• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

纳米金强化微波耦合脂肪酶催化油酸淀粉酯合成的研究

王艳 李虹佳 程美佳 谢金晖 刘天娇 辛嘉英 张娜

王艳,李虹佳,程美佳,等. 纳米金强化微波耦合脂肪酶催化油酸淀粉酯合成的研究[J]. 食品工业科技,2022,43(23):200−209. doi:  10.13386/j.issn1002-0306.2022020183
引用本文: 王艳,李虹佳,程美佳,等. 纳米金强化微波耦合脂肪酶催化油酸淀粉酯合成的研究[J]. 食品工业科技,2022,43(23):200−209. doi:  10.13386/j.issn1002-0306.2022020183
WANG Yan, LI Hongjia, CHENG Meijia, et al. AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester[J]. Science and Technology of Food Industry, 2022, 43(23): 200−209. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020183
Citation: WANG Yan, LI Hongjia, CHENG Meijia, et al. AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester[J]. Science and Technology of Food Industry, 2022, 43(23): 200−209. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020183

纳米金强化微波耦合脂肪酶催化油酸淀粉酯合成的研究

doi: 10.13386/j.issn1002-0306.2022020183
基金项目: 黑龙江省自然科学基金(LH2021C051);哈尔滨商业大学青年创新人才项目青年后备人才专项(2019CX33);黑龙江省“百千万”工程科技重大专项支撑行动计划(2021ZX12B07)的子课题(2021ZX12B07-2);中央支持地方高校改革发展资金人才培养支持计划项目(高水平人才)(304017)。
详细信息
    作者简介:

    王艳(1984−),女,博士,副教授,研究方向:食品生物技术和微生物发酵技术研究,E-mail:wangyan_123456@163.com

  • 中图分类号: TS235.1

AuNPs Enhanced Microwave Coupled Lipase Synthesis of Starch Oleate Ester

  • 摘要: 以预处理玉米淀粉和油酸为底物,纳米金固定后的南极假丝酵母脂肪酶(CAL@AuNPs)为催化剂,实现油酸淀粉酯的绿色高效制备。以油酸转化率为指标进行CAL@AuNPs制备条件的优化,取代度为指标探究游离酶、商品化固定化酶及纳米金固定化脂肪酶在微波辅助条件下的催化效率。结果表明,在40 ℃的条件下添加4 mL纳米金(14 nm)为载体对CAL固定6 h后,获得的CAL@AuNPs催化能力最强。在微波功率400 W,温度35 ℃的条件下CAL@AuNPs催化10 mL油酸和2 g淀粉反应40 min后,可以制得取代度最高为0.0259的油酸淀粉酯。与游离酶和商品化固定化酶相比,在微波辅助下,CAL@AuNPs催化能力强,能够有效缩短反应时间、提高产物取代度。
  • 图  1  基于微波辅助耦合CAL@AuNPs催化油酸淀粉酯合成示意图

    Figure  1.  Schematic diagram of synthesis of starch oleate esters catalyzed by microwave assisted coupling CAL@AuNPs

    图  2  纳米金粒径(A)、纳米金添加量(B)、固定化时间(C)及固定化温度(D)对酶促反应的影响

    Figure  2.  Effect of gold nanoparticles size (A)、additive amount (B)、immobilization time (C) and temperature (D) on enzymatic reaction

    注:不同小写字母表示差异显著(P<0.05),图4~图8同。

    图  3  CAL(a)和CAL@AuNPs(b)的紫外(A)、荧光(B)及红外光谱图(C)

    Figure  3.  Ultraviolet spectra (A)、fluorescence spectra (B) and infrared spectroscopic analysis (C) of CAL (a) and CAL@AuNPs (b)

    图  4  微波功率对脂肪酶催化活性的影响

    Figure  4.  Effect of microwave power on lipase catalytic activity

    图  5  微波反应时间对脂肪酶催化活性的影响

    Figure  5.  Effect of microwave time on lipase catalytic activity

    图  6  微波反应温度对脂肪酶催化活性的影响

    Figure  6.  Effect of microwave temperature on lipase catalytic activity

    图  7  脂肪酶添加量对催化效果的影响

    Figure  7.  Effect of lipase addition amount on catalytic effect

    图  8  油酸添加量对脂肪酶催化效果的影响

    Figure  8.  Effects of oleic acid addition on lipase catalysis

    图  9  玉米淀粉及脂肪酶催化制得油酸淀粉酯的红外光谱图

    Figure  9.  Infrared spectra of corn starch and lipase catalyzed production of oleic acid starch esters

    图  10  玉米淀粉及脂肪酶催化制得油酸淀粉酯的核磁共振氢谱图

    Figure  10.  1H NMR of corn starch and lipase catalyzed production of oleic acid starch esters

  • [1] MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydrate Polymers,2016,157:1−11.
    [2] OTACHE M A, DURU U R, ACHUGASIM O, et al. Advances in the modification of starch via esterification for enhanced properties[J]. Journal of Polymers and the Environment,2021,29(5):1365−1379. doi:  10.1007/s10924-020-02006-0
    [3] OLTRAMARI K, MADRONA G S, ANDRÉ MONGE NETO, et al. Citrate esterified cassava starch: Preparation, physicochemical characterisation, and application in dairy beverages[J]. Starch-Stärke,2017,69(11-12):1−26.
    [4] YAN H, LU Q. Physicochemical properties of starch-wheat germ oil complex and its effects on water distribution and hardness of noodles[J]. LWT,2020(135):1−7.
    [5] ASHOGBON A O. Dual modification of various starches: Synthesis, properties and applications[J]. Food Chemistry,2020,342(11):1−38.
    [6] AMARAWEERA S M, GUNATHILAKE C, GUNAWARDENE O, et al. Development of starch-based materials using current modification techniques and their applications: A review[J]. Molecules (Basel, Switzerland),2021,26(22):6880. doi:  10.3390/molecules26226880
    [7] 聂卉, 闵玉涛, 李玉玲, 等. 阿魏酸淀粉酯制备与表征及其对馒头预发酵冷冻面团物化性质的影响研究[J]. 中国食品添加剂,2021,32(11):123−128. [NIE H, MIN Y T, LI L Y, et al. Effect of starch ferulate on physicochemical properties of prefermented frozen dough and steamed bread[J]. China Food Additives,2021,32(11):123−128. doi:  10.19804/j.issn1006-2513.2021.11.017
    [8] ZHANG K, CHENG F, ZHANG K, et al. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization[J]. European Polymer Journal,2019,119:136−147. doi:  10.1016/j.eurpolymj.2019.07.021
    [9] WINKLER H, VORWERG W, WETZEL H. Synthesis and properties of fatty acid starch esters[J]. Carbohydr Polym,2013,98(1):208−216. doi:  10.1016/j.carbpol.2013.05.086
    [10] SN A, RV A, AD B, et al. Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions[J]. Ultrasonics Sonochemistry,2021,7(75):1−8.
    [11] ALLANA C N, GOMES Q C, LÚCIO C M, et al. Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system[J]. Biochemical Engineering Journal,2018,137:116−124. doi:  10.1016/j.bej.2018.05.021
    [12] HORCHANI H, CHAÂBOUNI M, GARGOURI Y, et al. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology[J]. Carbohydrate Polymers,2010,79(2):466−474. doi:  10.1016/j.carbpol.2009.09.003
    [13] 王艳, 高鹏, 辛嘉英, 等. 纳米金辅助微波耦合脂肪酶催化阿魏酸淀粉酯的合成[J]. 食品研究与开发,2018,39(24):1−6. [WANG Y, GAO P, XING J Y, et al. Gold nanoparticles assisted microwave coupling lipase catalyzed synthesis of ferulic acid starch ester[J]. Food Research and Development,2018,39(24):1−6. doi:  10.3969/j.issn.1005-6521.2018.24.001
    [14] 石佳. 微波辅助脂肪酶催化合成油酸淀粉脂的研究[D]. 哈尔滨: 哈尔滨商业大学, 2014.

    SHI J. Study on lipase-catalyzed esterification of starch using oleic acid under microwave[D]. Harbin: Harbin University of Commerce, 2014.
    [15] 王艳, 赵宁, 王悦, 等. Mb耦合脂肪酶生物传感器差分脉冲伏安法对Cu~(2+)的检测[J/OL]. 食品科学, 1−12 [2022-04-19]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210913.1057.020.html

    WANG Y, ZHAO N, WANG Y, et al. Detection of Cu2+ by mb-coupled lipase biosensor with differential pulse voltammetry[J/OL]. Food Science: 1−12 [2022-04-19]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210913.1057.020.html
    [16] 王艳. 中长链脂肪酸淀粉酯的酶法合成及其性质研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.

    WANG Y. Study on enzymatic synthesis and properties of middle long chain fatty acid starch ester[D]. Harbin: Harbin University of Commerce, 2013.
    [17] 王艳, 辛嘉英, 石佳, 等. 微波辅助酶促月桂酸淀粉酯的合成[J]. 分子催化,2014,28(1):67−74. [WANG Y, XIN J Y, SHI J, et al. Lipase-catalyzed esterification of starch using lauric acid under microwave[J]. Journal of Molecular Catalysis (China),2014,28(1):67−74. doi:  10.16084/j.cnki.issn1001-3555.2014.01.010
    [18] CABELLO G, DAVOGLIO G A, LUIS G. The role of small nanoparticles on the formation of hot spots under microwave-assisted hydrothermal heating[J]. Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2018,57(12):7252−7258.
    [19] 张宏迪. 纳米金杂化脂肪酶催化拆分反应研究[D]. 哈尔滨: 哈尔滨商业大学, 2020.

    ZHANG H D. Study on the lipase-gold nanoparticles hybridase-catalyzed resolution reaction[D]. Harbin: Harbin University of Commerce, 2020.
    [20] 王致禹, 陈晓倩, 孟庆凤, 等. 有机溶剂和混合油脂对脂肪酶活性恢复的影响[J]. 中国食品学报,2021,21(2):55−62. [WANG Z Y, CHEN X Q, MENG Q F, et al. Effect of organic solvents and mixed oils on the recovery of lipase avity[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):55−62. doi:  10.16429/j.1009-7848.2021.02.007
    [21] 敖敦格日乐, 杨体强, 包斯琴高娃, 等. 电场对脂肪酶二级结构及其活性的影响[J]. 食品与生物技术学报,2015,34(12):1256−1261. [AO D G R L, YANG T Q, BAO S Q G W, et al. Study on the effect of electric field on the secondary structure and activity of lipase[J]. Journal of Food Science and Biotechnology,2015,34(12):1256−1261. doi:  10.3969/j.issn.1673-1689.2015.12.004
    [22] UPPENBERG J, HANSEN M T, PATKAR S, et al. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica[J]. Structure,1994,2(4):293−308. doi:  10.1016/S0969-2126(00)00031-9
    [23] LUKASIEWICZ M, KOWALSKI S. Low power microwave-assisted enzymatic esterification of starch[J]. Starch Stä rke,2011,64(3):188−197.
    [24] REJASSE B, BESSONEN T, LEGOY M D, et al. Influence of microwave radiation on free Candida antarctica lipase B activity and stability[J]. Organic & Biomolecular Chemistry,2006,4(19):3703−3707.
    [25] SRI KAJA B, LUMOR S, BESONG S, et al. Investigating enzyme activity of immobilizedCandida rugosa lipase[J]. Journal of Food Quality,2018,4(19):1−9.
    [26] 孙纯锐. 硬脂酸淀粉酯的制备及其性质研究[D]. 济南: 齐鲁工业大学, 2016.

    SUN C Y. The study of preparation and roperties of starch stearate[D]. Jinan: Qilu University of Technology, 2016.
    [27] 高鹏. 好食脉孢菌发酵麸皮制备游离阿魏酸及其改性研究[D]. 哈尔滨: 哈尔滨商业大学, 2020.

    GAO P. Study on the preparation and modification of free ferulic acid from fermentation bran of neurospora fastidious[D]. Harbin: Harbin University of Commerce, 2020.
    [28] 金子. 毕赤酵母细胞展示的CALB脂肪酶的表征及非水相催化特性研究[D]. 广州: 华南理工大学, 2013.

    JIN Z. Characterization and catalytic properties of Candida antarctica lipase B- displaying Pichia pastoris cells in non-aqueous phase[D]. Guangzhou: South China University of Technology, 2013.
    [29] KAPUSNIAK J, SIEMION P. Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. linoleic acid[J]. Journal of Food Engineering,2007,78(1):323−332. doi:  10.1016/j.jfoodeng.2005.09.028
  • 加载中
图(10)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名