• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

葡萄糖无酶快检技术研究进展

王艳 程美佳 谢金晖 刘天娇 李虹佳 辛嘉英

王艳,程美佳,谢金晖,等. 葡萄糖无酶快检技术研究进展[J]. 食品工业科技,2022,43(23):467−476. doi:  10.13386/j.issn1002-0306.2022020019
引用本文: 王艳,程美佳,谢金晖,等. 葡萄糖无酶快检技术研究进展[J]. 食品工业科技,2022,43(23):467−476. doi:  10.13386/j.issn1002-0306.2022020019
WANG Yan, CHENG Meijia, XIE Jinhui, et al. Research Progress in Glucose Enzyme-free Rapid Detection Technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467−476. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020019
Citation: WANG Yan, CHENG Meijia, XIE Jinhui, et al. Research Progress in Glucose Enzyme-free Rapid Detection Technology[J]. Science and Technology of Food Industry, 2022, 43(23): 467−476. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020019

葡萄糖无酶快检技术研究进展

doi: 10.13386/j.issn1002-0306.2022020019
基金项目: 黑龙江省自然科学基金(LH2021C051);哈尔滨商业大学青年创新人才项目青年后备人才专项(2019CX33);黑龙江省“百千万”工程科技重大专项支撑行动计划(2021ZX12B07)的子课题(2021ZX12B07-2);中央支持地方高校改革发展资金人才培养支持计划项目(高水平人才)(304017)。
详细信息
    作者简介:

    王艳(1984−),女,博士,副教授,研究方向:食品生物技术和微生物发酵技术研究,E-mail:wangyan_123456@163.com

  • 中图分类号: Q814.2

Research Progress in Glucose Enzyme-free Rapid Detection Technology

  • 摘要: 葡萄糖的检测在食品与医疗行业中尤为重要,电化学无酶检测与可视化检测因其测量快、便捷、操作简单而广泛应用于食品工业、生物检测、医疗卫生等领域,并成为研究人员关注的热点。本文综述了国内外的葡萄糖无酶快检技术,对无酶葡萄糖传感技术的研究进展进行了总结,其中,构建模拟酶技术在电化学与可视化检测中均得到了广泛研究,讨论了它们在临床医学与食品分析葡萄糖检测中的应用,并对葡萄糖无酶检测技术的未来研究方向进行了展望,为后续开发研究及在医疗和农业行业应用提供了理论依据。
  • 图  1  基于AuNPs的自限增长系统示意图[7]

    Figure  1.  Schematic diagram of AuNPs-based self-limiting growth system[7]

    图  2  在ITO/PbS/SiO2/AuNPs电极上检测葡萄糖的PEC策略示意图[9]

    Figure  2.  Schematic illustration of the PEC strategy for detection of glucose at ITO/PbS/SiO2/AuNPs electrode[9]

    图  3  CuOx@BPC/GCE葡萄糖非酶检测机理图[23]

    Figure  3.  CuOx@ BPC/GCE glucose non-enzyme detection mechanism diagram[23]

    注:参比电极使用饱和甘汞电极(SCE)。

    图  4  在H2O2存在时,GO-COOH作为过氧化物模拟酶氧化TMB机理图[67]

    Figure  4.  Mechanism diagram of oxidation of TMB by GO-COOH as a peroxide mimicking enzyme in the presence of hydrogen peroxide[67]

    图  5  基于Au@Ag的双金属核壳纳米粒子(Au@AgNPs)和碳纳米点(C-dots)的双信号葡萄糖检测示意图[70]

    Figure  5.  Schematic representation of dual-signal glucose detection using Au @Ag-based bimetal nuclear-shell nanoparticles (Au@Ag NPs) and carbon nanodots (C-dots)[70]

    表  1  CuO基非酶促葡萄糖传感器性能

    Table  1.   CuO-based non-enzymatic glucose sensor performance

    电极材料灵敏度
    (µA mmol−1cm−2
    线性范围
    (mmol/L)
    检出限
    (µmol/L)
    缓冲溶液参考文献
    CuO纳米盘/SPCE627.30.002~2.50.20.1 mol/L KOH[24]
    Cu3(BTC)2-衍生CuO1523.5<1.2510.1mol/L NaOH[29]
    CuO纳米花/GCE2634.45×10−4~2.670.260.05 mol/L NaOH[25]
    CuO-PANI28002.5×10−4~0.280.240.1mol/L NaOH[30]
    -NF/FTO13590.28~4.6
    CuO饼干状/SPCE308.70.0005~4.030.10.1 mol/L NaOH[31]
    3D-KSC/CuO @C/AuNPs9353.71×10−3~8.51.220.1 mol/L NaOH[32]
    CuO/MoS210550.1~100.1 mol/L NaOH[33]
    莠草状12810.05~2.016.70.1 mol/L NaOH[34]
    CuO/Cu2O纳米线
    CuO/Cu2O/SnO2纳米棒20430.05~2.016.70.1 mol/L NaOH[27]

    多孔泡沫状CuO

    6.17

    <1

    65.3

    0.1 mol/L NaOH

    [35]
    注:−表示参考文献中作者未标注线性范围、检出限,表示未检出明确的范围与检出限,表2表3同。
    下载: 导出CSV

    表  2  Co3O4基非酶促葡萄糖传感器性能

    Table  2.   Co3O4-based non-enzymatic glucose sensor performance


    电极材料
    灵敏度
    (µA mmol−1cm−2
    线性范围
    (mmol/L)
    检出限
    (µmol/L)

    缓冲溶液

    参考文献
    Co3O4微薄片339.5<0.220.1 mol/L KOH[36]
    Co3O4NPs-LIG2141×10−3~90.410.1 mol/L NaOH[21]
    针状Co3O4/柔性碳布
    2591.62×10−3~1.00.230.1 mol/L NaOH[37]
    271.21.0~10
    多孔Co3O4纳米板212.920.05~3.22.70.1 mol/L NaOH[38]
    Co-Co3O4/CNT/CF637.51.2×10−3~2.290.40.1 mol/L NaOH[39]
    Co3O4/Au4470.42×10−3~2.110.0850.1 mol/L NaOH[40]
    Au@Co3O4-S1127.32×10−4~3.10.090.1 mol/L NaOH[41]
    下载: 导出CSV

    表  3  NiO基的非酶促葡萄糖传感器性能

    Table  3.   NiO-based non-enzymatic glucose sensor performance


    电极材料
    灵敏度
    (µA mmol−1cm−2
    线性范围
    (mmol/L)
    检出限
    (µmol/L)

    缓冲溶液

    参考文献

    NiO纳米结构/镍板

    206.9

    0.1~10

    1.16
    0.1 mol/L KCl
    0.5 mol/L NaOH

    [42]
    Ni/NiO/NG3.25181×10−3~3.5680.0320.1 mol/L NaOH[43]
    Au@NiO5536.21×10−3~60.250.1 mol/L NaOH[44]
    NiO/FTO2632.535×10−3~0.8250.0840.1 mol/L NaOH[45]
    NiO-PPy/GCE1094.8
    62.9
    0.01~0.5
    1~20
    5.80.1 mol/L PBS[46]
    NiO@CF878.60.370.1 mol/L KOH[47]
    NiO/CC57526×10−3~27.450.1 mol/L NaOH[48]
    NiO NC-rGO/GCE42540.5~200.0790.1 mol/L NaOH[49]
    NiO/碳多孔复合材料2918.25×10−3~4.10.920.1 mol/L NaOH[50]
    NiO/PMB/GCE413.063×10−3~0.82.10.1 mol/L NaOH[51]
    GLAD NiO44005×10−4~90.1 mol/L NaOH[52]
    下载: 导出CSV
  • [1] SHOFARUL W, ACHILLEAS S. Enzyme-free detection of glucose with a hybrid conductive gel electrode[J]. Advanced Materials Interfaces,2019,1800928:1−10.
    [2] JOSEPH M P, CORNELIUS J F, ELIAS C C. Diabesity and antidiabetic drugs[J]. Molecular Aspects of Medicine,2019,66:3−12. doi:  10.1016/j.mam.2018.10.004
    [3] 朱正卫, 王敬元. 金属化合物无酶葡萄糖传感器研究进展[J]. 广州化工,2021,49(20):11−12, 19. [ZHU Zhengwei, WANG Jingyuan. Progress in the enzyme-free glucose sensors of metal compounds[J]. Guangzhou Chemical Industry,2021,49(20):11−12, 19. doi:  10.3969/j.issn.1001-9677.2021.20.006
    [4] 杨林鑫, 王研, 陈嘉茵, 等. 无酶葡萄糖电化学传感器的研究进展[J]. 东莞理工学院学报,2021,28(5):9. [YANG Linxin, WANG Yan, CHEN Jiayin, et al. Progress in the enzyme-less glucose electrochemical sensor[J]. Journal of Dongguan Institute of Technology,2021,28(5):9. doi:  10.16002/j.cnki.10090312.2021.05.012
    [5] 肖沐航. 无酶葡萄糖传感器研究进展综述[J]. 萍乡学院学报,2015,32(6):55−58. [XIAO Muhang. Review of the research progress of enzyme-free glucose sensors[J]. Journal of Pingxiang College,2015,32(6):55−58. doi:  10.3969/j.issn.1007-9149.2015.06.014
    [6] CHEN J X, MA Q, LI M H, et al. Glucose-oxidase like catalytic mechanism of noble metal nanozymes[J]. Nature Communications,2021,12(1):1−9. doi:  10.1038/s41467-020-20314-w
    [7] LUO W, ZHU C, SU S, et al. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles[J]. Acs Nano,2010,4(12):7451−7458. doi:  10.1021/nn102592h
    [8] ZHANG H, LIANG X, HAN L, et al. “Non-Naked” gold with glucose oxidase-like activity: A nanozyme for tandem catalysis[J]. Small,2018,14(44):183−256.
    [9] CAO L, WANG P, CHEN L, et al. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase[J]. RSC Advances,2019,9(27):15307−15313. doi:  10.1039/C9RA02088H
    [10] 关桦楠, 龚德状, 宋岩, 等. 基于Fe3O4-PGA@Au构建无酶电化学生物传感器检测葡萄糖[J]. 食品科学,2020,41(12):267−272. [GUAN Huanan, GONG Dezhuang, SONG Yan, et al. Build an enzyme-free electrochemical biosensor based on Fe3O4-PGA@Au to detect glucose[J]. Food Science,2020,41(12):267−272. doi:  10.7506/spkx1002-6630-20190319-239
    [11] LI S Q, WANG L T, ZHANG X D, et al. A Co, N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection[J]. Sensors & Actuators B Chemical,2018,264:312−316.
    [12] CAO X, WANG N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays[J]. Analyst,2011,136(20):4241−4246. doi:  10.1039/c1an15367f
    [13] SHI W, ZHANG X, HE S, et al. CoFe2O4 magnetic nanoparticles as a peroxidase mimic me-diated chemiluminescence for hydrogen peroxide and glucose[J]. Chemical Communications,2011,47(38):10785−10787. doi:  10.1039/c1cc14300j
    [14] JV Y, LI B, et al. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection[J]. Chemical Communications Royal Society of Chemistry,2010,46(42):8017−8019. doi:  10.1039/c0cc02698k
    [15] 张雪红. 基于金纳米颗粒的可视化传感器的构建与应用[D]. 兰州: 西北师范大学, 2019.

    ZHANG Xuehong. Construction and application of visual sensors based on gold nanoparticles[D]. Lanzhou: Northwest Normal University, 2019.
    [16] WANG M, LIU F, CHEN D. An electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials[J]. Journal of Materials Science: Materials in Electronics,2021,32(18):23445−23456. doi:  10.1007/s10854-021-06832-3
    [17] KHAIRULLINA E M, TUMLIN E M, TUMLIN I I, et al. Laser-assisted surface modification of Ni microstructures with Au and Pt toward cell biocompatibility and high enzyme-free glucose sensing[J]. ACS Omega,2021,6(28):18099−18109. doi:  10.1021/acsomega.1c01880
    [18] CHANDRASEKARAN N I, HARSHIMY M, THANGASAMY P, et al. A robust enzymeless glucose sensor based on tin nickel sulfide nanocomposite modified electrodes[J]. Applied Physics A,2021,127(1):1−9. doi:  10.1007/s00339-020-04132-x
    [19] DARABDHARA G, BORDOLOI J, MANNA P, et al. Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose[J]. Sensors and Actuators B: Chemical,2019,285:277−290. doi:  10.1016/j.snb.2019.01.048
    [20] BABULAL S M, CHEN S M, PALANI R, et al. Graphene oxide template based synthesis of NiCo2O4 nanosheets for high performance non-enzymatic glucose sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,621:126600. doi:  10.1016/j.colsurfa.2021.126600
    [21] ZHAO J, ZHENG C, GAO J, et al. Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor[J]. Sensors and Actuators B: Chemical,2021,347:130653. doi:  10.1016/j.snb.2021.130653
    [22] PATIL A S, LOHAR G M, et al. Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method[J]. Applied Physics A,2021,127(2):1−10.
    [23] 刘东, 王周雷, 李帆, 等. CuOx@BPC 化学修饰电极的制备及其对葡萄糖检测研究[J]. 化学与生物工程,2021,38(4):59−64. [LIU Dong, WANG Zhoulei, LI Fan, et al. Preparation of chemically modified electrodes of CuOx@BPC and its study on glucose detection[J]. Chemistry and Bioengineering,2021,38(4):59−64. doi:  10.3969/j.issn.1672-5425.2021.04.011
    [24] JAQAGADEESAN M S, MOVLAEE K, KRISHNAKUMAR T, et al. One-step microwave-assisted synthesis and characteri-zation of novel CuO nanodisks for non-enzymatic glucose sensing[J]. Journal of Electroanalytical Chemistry,2019,835:161−168. doi:  10.1016/j.jelechem.2019.01.024
    [25] WANG X, GE C, CHEN K, et al. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure[J]. Electrochimica Acta,2018,259:225−232. doi:  10.1016/j.electacta.2017.10.182
    [26] LU N, SHAO C, LI X, et al. CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity[J]. RSC Advances,2014,4(59):310561.
    [27] ZHAO Y, BO X, GUO L. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose[J]. Electrochimica Acta,2015,176:1272−1279. doi:  10.1016/j.electacta.2015.07.143
    [28] WANG X, LIU E, ZHANG X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution[J]. Electrochimica Acta,2014,130(4):253−260.
    [29] KIM K, LIM S, LEE H N, et al. Electrochemically derived CuO nanorod from copper-based metal-organic framework for non-enzymatic detection of glucose[J]. Applied Surface Science,2019,479.15):720−726.
    [30] ESMAEELI A, GHAFFARINEJIA A, ZAHEDI A, et al. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical,2018,266:294−301. doi:  10.1016/j.snb.2018.03.132
    [31] VELMURUGAN M, KARIKALAN N, CHEN S M. Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications[J]. Journal of Colloid & Interface Science,2017,493:349−355.
    [32] QIAN C, HAN K, WENG W, et al. Electrochemical glucose sensor based on microporous Carbon/CuO@Carbon/AuNPs integrated electrode[J]. ChemistrySelect,2019,4(19):5633−5640. doi:  10.1002/slct.201900245
    [33] ARUNBALAJI S, VASUDEVAN R, ARIVANANDHAN M, et al. CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors[J]. Ceramics International,2020,46(10):16879−16885. doi:  10.1016/j.ceramint.2020.03.265
    [34] 周清清. 氧化铜/氧化亚铜的多级结构与组成调控及其在无酶葡萄糖传感器中的应用[D]. 苏州: 苏州大学, 2020.

    ZHOU Qingqing. Multistage structure and composition regulation of copper oxide/copper oxide and its application in enzyme-free glucose sensors[D]. Suzhou: Soochow University, 2020.
    [35] 王永鹏, 徐子勃, 刘梦竹, 等. 多孔泡沫状CuO微纳米纤维的制备及用于无酶葡萄糖传感器[J]. 高等学校化学学报,2019,40(6):1310−1316. [WANG Yongpeng, XU Zibo, LIU Mengzhu, et al. Preparation of porous foam CuO micronanofibers and their use for an enzyme-free glucose sensor[J]. Journal of Higher Chemistry,2019,40(6):1310−1316. doi:  10.7503/cjcu20180854
    [36] PORE O C, FULARI A V, KAMBLE R K, et al. Hydrothermally synthesized Co3O4 microflakes for supercapacitor and non-enzymatic glucose sensor[J]. Journal of Materials Science: Materials in Electronics,2021,32(15):20742−20754. doi:  10.1007/s10854-021-06586-y
    [37] XU J, GAO Z, DOU X, et al. Needle-like Co3O4 nanoarrays as a dual-responsive amperometric sensor for enzyme-free detection of glucose and phosphate anion[J]. Journal of Electroanalytical Chemistry,2021,897:115605. doi:  10.1016/j.jelechem.2021.115605
    [38] KANG M, ZHOU H, ZHAO H, et al. Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing[J]. Cryst Eng Comm,2020,22(1):35−43. doi:  10.1039/C9CE01396B
    [39] HAN J, MIAO L, SONG Y. Preparation of co-Co3O4/carbon nanotube/carbon foam for glucose sensor[J]. Journal of Molecu-lar Recognition,2020,33(3):112820.
    [40] PEI Y, HU M, TANG X, et al. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide[J]. Analytica Chimica Acta,2019,1059:49−58. doi:  10.1016/j.aca.2019.01.059
    [41] YANG Z, BAI X. Synthesis of Au core flower surrounding with sulphur-doped thin Co3O4 shell for enhanced nonenzymatic detection of glucose[J]. Microchemical Journal,2021,160:105601. doi:  10.1016/j.microc.2020.105601
    [42] HEYSER C, SCHREBLER R, GREZ P. New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor[J]. Journal of Electroanalytical Chemistry,2019,832:189−195. doi:  10.1016/j.jelechem.2018.10.054
    [43] WANG Q, ZHENG S, LI T, et al. Ni/NiO multivalent system encapsulated in nitrogen-doped graphene realizing efficient activation for non-enzymatic glucose sensing[J]. Ceramics International,2021,47(16):22869−22880. doi:  10.1016/j.ceramint.2021.04.307
    [44] ZHOU J, YIN H, WANG L, et al. Electrodeposition of Au@NiO nanotube arrays for highly sensitive non-enzymatic glucose sensing[J]. Journal of Electronic Materials,2021,50(11):6392−6402. doi:  10.1007/s11664-021-09154-6
    [45] CHAKRABORTY P, DEKA N, PATRA D C, et al. Salivary glucose sensing using highly sensitive and selective non-enzymatic porous NiO nanostructured electrodes[J]. Surfaces and Interfaces,2021,26:101324. doi:  10.1016/j.surfin.2021.101324
    [46] ZHOU Y, FANG Y, RAMASAMY R P. Non-covalent fun-ctionalization of carbon nanotubes for electrochemical biosensor development[J]. Sensors,2019,19(2):392. doi:  10.3390/s19020392
    [47] PORE O C, FULARI A V, VEHAL N B, et al. Hydrothermally synthesized urchinlike NiO nanostructures for supercapacitor and nonenzymatic glucose biosensing application[J]. Materials Science in Semiconductor Processing,2021,134:105980. doi:  10.1016/j.mssp.2021.105980
    [48] ZHOU F, WANG Q, HUANG K, et al. Flame synthesis of NiO nanoparticles on carbon cloth: An efficient non-enzymatic sensor for glucose and formaldehyde[J]. Microchemical Journal,2020,159:105505. doi:  10.1016/j.microc.2020.105505
    [49] ZHANG Y, LIU Y Q, BAI Y, et al. Confinement preparation of hierarchical NiO-N-doped carbon@ reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose[J]. Sensors and Actuators B: Chemical,2020,309:127779. doi:  10.1016/j.snb.2020.127779
    [50] YIN H, ZHAN T, CHEN J, et al. Polyhedral NiO/C porous composites derived by controlled pyrolysis of Ni-MOF for highly efficient non-enzymatic glucose detection[J]. Journal of Materials Science: Materials in Electronics,2020,31(5):4323−4335. doi:  10.1007/s10854-020-02990-y
    [51] ZHU L, WEI Z, WANG J, et al. An electrochemical biosensor based on NiO nanoflowers/polymethylene blue composite for non-enzymatic glucose detection[J]. Journal of The Electrochemical Society,2020,167(14):146512. doi:  10.1149/1945-7111/abc5dc
    [52] SINGER N, PILLAI R G, JOHNSON A I D, et al. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing[J]. Microchimica Acta,2020,187(4):1−10.
    [53] RAHMAN M M, HUSSIN M M, ASIRI A M. Glucose sensor based on ZnO· V2O5 NRs by an enzyme-free electrochemical approach[J]. RSC Advances,2019,9(54):31670−31682. doi:  10.1039/C9RA06491E
    [54] HUANG M, FENG S, YANG C, et al. Construction of an MnO2 nanosheet array 3D integrated electrode for sensitive enzyme-free glucose sensing[J]. Analytical Methods,2021,13(10):1247−1254. doi:  10.1039/D0AY02163F
    [55] JUANG F R, WANG T M. Surfactant-free synthesis of self-assembled CuO spheres composited with MnO2 nanorods for non-enzymatic glucose detection[J]. Physica E Low-dimensional Systems and Nanostructures,2021,134:114831. doi:  10.1016/j.physe.2021.114831
    [56] SINHA L, PAKHIRA S, BHJANE P, et al. Hybridization of Co3O4 and α-MnO2 nanostructures for high-performance nonenzymatic glucose sensing[J]. ACS Sustainable Chemistry & Engineering,2018,6(10):13248−13261.
    [57] MAO Q, JING W, GAO W, et al. High-sensitivity enzymatic glucose sensor based on ZnO urchin-like nanostructure modified with Fe3O4 magnetic particles[J]. Micromachines,2021,12(8):977. doi:  10.3390/mi12080977
    [58] HOVANCOVA J, SISOLAKOVA I, VANYSEK P, et al. Ligand-to-metal charge transfer (LMCT) complex: New approach to non-enzymatic glucose sensors based on TiO2[J]. Journal of Electroanalytical Chemistry,2020,878:114589. doi:  10.1016/j.jelechem.2020.114589
    [59] WANG S Z, ZHENG M, ZHANG X, et al. Flowerlike CuO/Au nanoparticle heterostructures for nonenzymatic glucose detection[J]. ACS Applied Nano Materials,2021,4(6):5808−5815. doi:  10.1021/acsanm.1c00607
    [60] HAO N, HUA R, CHEN S, et al. Multiple signal-amplification via Ag and TiO2, decorated 3D Ni-trogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor[J]. Biosensors and Bioelectronics,2018,101:14−20. doi:  10.1016/j.bios.2017.10.014
    [61] 李甜, 吴心茹, 石京慧, 等. 基于纳米金银染放大的葡萄糖可视化检测[J/OL]. 分析试验室: 1−6 [2022-01-16]. http://kns.cnki.net/kcms/detail/11.2017.TF.20211220.1115.008.html.

    LI Tian, WU Xinru, SHI Jinghui, et al. Glucose visualization detection based on nanosilver dye magnification[J/OL]. Analysis Laboratory: 1−6 [2022-01-16]. http://kns.cnki.net/kcms/detail/11.2017.TF.20211220.1115.008.html.
    [62] 高妍. 基于金/银纳米材料的无酶葡萄糖光化学传感研究[D]. 苏州: 苏州大学, 2016.

    GAO Yan. Enzyme-free glucose photochemical sensing studies based on gold/silver nanomaterials[D]. Suzhou: Soochow University, 2016.
    [63] 杨培昕, 喻昌木, 杨敏, 等. 固载离子液体修饰Fe3O4纳米酶用于H2O2和葡萄糖的检测[J]. 食品科学,2021,42(20):252−259. [YANG Peixi, YU Changmu, YANG Min, et al. Solid-loading ionic liquid-modified Fe3O4 nanoenzymes were used for the detection of H2O2 and glucose[J]. Food Science,2021,42(20):252−259. doi:  10.7506/spkx1002-6630-20200924-296
    [64] HUANG Y, ZHAO M T, HAN S K, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions[J]. Adv Mater,2017,29(32):1700102−1700107. doi:  10.1002/adma.201700102
    [65] 吴科研. 杂原子掺杂碳纳米材料过氧化物模拟酶的合成与应用研究[D]. 长春: 东北师范大学, 2021.

    WU Keyan. Synthesis and application of the doped carbon nanomaterials[D]. Changcun: Northeast Normal University, 2021.
    [66] GANGANBOINA A B, DONG R A. V2O5 nanosheets as nanozyme with peroxidase-like activity and their application for rapid and sensitive detection of glutathione[C]//256th ACS National Meeting, 2018.
    [67] SONG Y, QU K, ZHAO C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22:2206−2210. doi:  10.1002/adma.200903783
    [68] SHI W B, WANG Q L, LONG Y J, et al. Carbon nanodots as peroxide-se mimetics and their ap-plications to glucose detection[J]. Chem Commun,2011,47(23):6695−6697. doi:  10.1039/c1cc11943e
    [69] KUO P C, LIEN C W, MAO J Y, et al. Detection of urinary spermine by using silver-gold/silver chloride nanozymes[J]. Anal Chim Acta,2018,1009:89−97. doi:  10.1016/j.aca.2018.01.018
    [70] LIU W, DING F, WANG Y, et al. Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles and carbon nanodots[J]. Sensors and Actuators B: Chemical,2018,265:310−317. doi:  10.1016/j.snb.2018.03.060
    [71] CHEN L, DOTZERT M. Nanostructured biosensor using bioluminescence quenching technique for glucose detection[J]. Journal of Nanobiotechnology,2017,15(1):59. doi:  10.1186/s12951-017-0294-1
    [72] HH MAI, JANSSENS E. Au nanoparticle-decorated ZnO nanorods as fluorescent non-enzymatic glucose probe[J]. Microchimica Acta,2020,187(10):1−11.
    [73] RASHTBARI S, DEHGHAN G, AMINI M. An ultrasensitive label-free colorimetric biosensor for the detection of glucose based on glucose oxidase-like activity of nanolayered manganese-calcium oxide[J]. Analytica Chimica Acta,2020,1110:98−108. doi:  10.1016/j.aca.2020.03.021
    [74] 朱巍然, 郝楠, 杨小弟, 等. 基于二氧化锰-氧掺杂氮化碳级联催化的无酶比色检测葡萄糖研究[J]. 分析化学,2020,48(6):727−732. [ZHU Weiran, HAO Nan, YANG Xiaodi, et al. Study on enzyme-free colorimetric glucose detection based on manganese dioxide-oxygen-doped carbon nitride cascade catalysis[J]. Analytical Chemistry,2020,48(6):727−732. doi:  10.19756/j.issn.0253-3820.201047
    [75] ZHANG J, DAI X, SONG Z L, et al. One-pot enzyme-and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer[J]. Sensors and Actuators B: Chemical,2020,304:127304. doi:  10.1016/j.snb.2019.127304
    [76] 吴雪梅. 基于环肽模拟物的葡萄糖可视化比色检测技术[D]. 天津: 天津科技大学, 2020.

    WU Xumei. Glucose visualization and colorimetric detection techniques based on cyclic peptide mimics[D]. Tianjin: Tianjin University of Science and Technology, 2020.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  34
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回