Optimization of the Extraction Process of Triterpenoids from the Seeds of Syzygium jambos L. Alston by Response Surface Methodology and Its Antioxidant Activity
-
摘要: 以蒲桃籽为原料,通过单因素实验考察各因素对蒲桃籽中三萜类化合物得率的影响。运用Design-Expert 12软件设计响应面法优化提取工艺,并进行模型诊断和工艺验证。最后对提取得到的蒲桃籽三萜进行DPPH·、ABTS+·清除能力的测定,评价其抗氧化活性。结果表明,蒲桃籽三萜类化合物的最优提取工艺为甲醇体积分数44.30%、料液比1:47.18 g/mL、提取时间101.07 min(实验调整为101 min)。此条件下,实际得率(12.11 mg/g)与理论得率(12.28 mg/g)之间的偏差仅为1.26%(<5%),误差较小。蒲桃籽三萜类化合物DPPH·、ABTS+·清除能力的IC50值分别是为24.93、12.16 μg/mL,并且抗氧化活性与其浓度呈现出一定的量效关系。此优化实验有效可行,且蒲桃籽三萜类化合物具有较强的抗氧化活性。本文的研究为蒲桃资源的开发利用提供了一定的理论依据。Abstract: In this study the single factor experiments were employed to determine the effects of various factors on extraction rate of triterpenoids in the seeds of S. jambos L. Alston using the yields as indicator. Then Box-Behnken design and response surface methodology were employed to optimize the extraction process using the Design-Expert 12 software. Moreover, the antioxidant activity of triterpenoids in the seeds of S. jambos L. Alston was evaluated by determining the scavenging capacity of DPPH and ABTS free radical. The results showed that the optimal conditions were as follows: Methanol concentration 44.30%, solid-liquid ratio 1:47.18 g/mL, extraction time was 101.07 min (adjusted to 101 min in the experiment). Under these conditions, the deviation between the experimental extraction yield value (12.11 mg/g) and the predicted value (12.28 mg/g) of triterpenoids in the seeds of S. jambos L. Alston was only 1.26% (<5%), and the error was small. The IC50 values of scavenging rates on DPPH and ABTS free radicals were 24.93 and 12.16 μg/mL, respectively. The antioxidant activity showed a certain dose effect relationship with the sample concentration. The results indicated that this optimization test was effective and feasible, and the extracted S. jambos L. Alston triterpenoids had good antioxidant activity in vitro. The present study provides supplement information for the potential use of the seeds of S. jambos L. Alston in food and medicine ingredients.
-
Key words:
- Syzygium jambos L. Alston /
- triterpenoids /
- extraction process /
- response surface /
- antioxidant activity
-
图 6 蒲桃籽总三萜、VC的DPPH·清除能力测定结果
Figure 6. Results of DPPH scavenging ability of total triterpenoids in the seeds of S. jambos L. Alston and VC
注:不同小写字母表示蒲桃籽总三萜在不同浓度下抗氧化活性差异显著(P<0.05);不同大写字母表示VC在不同浓度下抗氧化活性差异显著(P<0.05);图7同。
表 1 Box-Behnken试验设计因素和水平
Table 1. Test factors and levels of Box-Behnken design
水平因素 A
甲醇体积分数(%)B
提取时间(min)C
料液比(g/mL)−1 30 60 1:10 0 50 90 1:40 1 70 120 1:70 表 2 Box-Behnken 试验设计和结果
Table 2. Box-Behnken experimental design and results
实验号 A甲醇体积分数 B提取时间 C料液比 D得率(mg/g) 1 0 0 0 11.92 2 −1 −1 0 10.80 3 1 0 −1 7.74 4 0 1 −1 8.72 5 0 −1 −1 9.00 6 0 0 0 12.36 7 1 −1 0 11.20 8 0 0 0 11.81 9 −1 0 1 10.95 10 0 0 0 12.06 11 1 1 0 10.89 12 0 0 0 12.44 13 0 1 1 10.29 14 1 0 1 9.62 15 −1 0 −1 7.80 16 0 −1 1 10.49 17 −1 1 0 11.81 表 3 回归方程方差分析
Table 3. Analysis of variance of regression equation
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 36.0783 9 4.0087 26.6858 0.0001 ** A 0.4599 1 0.4599 3.0615 0.1236 B 0.0058 1 0.0058 0.0385 0.8499 C 8.1950 1 8.1950 54.5537 0.0002 ** AB 0.4364 1 0.4364 2.9051 0.1321 AC 0.4069 1 0.4069 2.7084 0.1438 BC 0.0022 1 0.0022 0.0146 0.9071 A² 2.5003 1 2.5003 16.6446 0.0047 ** B² 0.1226 1 0.1226 0.8160 0.3964 C² 22.7097 1 22.7097 151.1779 <0.0001 ** 残差 1.0515 7 0.1502 失拟项 0.7540 3 0.2513 3.3783 0.1351 不显著 纯误差 0.2976 4 0.0744 总离差 0.3713 16 注:**P<0.01表示差异极显著;*P<0.05表示差异显著。 -
[1] BAI A Y, TAO L Y, HUANG J, et al. Effects of physical activity on cognitive function among patients with diabetes in China: a nationally longitudinal study[J]. BMC Public Health,2021,21(1):481. doi: 10.1186/s12889-021-10537-x [2] KAMALRAJ R, NEELAKANDAN S, KUMAR M R, et al. Interpretable filter based convolutional neural network (IF-CNN) for glucose prediction and classification using PD-SS algorithm[J]. Measurement,2021,183(9):109804. [3] HOJS R, EKART R, BEVC S, et al. Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients[J]. Nephron,2016,133(3):159−162. doi: 10.1159/000447434 [4] RANI M P, ANUPAMA N, SREELEKSHMI M, et al. Chlorogenic acid attenuates glucotoxicity in H9c2 cells via inhibition of glycation and PKC α upregulation and safeguarding innate antioxidant status[J]. Biomedicine & Pharmacotherapy,2018,100:467−477. [5] ZHAO Y, CHEN S J, WANG J C, et al. Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-κB-dependent mechanism[J]. Oxidative Medicine and Cellular Longevity,2015,2015:934058. [6] 党娅, 尤丽, 杨彬彦. 蓝莓花青素对2型糖尿病小鼠肝、肾损伤的改善作用[J]. 食品工业科技: 1−11 [2022-05-10]DANG Y, YOU L, YANG B Y. The improvement effect of blueberry anthocyanin on liver and kidney injury in type 2 diabetic mice[J]. Science and Technology of Food Industry: 1−11 [2022-05-10]. [7] 孙晓波, 张晓纯, 郭松, 等. 响应面法优化蒲桃叶总黄酮的提取工艺及其抗氧化活性[J]. 食品研究与开发,2022,43(2):115−122. [SUN X B, ZHANG X C, GUO S, et al. Optimization of total flavonoid extraction from Syzygium jambos Leaves by response surface methodology and its antioxidant activity[J]. Food Research and Development,2022,43(2):115−122. [8] 温正辉, 凌梅娣, 余思萍, 等. 蒲桃不同药用部位乙醇提取物对α-葡萄糖苷酶和α-淀粉酶活性的抑制作用研究[J]. 中国药房,2019,30(23):3246−3251. [WEN Z H, LING M D, YU S P, et al. Study on inhibitory effects of ethanol extract of different medicinal parts from Syzygium jambos on the activities of α-glycosidase and α-amylase[J]. China Pharmacy,2019,30(23):3246−3251. [9] 李玲, 黄能慧. 蒲桃种子提取物对四氧嘧啶糖尿病鼠血糖的影响[J]. 贵阳医学院学报,2004(5):413−415. [LI L, HUANG N H. An experimental study on effects of Syzygium jambos (Linn.) seed extract on alloxan diabetes[J]. Journal of Guiyang Medical College,2004(5):413−415. [10] 钱露, 刘萍, 雷雨欣, 等. 番石榴叶总三萜对STZ诱导糖尿病大鼠的降糖作用与相关机制[J]. 解剖学研究,2018,40(5):407−411. [QIAN L, LIU P, LEI Y X, et al. Hypoglycemic effect and related mechanism of total triterpenoids from Psidium guajawa leaves on STZ-induced diabetic rats[J]. Anatomy Research,2018,40(5):407−411. doi: 10.3969/j.issn.1671-0770.2018.05.009 [11] 刘灿, 马兰青, 孙媛霞. 罗汉果甜苷降糖机制及生物合成研究进展[J]. 天然产物研究与开发,2018,30(11):2023−2031. [LIU C, MA L Q, SUN Y X. Hypoglycemic mechanisms and biosynthesis of mogrosides from Siraitia grosvenorii fruit: A review[J]. Natural Product Research and Development,2018,30(11):2023−2031. [12] 林大都, 刘嘉炜, 李武国, 等. 蒲桃茎化学成分及其体外细胞毒活性研究[J]. 中草药,2014,45(14):1993−1997. [LIN D D, LIU J W, LI W G, et al. Chemical constituents from stems of Syzygium jambos var. jambos and their in vitro cytotoxicity[J]. Chinese Herbal Medicines,2014,45(14):1993−1997. doi: 10.7501/j.issn.0253-2670.2014.14.006 [13] LI Y Y, XU J L, YUAN C H, et al. Chemical composition and anti-hyperglycaemic effects of triterpenoid enriched Eugenia jambolana Lam. berry extract[J]. Journal of Functional Foods,2017,28:1−10. doi: 10.1016/j.jff.2016.10.021 [14] 林大都. 蒲桃属药用植物蒲桃化学成分研究[D]. 广州: 广州中医药大学, 2013LIN D D. Studies on the chemical constituents from the stem of Syzygium jambos[D]. Guangzhou: Journal of Guangzhou University of Traditional Chinese Medicine, 2013. [15] 杨瑶, 李渊渊, 黄玉平, 等. 阔叶蒲桃中三萜类化学成分研究[J]. 云南师范大学学报(自然科学版),2021,41(6):38−43. [YANG Y, LI Y Y, HUANG Y P, et al. Triterpenoids from Syzygium latilimbum[J]. Journal of Yunnan Normal University (National Sciences Edition),2021,41(6):38−43. [16] 林继辉, 赖俊杰, 刘蒙佳. 响应面法优化超声波提取杏鲍菇三萜化合物的工艺研究[J]. 云南民族大学学报(自然科学版),2021,30(2):111−117. [LIN J H, LAI J J, LIU M J. Optimization of ultrasonic extraction of triterpenoids from Pleurotus eryngii with the response surface methodology[J]. Journal of Yunnan Nationalities University: Natural Sciences Edition,2021,30(2):111−117. [17] 陈琼, 许雪华, 蒋变玲. 大麦若叶青汁粉总三萜超声提取工艺研究[J]. 兰州文理学院学报(自然科学版),2021,35(2):39−45. [CHEN Q, XU X H, JIANG B L. Researches on ultrasonic extraction of total triterpenes from barley young leaves[J]. Journal of Lanzhou University of Arts and Science (Natural Science),2021,35(2):39−45. [18] 孙晓波, 吴慧贤, 王小明, 等. 蒲桃叶多酚微波辅助提取工艺及抗氧化活性研究[J]. 中国食品添加剂,2022,33(4):34−42. [SUN X B, WU H X, WANG X M, et al. Optimization of polyphenols from Syzygium jambos leaves by microwave-assisted extraction and its antioxidant activity[J]. China Food Additives,2022,33(4):34−42. doi: 10.19804/j.issn1006-2513.2022.04.005 [19] 杨婷婷, 房雷雷, 辛慧洁, 等. 响应面法优化超声辅助提取酸枣仁中阿魏酰斯皮诺素[J]. 食品工业,2019,40(4):151−155. [YANG T T, FANG L L, XIN H J, et al. Optimization of ultrasonic assisted extraction of 6’-feruloylspinosin from Zizyphi spinosae semen by response surface methodology[J]. The Food Industry,2019,40(4):151−155. [20] 李颜桃, 仲崇华, 张健荣, 等. 沙棘籽多酚超声耦合真空提取工艺的研究[J]. 中国粮油学报,2021,36(11):151−156. [LI Y T, ZHONG C H, ZHANG J R, et al. Ultrasonic coupled vacuum extraction process of polyphenols from Hippophaer hamnoides seed[J]. Journal of the Chinese Cereals and Oils Association,2021,36(11):151−156. doi: 10.3969/j.issn.1003-0174.2021.11.023 [21] 付亚玲, 姚俊修, 张仁堂. 响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究[J]. 食品工业科技,2021,42(12):176−183. [FU Y L, YAO J X, ZHANG R T. Optimization of extraction and antioxidant activities of triterpenic acids from blacked jujube by response surface methodology[J]. Science and Technology of Food Industry,2021,42(12):176−183. [22] JAMUNA S, SAKEENAk S S, ASHOKKUMAR R, et al. Potential antioxidant and cytoprotective effects of essential oil extracted from Cymbopogon citratus on OxLDL and H2O2 LDL induced Human Peripheral Blood Mononuclear Cells (PBMC)[J]. Food Science and Human Wellness,2017,6(2):60−69. doi: 10.1016/j.fshw.2017.02.001 [23] NORZAGARAY V C D, VALDEZ O A, SHELTON L M, et al. Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and anti-aging activity[J]. Journal of Applied Phycology,2017,29(1):189−198. doi: 10.1007/s10811-016-0938-9 [24] 姚秋娟, 冯翯, 王玉启, 等. 圆齿野鸦椿果皮总三萜的提取工艺及其抗肿瘤活性[J]. 中国现代中药,2020,22(10):1689−1695. [YAO Q J, FENG H, WANG Y Q, et al. Study on extraction technology and anticancer activity of triterpenoids extracted from Euscaphis konishii Pericarp[J]. Modern Chinese Medicine,2020,22(10):1689−1695. [25] 景炳年, 魏磊, 周雍, 等. 山银花总三萜超声辅助提取工艺优化及其抗菌抗氧化活性研究[J]. 食品工业科技,2021,42(1):174−181. [JING B N, WEI L, ZHOU Y, et al. Optimization of ultrasonic-assisted extraction process for total triterpenoids from Lonicera confuse and its antibacterial and antioxidant activity[J]. Science and Technology of Food Industry,2021,42(1):174−181. [26] 段丽萍, 孙炜炜, 苗丽坤, 等. 艾叶总三萜的提取工艺优化及其抑菌活性[J]. 现代食品科技,2020,36(5):88−95. [DUAN L P, SUN W W, MIAO L K, et al. Extraction optimization of total triterpenoids from Artemisia argyi and its antibacterial activity[J]. Modern Food Science and Technology,2020,36(5):88−95. [27] 王君. 丙酮-甲醇混合物萃取精馏分离过程合成与模拟[J]. 安徽理工大学学报(自然科学版),2016,36(4):6−9. [WANG J. Synthesis and simulation of extractive distillation separation process for acetone-methanol mixture stream[J]. Journal of Anhui University of Science and Technology (Natural Science Edition),2016,36(4):6−9. [28] 邹思, 易骏, 吴岩斌, 等. 虎奶菇菌核总三萜提取工艺优化及抗氧化活性研究[J]. 海峡药学,2020,32(1):25−29. [ZOU S, YI J, WU Y B, et al. Optimization of extraction process of total triterpenoids and antioxidant activity of the sclerotia from Pleurotus tuber-regium[J]. Strait Pharmaceutical Journal,2020,32(1):25−29. doi: 10.3969/j.issn.1006-3765.2020.01.008 [29] 李玉珍, 肖怀秋, 赵谋明, 等. 冷榨花生粕蛋白多肽-亚铁螯合物制备工艺优化及结构分析[J]. 中国粮油学报,2017,32(4):64−69. [LI Y Z, XIAO H Q, ZHAO M M, et al. Optimization of preparation technology for cold-pressed peanut meal albumen polypeptide-ferrous chelator and structure analysis[J]. Journal of the Chinese Cereals and Oils Association,2017,32(4):64−69. doi: 10.3969/j.issn.1003-0174.2017.04.011 [30] DONG Q Y, HE D J, NI X D, et al. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods[J]. Journal of Food Measurement and Characterization,2019,13(4):3198−3205. doi: 10.1007/s11694-019-00242-0 -