• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

棉籽糖家族寡糖的提取方法及功能性研究进展

赵若琪 程永霞 宋莲军 马燕 黄现青 乔明武

赵若琪,程永霞,宋莲军,等. 棉籽糖家族寡糖的提取方法及功能性研究进展[J]. 食品工业科技,2022,43(23):457−466. doi:  10.13386/j.issn1002-0306.2022020015
引用本文: 赵若琪,程永霞,宋莲军,等. 棉籽糖家族寡糖的提取方法及功能性研究进展[J]. 食品工业科技,2022,43(23):457−466. doi:  10.13386/j.issn1002-0306.2022020015
ZHAO Ruoqi, CHENG Yongxia, SONG Lianjun, et al. Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(23): 457−466. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020015
Citation: ZHAO Ruoqi, CHENG Yongxia, SONG Lianjun, et al. Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(23): 457−466. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022020015

棉籽糖家族寡糖的提取方法及功能性研究进展

doi: 10.13386/j.issn1002-0306.2022020015
基金项目: 河南农业大学博士科研启动项目(30500791);2022年河南省研究生联合培养基地项目(YJS2022JD16)。
详细信息
    作者简介:

    赵若琪(1998−)(ORCID:0000−0001−8607−063X),女,硕士研究生,研究方向:食品营养与安全,E-mail:675295091@qq.com

    通讯作者:

    宋莲军(1969−)(ORCID:0000−0003−3891−3668),女,博士,教授,研究方向:食品营养与安全,E-mail:slj69@126.com

  • 中图分类号: TS201.4

Advances in Extraction and Functional Studies of Raffinose Family Oligosaccharides

  • 摘要: 棉籽糖家族寡糖(Raffinose family oligosaccharides,RFOs)是α-蔗糖的1, 6-半乳糖基延伸物,是一种植物非结构性碳水化合物,主要包括棉籽糖、水苏糖、毛蕊花糖,普遍存在于植物界中。其中,在豆科植物、地黄、水苏、草石蚕等植物中较为常见,属于功能性低聚糖。RFOs因具备调节肠道菌群、预防炎症性肠病、保护肝脏、降血糖等活性功能,在功能性食品开发中的应用潜力巨大。本文主要综述RFOs的来源,RFOs提取、分离、纯化相关技术的研究,以及RFOs的功能性,以期为RFOs的开发和利用提供一定的理论参考,使其能够更好地应用于功能性食品当中。
  • 图  1  常见棉籽糖家族低聚糖的分子结构

    Figure  1.  Molecular structure of common raffinose family oligosaccharides

    图  2  肠道菌群调节宿主血糖的信号机制

    Figure  2.  Signaling mechanism of intestinal flora regulating host blood glucose

    表  1  不同植物中RFOs的种类及含量

    Table  1.   Species and content of RFOs in different plants

    样品RFOs各组分含量(mg/g)总含量(mg/g)
    棉籽糖水苏糖毛蕊花糖
    双子叶植物大豆[14]5.7333.441.1140.28
    双子叶植物红豆[14]1.4226.982.2230.62
    双子叶植物白芸豆[14]3.5737.230.9741.77
    双子叶植物绿豆[14]2.6111.5619.1733.34
    双子叶植物水苏[14]17.03364.4510.05426.19
    双子叶植物生地黄[14]36.03225.5619.50373.40
    双子叶植物草石蚕[15]27.20433.80-461.00
    双子叶植物黑豆[13]4.8836.850.4842.21
    双子叶植物扁豆[13]2.5727.3813.5043.45
    双子叶植物鹰嘴豆[13]6.4021.930.4128.74
    双子叶植物绿豌豆[13]8.8337.6715.6062.10
    双子叶植物黄豌豆[13]13.4438.7210.8863.04
    双子叶植物黑眼豌豆[13]3.5751.134.8559.55
    双子叶植物奶油豌豆[13]5.6435.990.9342.56
    双子叶植物甜瓜[17]0.360.31未检出0.67
    双子叶植物莲子[16]174.70272.10未检出446.80
    双子叶植物黄瓜[18]1.651.97未检出3.62
    单子叶植物[19]17.30未检出未检出17.30
    注:“-”表示未检出。
    下载: 导出CSV
  • [1] ELANGO D, RAJENDRAN K, VAN D L L, et al. Raffinose family oligosaccharides: Friend or foe for human and plant health?[J]. Front Plant Sci,2022,13:829118. doi:  10.3389/fpls.2022.829118
    [2] GULEWICZ P, CIESIOLKA D, FRIASR J, et al. Simple method of isolation and purification of alpha-galactosides from legumes[J]. Journal of Agricultural and Food Chemistry,2000,48(8):3120−3123. doi:  10.1021/jf000210v
    [3] CRISTINA M V, JUANA F, CONCEPCION V V. Alpha-galactosides: Antinutritional factors or functional ingredients?[J]. Critical Reviews in Food Science and Nutrition,2008,48(4):301−316. doi:  10.1080/10408390701326243
    [4] ZHANG J, SONG G, MEI Y, et al. Present status on removal of raff inose family oligosaccharides: A review[J]. Czech Journal of Food Sciences,2019,37(No.3):141−154. doi:  10.17221/472/2016-CJFS
    [5] 韦玉霞. 园艺作物中棉籽糖系列寡糖(RFO)研究进展[J]. 园艺与种苗,2017(9):46−48. [WEI Y X. Research progess of raffinose family oligosaccharides (RFO) in horticultural crops[J]. Gardening and Planting,2017(9):46−48.
    [6] PETERBAUER T, RICHTER A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds[J]. Seed Science Research,2001,11(3):185−197.
    [7] MARÍA A, MARTÍN C, MARÍA F D, et al. Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes[J]. Food Chemistry,2007,107(3):1045−1052.
    [8] ELSAYEDl A I, RAFUDEEN M S, GOLLDACK D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress[J]. Plant Biology,2014,16(1):1−8. doi:  10.1111/plb.12053
    [9] 李涛. 棉籽糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究[D]. 杨凌: 西北农林科技大学, 2017.

    LI T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize andarabidopsis[D]. Yangling: Northwest A & F University, 2017.
    [10] GU H, LU M, ZHANG Z, et al. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves[J]. Journal of Plant Physiology,2018,224−225:112−120. doi:  10.1016/j.jplph.2018.03.012
    [11] 庞椿朋. 棉籽糖家族寡糖提高番茄低温抗性的作用研究[D]. 沈阳: 沈阳农业大学, 2019: 12−34.

    PANG C P. Study on the effcect of raffinose family oilgosaccharides in low temperature resistance of tomato[D]. Shenyang: Shenyang Agricultural University, 2019: 12−34.
    [12] SONAL S,  SRITAMA M, PAPRI B, et al. Significance of galactinol and raffinose family oilgosaccharide synthesis in plants[J]. Frontiers in Plant Science,2015,6:656.
    [13] RAGHAVENDHAR R K, JOHN W F, DEVANAND L L. Researchers from louisiana state university describe findings in food science [Determination of soluble Mono, Di, and oligosaccharide content in 23 dry beans (Phaseolus vulgaris L.)][J]. Agriculture Week,2020(68):6412−6419.
    [14] 陈凌霄, 吴定涛, 赵静, 等. 高效液相色谱联用电喷雾检测器分析不同植物中棉籽糖系列寡糖[J]. 药物分析杂志,2018,38(1):34−40. [CHEN L X, WU D T, ZHAO J, et al. Analysis of raffinose family oligosaccharides in selected plants using high-performance liquid chromatography with charged aerosol detector[J]. Journal of Pharmaceutical Analysis,2018,38(1):34−40.
    [15] 王智荣, 崔春, 赵谋明. HPLC-ELSD测定草石蚕低聚糖含量的研究[J]. 中国调味品,2017,42(6):114−117. [WANG Z R, CUI C, ZHAO M M. Research on determination of oligosaccharide inStachys sieboldii Miq by HPLC-ELSD[J]. Chinese Condiment,2017,42(6):114−117. doi:  10.3969/j.issn.1000-9973.2017.06.024
    [16] XU L, ZHENG Z, LI H, et al. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds[J]. Industrial Crops & Products,2017,107:546−557.
    [17] 郝敬虹, 李天来, 孟思达, 等. 夜间低温对薄皮甜瓜果实糖积累及代谢相关酶活性的影响[J]. 中国农业科学,2009,42(10):3592−3599. [HAO J H, LI T L, MENG S D, et al. Effects of night low temperature on sugar accumulation and sugar-metabolizing enzyme activities in melon fruit[J]. Agricultural Sciences in China,2009,42(10):3592−3599. doi:  10.3864/j.issn.0578-1752.2009.10.0026
    [18] 陆慢. 黄瓜低温胁迫与恢复过程中水苏糖合成酶与α-半乳糖苷酶在RFOs代谢中的作用[D]. 扬州: 扬州大学, 2018: 3−18.

    LU M. Role of stachyose synthetase and α-galactosidase in RFOs metabolism during cold stress and recovery in cucumber[D]. Yangzhou: Yangzhou University, 2018: 3−18.
    [19] RUZICA J M, SLOBODANKA K, ELEONORA W. Application of ultrasound for enhanced extraction of prebiotic oli gosaccharides from selected fruits and vegetables[J]. Ultrasonics Sonochemistry,2015,22:446−453. doi:  10.1016/j.ultsonch.2014.07.016
    [20] ASLANIDIS C, SCHMID K, SCHMITT R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli[J]. Journal of Bacteriology,1989,171(12):6753−6763. doi:  10.1128/jb.171.12.6753-6763.1989
    [21] 陈静, 云志. 棉籽糖制备及分析检测方法[J]. 粮油加工,2009(6):127−130. [CHEN J, YUN Z. Method for preparation and analysis of raffinose[J]. Grain and Oil Processing,2009(6):127−130.
    [22] BAIK S H. Synthesis of raffinose by fungal α-galacotosidase from Absidia corymbifera[J]. Food Science and Biotechnology,2010,19(1):83−87. doi:  10.1007/s10068-010-0012-3
    [23] PETERBAUER T, MUCHA J, MACH L, et al. Chain elongation of raffinose in pea seeds. Isolation, characterizationand molecular cloning of mutifunctional enzyme catalyzing the synthesis of stachyose and verbascose[J]. The Journal of Biological Chemistry,2002,277(1):194−200. doi:  10.1074/jbc.M109734200
    [24] 钱艳艳, 王丽, 文春南, 等. 鲜地黄低聚糖纯化及其理化特性和抗氧化活性研究[J]. 天然产物研究与开发,2021,33(9):1470−1477. [QIAN Y Y, WANG L, WEN C N, et al. Purification, physicochemical property and antioxidant activity analysis of oligosaccharides from the fresh roots of Rehmannia glutinosa Libosch[J]. Natural product research and development,2021,33(9):1470−1477. doi:  10.16333/j.1001-6880.2021.9.004
    [25] 卢旭, 张帅, 林姗, 等. 莲子低聚糖提取工艺优化及其组分分析[J]. 热带作物学报,2015,36(4):813−820. [LU X, ZHANG S, LIN S, et al. Optimization of extraction process and composition analysis of lotus seed oligosaccharides[J]. Journal of Tropical Crops,2015,36(4):813−820. doi:  10.3969/j.issn.1000-2561.2015.04.029
    [26] XIANG X, YANG L, HUA S, et al. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L.) seeds by high performance liquid chromatography[J]. Journal of Food Chemistry,2008,111:215−219. doi:  10.1016/j.foodchem.2008.03.039
    [27] WAN R Z, KIT L C, WU D T, et al. Preparation and purification of raffinose family oligosaccharides from rehmanni a glutinosa libosch. by fast protein liquid chromatography coupled with refractive index detection[J]. Separation and Purification Technology,2014,138:98−103. doi:  10.1016/j.seppur.2014.10.001
    [28] 栾凯雯, 贺梦瑶, 刘佳欣, 等. 设计优化微波辅助法提取草石蚕中水苏糖[J]. 食品工业,2022,43(2):75−78. [LUAN K W, HE M Y, LIU J X, et al. Box-behnken design and optimization of microwave-assisted extraction of stachyose from silkworm[J]. The Food Industry,2022,43(2):75−78.
    [29] SOLARTE D A, RUIZ M A I, CHITO T D M, et al. Microwave assisted extraction of bioactive carbohydrates fromdifferent morphological parts of alfalfa (Medicago sativa L.)[J]. Foods,2021,10(2):346. doi:  10.3390/foods10020346
    [30] 周泉城, 申德超, 区颖刚. 超声波辅助提取经膨化大豆粕中低聚糖工艺[J]. 农业工程学报,2008(5):245−249. [ZHOU Q C, SHEN D C, QU Y G. Ultrasonic assisted extraction of oligosaccharides from extruded soybean meal[J]. Transactions of the Chinese Society of Agricultural Engineering,2008(5):245−249. doi:  10.3321/j.issn:1002-6819.2008.05.055
    [31] ANH L B, OKITSU K, IMAMURA K, et al. Ultrasound assisted cascade extraction of oil, vitamin E, and saccharides from roselle (Hibiscus sabdariffa L.) seeds[J]. Analytical Sciences,2020,36(9):1091−1097. doi:  10.2116/analsci.20P073
    [32] GUO Z, ZHAO B, LI H, et al. Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.)[J]. Innovative Food Science and Emerging Technologies,2019,54:51−63. doi:  10.1016/j.ifset.2019.03.009
    [33] 苏娣. 绿豆中毛蕊花糖的分离纯化、肠道益生和免疫调节活性研究[D]. 南京: 南京农业大学, 2013: 27−46.

    SU D. Extraction, purification, probiotic properties and immunoregulation activity of verbascose from mung bean[D]. Nanjing: Nanjing Agricultural University, 2013: 27−46.
    [34] 崔希庆. 大豆糖蜜中功能性低聚糖的纯化分离[D]. 哈尔滨: 东北农业大学, 2010: 44−53.

    CUI X Q. Purfication and separation of functional oligosaccharides from soybean molasses[D]. Harbin: Northeast Agricultural University, 2010: 44−53.
    [35] 马璇. 草石蚕水苏糖的提取纯化工艺研究[D]. 沈阳: 沈阳化工大学, 2019: 25−39.

    MA X. Study on extraction and purification process of stachyose in Stachys sieboldii Miq[D]. Shenyang: Shenyang University of Chenical Technology, 2019: 25−39.
    [36] 田原, 刘玉兰, 彭团儿, 等. 大孔离子交换树脂对大豆糖蜜脱色效果的研究[J]. 中国油脂,2009,34(4):42−46. [TIAN Y, LIU Y L, PENG T E, et al. Decoloration effect of macroporous ion exchange resin on soybean molasses[J]. China Oils and Fats,2009,34(4):42−46. doi:  10.3321/j.issn:1003-7969.2009.04.012
    [37] 周毅. 现代分离提取技术在食品中的应用[J]. 湖北农机化,2015(2):48−50. [ZHOU Y. Application of modern separation and extraction technology in food[J]. Hubei Agricultural Mechanization,2015(2):48−50.
    [38] 张敏, 史宝利. 膜分离技术在水苏糖提取中的应用[J]. 食品工业,2019,40(10):102−106. [ZHANG M, SHI B L. Application of membrane separation technology on the extraction of stachyose[J]. The Food Industry,2019,40(10):102−106.
    [39] 王兴国, 刘元法, 金青哲, 等. 膜分离技术在棉籽糖糖液纯化中的应用研究[J]. 粮油加工与食品机械,2005(6):50−53. [WANG X G, LIU Y F, JIN Q Z, et al. Application of membrane separation technology in the purification of raffinose sugar solution[J]. Grain and Oil Processing and Food Machinery,2005(6):50−53.
    [40] 刘玉兰, 田原, 鲍丹青. 大豆糖蜜发酵制备功能性大豆低聚糖的研究[J]. 河南工业大学学报(自然科学版),2010,31(2):1−5. [LIU Y L, TIAN Y, BAO D Q. Preparation of functional soybean oligosaccharide from soybean molasses by fermentation[J]. Journal of Henan University of Technology (Natural Science Edition),2010,31(2):1−5. doi:  10.16433/j.cnki.issn1673-2383.2010.02.006
    [41] 崔希庆, 刘畅, 董银卯, 等. 发酵法分离提纯大豆糖蜜中低聚糖的研究[J]. 食品科学,2009,30(23):343−346. [CUI X Q, LIU C, DONG Y M, et al. Isolation and purification of oligosaccharides from soybean molasses through fermentation[J]. Food Science,2009,30(23):343−346. doi:  10.3321/j.issn:1002-6630.2009.23.078
    [42] 徐川辉. 功能性纤维通过调节肠道微生物改善机体胰岛素敏感性作用的研究[D]. 武汉: 华中农业大学, 2020: 36−37.

    XU C H. Functional fiber increases insulin sensitivity by modulating intestinal microbiota[D]. Wuhan: Huazhong Agricultural University, 2020: 36−37.
    [43] XI M, ZHAO S, GE W, et al. Effects of stachyose on the intestinal microbiota and barrier in antibiotic-treated mice[J]. Journal of Functional Foods,2021:83.
    [44] 姜宝森. 棉籽糖对小鼠肠道总抗氧化水平丙二醛含量和肠道菌群的影响[J]. 当代畜牧,2017(6):31−33. [JIANG B S. Effects of raffinose on intestinal total antioxidant capacity, malondialdehyde contents and intestinal florain mice[J]. Modern Animal Husbandry,2017(6):31−33.
    [45] SARINA P, SONG J, ZHANG C, et al. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations[J]. Nutrients,2017,9(3):304. doi:  10.3390/nu9030304
    [46] LUSTER A D, ALON R, VON A U H. Immue cell migration in inflammation: Present and future therapeutic targets[J]. Nature Immunology,2005,6(12):1182−90. doi:  10.1038/ni1275
    [47] 陈钇汐. 木寡糖改善小鼠急性炎症性肠病的作用及机制的初步研究[D]. 长春: 东北师范大学, 2018: 1−17.

    CHEN Y X. Functional and mechanistic investigation of alleviation effect from xylo-oligosaccharide on acute inflam, matory bowel disease in mice[D]. Changchun: Northeast Normal University, 2018: 1−17.
    [48] DAI Z, SU D, ZHANG Y, et al. Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus)[J]. Journal of Agricultural and Food Chemistry,2014,62(44):10727−10735. doi:  10.1021/jf503510h
    [49] HE L, ZHANG F, JIAN Z, et al. Stachyose modulates gut microbiota and alleviates dextran sulfate sodium-inducedacute colitis in mice[J]. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association,2022,26(3):153−159.
    [50] YU Z-T, NANTHAKUMAR N N, NEWBURG D S. The human milk oligosaccharide 2′-fucosyllactose quenches campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa[J]. The Journal of Nutrition,2016,146(10):1980−1990. doi:  10.3945/jn.116.230706
    [51] CHEN Y, LI R, SHI M,  et al. Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-κB signaling and T-helper cell homeostasis[J]. Inflammation Research,2017,66(2):187−196. doi:  10.1007/s00011-016-1005-3
    [52] ARAFA E A, MOHAMED W R, ZAHER D M, et al. Gliclazide attenuates acetic acid-induced colitis via the modulation of PPAR gamma, NF-kappa B and MAPK signaling pathways[J]. Toxicology and Applied Pharmacology,2020,391:114919. doi:  10.1016/j.taap.2020.114919
    [53] FUENTES E, GUZMÁN J L, MOORE CARRASCO R, et al. Role of PPARs in inflammatory processes associatedwith metabolic syndrome (review)[J]. Molecular Medicine Reports,2013,8(6):1611−1116. doi:  10.3892/mmr.2013.1714
    [54] WANG W, LIU P, HAO C, et al. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways[J]. Scientific Reports,2017,7(1):44252. doi:  10.1038/srep44252
    [55] HE J, ZHANG P, SHEN L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. International Journal of Molecular Sciences,2020,21(17):6356. doi:  10.3390/ijms21176356
    [56] QI Y, LI S, QU D, et al. Effects of ginseng neutral polysaccharide on gut microbiota in antibiotic-associated diarrhea mice[J]. China Journal of Chinese Materia Medica,2019,44(4):811−818.
    [57] ZHAO Z, LIU W, PI X. In vitro effects of stachyose on the human gut microbiota[J]. Starch-Stärke, 2021, 73(7−8).
    [58] LI W, HUANG D, GAO A, et al. Stachyose increases absorption and hepatoprotective effect of tea polyphenols in high fructose-fed mice[J]. Molecular Nutrition & Food Research,2016,60(3):502−510.
    [59] ZHANG R, ZHAO Y, SUN Y, et al. Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch[J]. Journal of Agricultural and Food Chemistry,2013,61(32):7786−7793. doi:  10.1021/jf4018492
    [60] WU Y, LI W, LU Y, et al. Stachyose combined with tea polyphenols mitigated metabolic disorders in high fructose diet-fed mice as studied by GC-MS metabolomics approach[J]. CyTA-Journal of Food,2018,16(1):516−524. doi:  10.1080/19476337.2017.1420101
    [61] MAEGAWA K, KOYAMA H, FUKIYA S, et al. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats[J]. British Journal of Nutrition,2021:1−26.
    [62] CHEN M, ZHU X, RAN L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating the inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. Journal of the American Heart Association,2017,6(11):e002238. doi:  10.1161/JAHA.117.002238
    [63] GENG J, YANG C, WANG B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/NK pathway[J]. Biomedicine & Pharmacotherapy,2018,97:941−947.
    [64] SUN X, JIAO X, MA Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in humanumbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochemical and Biophysical Research Communications,2016,481(1-2):63−70. doi:  10.1016/j.bbrc.2016.11.017
    [65] LIU G, BEI J, LIANG L, et al. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats[J]. Molecular Nutrition & Food Research,2018,62(6):1700954.
    [66] LIANG L, LIU G, YU G, et al. Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats[J]. Carbohydrate Polymers,2019,229:115534.
    [67] LI L Z, TAO S B, MA L, et al. Roles of short-chain fatty acids in kidney diseases[J]. Chinese Medical Journal,2019,132(10):1228−1232.
    [68] SAAD M J A, SANTOS A, PRADA P O. Linking gut microbiota and inflammation to obesity and insulin resistance[J]. Physiology (Bethesda, Md.),2016,31(4):283−293.
    [69] 李嘉鑫, 杨宇峰, 石岩. 从胆汁酸核受体FXR探讨土壅木郁理论与2型糖尿病胰岛素抵抗的关系[J]. 北京中医药大学学报,2022,45(1):81−86. [LI J X, YANG Y F, SHI Y. Exploration of the correlation between the theory of earth stagnation and wood depression and insulin resistance in type 2 diabetes mellitus associated with the nuclear bile acid receptor FXR[J]. Liaoning University of Traditional Chinese Medicine,2022,45(1):81−86. doi:  10.3969/j.issn.1006-2157.2022.01.012
    [70] 李亚楠. 肠道菌群在2型糖尿病发生发展中的作用及对糖代谢的影响[D]. 苏州: 苏州大学, 2020: 1−3.

    LI Y N. Role of intestinal flora in the development of type 2 diabetes mellitus and its effect on glucose metabolism[D]. Suzhou: Suzhou University, 2020: 1−3.
    [71] ZHENG J, YUAN X, CHENG G, et al. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice[J]. Carbohydrate Polymers,2018,190:77−86. doi:  10.1016/j.carbpol.2018.02.058
    [72] 周晓莉, 许喜林. 大豆低聚糖的生理功能及应用[C]. “健康中国2030·健康食品的创新与发展”暨2019年广东省食品 学会学术年会论文集. [出版者不详]. 2019: 25−28.

    ZHOU X L, XU X L. The physiologica funtion and application of soybean oligosaccharides[C]. "Healthy China 2030 Innovation and Development of Healthy Food" and the 2019 Guangdong Food Association Annual Conference Proceedings. [Publisher unknown]. 2019: 25−28.
    [73] WWAVER C M, MARTIN B R, NAKATSU C H, et al. Galactooligosaccharides improve mineral absorption and boneproperties in growing rats through gut fermentation[J]. Journal of Agricultural and Food Chemistry,2011,59(12):6501−6510. doi:  10.1021/jf2009777
    [74] 刘力, 张炜, 徐德生, 等. 生地低聚糖对慢性阻塞性肺疾病大鼠外周气道病理变化的影响[A]. 中华中医药学会、世界中医药学会联合会中药专业委员会、北京药师协会.

    LIU L, ZHANG W, XU D S, et al. Effects of biooligosaccharide on pathological changes of peripheral airway in rats with chronic obstructive pulmonary disease[A]. China Association of Traditional Chinese Medicine, Professional Committee of Traditional Chinese Medicine of World Federation of Chinese Medicine Societies, Beijing Pharmacists Association.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  31
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回