICKHAM E D, UNRUH J J, et al. Secondary structural studies of bovine caseins: Temperature dependence of beta-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization[J]. Food Hydrocolloids,2001,15(4-6):341−354. doi:  10.1016/S0268-005X(01)00080-7
    [30] GONG S X, YANG C Y, ZHANG J H, et al. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein[J]. Food Hydrocolloids,2021,111:106223. doi:  10.1016/j.foodhyd.2020.106223
    [31] JAFARI S M, MCCLEMENTS D J. Nanotechnology approaches for increasing nutrient bioavailability[J]. Advances in Food and Nutrition Research,2017,81:1−30.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  31
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回