• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

马铃薯淀粉凝胶形成及其品质影响因素研究进展

张宏远 木泰华 马梦梅

张宏远,木泰华,马梦梅. 马铃薯淀粉凝胶形成及其品质影响因素研究进展[J]. 食品工业科技,2022,43(23):450−456. doi:  10.13386/j.issn1002-0306.2022010181
引用本文: 张宏远,木泰华,马梦梅. 马铃薯淀粉凝胶形成及其品质影响因素研究进展[J]. 食品工业科技,2022,43(23):450−456. doi:  10.13386/j.issn1002-0306.2022010181
ZHANG Hongyuan, MU Taihua, MA Mengmei. Formation of Potato Starch Gel and Influencing Factors of Its Quality-A Review[J]. Science and Technology of Food Industry, 2022, 43(23): 450−456. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010181
Citation: ZHANG Hongyuan, MU Taihua, MA Mengmei. Formation of Potato Starch Gel and Influencing Factors of Its Quality-A Review[J]. Science and Technology of Food Industry, 2022, 43(23): 450−456. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010181

马铃薯淀粉凝胶形成及其品质影响因素研究进展

doi: 10.13386/j.issn1002-0306.2022010181
基金项目: 国家自然科学基金面上项目(32172250);高端外国专家引进计划。
详细信息
    作者简介:

    张宏远(1996−),男,硕士研究生,研究方向:食品化学与营养,E-mail:zhanghy634278399@163.com

    通讯作者:

    木泰华(1964−),男,博士,研究员,研究方向:食品化学与营养,E-mail:mutaihua@126.com

    马梦梅(1988−),女,博士,助理研究员,研究方向:食品化学与营养,E-mail:meimei881020@163.com

  • 中图分类号: TS201.7

Formation of Potato Starch Gel and Influencing Factors of Its Quality-A Review

  • 摘要: 马铃薯淀粉黏度高、易糊化,淀粉糊稳定性及透明度高,被广泛应用于各类凝胶制品的加工中。温度、pH等环境因素以及盐类、多糖、蛋白质等食用成分对马铃薯淀粉的糊化特性及淀粉凝胶的回生特性、流变特性、微观结构等影响不同,进而影响马铃薯淀粉凝胶制品的品质。本文在分析马铃薯淀粉凝胶形成机制的基础上,综述了不同环境因素及食用成分对马铃薯淀粉凝胶品质特性的影响规律,揭示了不同食用成分与马铃薯淀粉分子之间的相互作用原理。旨在为高品质、高营养马铃薯淀粉凝胶及其制品的研究与工业化生产提供参考。
  • 图  1  马铃薯淀粉糊化回生假想机制图[12-13]

    Figure  1.  Hypothetical mechanism diagram of gelatinization-retrogradation of potato starch[12-13]

    表  1  不同来源淀粉直径、直链及支链淀粉平均聚合度等结构信息[15]

    Table  1.   Structure information, including diameter, average polymerization degree and chain length of amylose and amylopectin, etc., of starches from different cultivars[15]

    指标马铃薯淀粉小麦淀粉大米淀粉玉米淀粉豌豆淀粉
    颗粒直径范围(μm)10~1002~10,22~363~86~172~41
    支链淀粉含量(%)89,79~8275,7472~89,8777,71,6670,61~63
    支链淀粉平均聚合度112005000~9400,13000~180008200~1090015900n.d.
    支链淀粉平均链长23,2619~21,19~2018~19,17~182022,23~24
    直链淀粉含量(%)11,18~2125,2611~28,1323,29,3430,37~39
    直链淀粉平均聚合度4920,80251290,1200~15001110,980~1110960,9901300~1350,1400
    直连淀粉平均链长670300,250~320230~370,320335340
    注:n.d.,未测出。
    下载: 导出CSV

    表  2  环境因素对马铃薯淀粉凝胶品质的影响

    Table  2.   Effect of environmental factors on gel quality of potato starch

    因素条件影响结果可能的机理解析
    糊化温度低于峰值糊化温度凝胶硬度低淀粉凝胶网络的形成或样品热降解[17]
    高于峰值糊化温度凝胶硬度最高
    更高温度凝胶硬度下降
    老化温度−6~−18 ℃凝胶强度低,弹性差冰晶尺寸影响凝胶结构,温度高时淀粉分子内部不稳定[20-21]
    亚冻结温度凝胶弹性及强度良好
    25 ℃凝胶强度低,弹性差
    pH<5或>8峰值粘度降低,不易回生pH通过影响淀粉磷酸酯基团的电荷分布来改变淀粉体系的静电相互作用[23-25]
    5~8凝胶性强,易回生
    下载: 导出CSV

    表  3  不同食用成分对马铃薯淀粉凝胶品质的影响

    Table  3.   Effects of different edible ingredients on the gel quality of potato starch

    因素条件影响结果可能的机理解析
    盐离子阳离子(Ca2+、Mg2+、Al3+、Fe3+、Na+、K+多价阳离子提高了淀粉凝胶网络的强度和刚性阳离子屏蔽磷酸酯基团上的负电荷或交联
    (多价阳离子)两个相邻的磷酸酯基团[15,27]
    阴离子(F-、SO42-、Br-、NO3-、SCN-、I-盐析离子促进直链淀粉析出,提高凝胶强度与
    弹性模量,盐溶离子作用相反
    盐析效应可增强直链淀粉链间的聚集,
    形成三维网络结构[32-33]
    氨基酸酸性氨基酸降低粒径、膨胀力与凝胶强度,提高糊化温度带电氨基酸与磷酸酯基团的静电作用和直链淀粉
    析出[37-38]
    碱性氨基酸提高粒径、膨胀力与凝胶强度,降低糊化温度
    中性氨基酸无显著影响
    蛋白质大豆分离蛋白增加淀粉的稳定性和凝胶强度,pH在等电点
    附近时淀粉凝胶被破坏
    蛋白质通过竞争水分,氨基以及盐离子与马铃薯淀粉的磷酸酯基团之间的相互作用或蛋白单独形成聚集体的能力等方式影响凝胶强度;pH在等电点附近时,酸化改变蛋白电荷分布,降低凝胶强度[44-50]
    酪蛋白酸钠储能模量(G′)降低
    乳清蛋白形成稳定的冷凝胶,提高复合凝胶硬度
    亲水胶体中性亲水胶体增加了分散体的凝胶强度亲水胶体与淀粉磷酸酯基团的静电排斥,或亲水胶体自身的粘度使淀粉体系结合紧密[23,54,57]
    阴离子亲水胶体对凝胶强度的影响与不同种类亲水胶体浓度有关
    下载: 导出CSV
  • [1] 黄凤玲, 张琳, 李先德, 等. 中国马铃薯产业发展现状及对策[J]. 农业展望,2017,13(1):25−31. [HUANG F L, ZHANG L, LI X D, et al. Development situation and countermeasures of China's potato industry[J]. Agricultural Outlook,2017,13(1):25−31.
    [2] SINGH N, SINGH J, KAUR L, et al. Morphological, thermal and rheological properties of starches from different botanical sources[J]. Food Chemistry,2003,81(2):219−231. doi:  10.1016/S0308-8146(02)00416-8
    [3] NODA T, TAKIGAWA S, MATSUURA-ENDO C, et al. Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules[J]. Carbohydrate Polymers,2005,60(2):245−251. doi:  10.1016/j.carbpol.2005.01.015
    [4] 孟杰, 云雪艳, 陈倩茹, 等. 沙蒿籽胶对马铃薯淀粉凝胶的热学性能、质构特性、流变特性的影响[J]. 食品工业科技,2021,42(16):66−74. [MENG J, YUN X Y, CHEN Q R, et al. Effects of artemisia sphaerocephala krasch gumon on the thermal, textural and theological properties of potato starch gel[J]. Science and Technology of Food Industry,2021,42(16):66−74.
    [5] 程晓惠, 李琳, 肖帅, 等. 马铃薯主食化的问题与对策研究[J]. 粮食与油脂,2020,33(1):12−14. [CHENG X H, LI L, XIAO S, et al. Problems and countermeasures of using potato as staple food[J]. Cereals & Oils,2020,33(1):12−14.
    [6] ALVANI K, TESTER R F, LIN C L, et al. Amylolysis of native and annealed potato starches following progressive gelatinisation[J]. Food Hydrocolloids,2014,36:273−277. doi:  10.1016/j.foodhyd.2013.10.010
    [7] SANDHU K S, KAUR M, MUKESH. Studies on noodle quality of potato and rice starches and their blends in relation to their physicochemical, pasting and gel textural properties[J]. LWT-Food Science and Technology,2010,43(8):1289−1293. doi:  10.1016/j.lwt.2010.03.003
    [8] GOMAND S V, LAMBERTS L, DERDE L J, et al. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof[J]. Food Hydrocolloids,2010,24(4):307−317. doi:  10.1016/j.foodhyd.2009.10.008
    [9] HOOVER R. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources[J]. Critical Reviews in Food Science and Nutrition,2010,50(9):835−847. doi:  10.1080/10408390903001735
    [10] DHITAL S, SHRESTHA A K, HASJIM J, et al. Physicochemical and structural properties of maize and potato starches as a function of granule size[J]. Journal of Agricultural and Food Chemistry,2011,59(18):10151−10161. doi:  10.1021/jf202293s
    [11] DONG R, NIU Q, ZHANG K, et al. The effect of retrogradation time and ambient relative humidity on the quality of extruded oat noodles[J]. Food Science & Nutrition,2020,8(6):2940−2949.
    [12] CHEN B, WANG Y-R, FAN J L, et al. Effect of glutenin and gliadin modified by protein-glutaminase on retrogradation properties and digestibility of potato starch[J]. Food Chemistry,2019,301:125226. doi:  10.1016/j.foodchem.2019.125226
    [13] CHEN Y F, SINGH J, ARCHER R. Potato starch retrogradation in tuber: Structural changes and gastro-small intestinal digestion in vitro[J]. Food Hydrocolloids,2018,84:552−560. doi:  10.1016/j.foodhyd.2018.05.044
    [14] 徐芬, 刘伟, 刘倩楠, 等. 不同糊化度马铃薯淀粉的黏度及凝胶特性分析[J]. 现代食品科技,2020,36(5):42−50. [XU F, LIU W, LIU Q N, et al. Viscosity and gelling properties of potato starch with different degrees of gelatinization[J]. Modern Food Science and Technology,2020,36(5):42−50.
    [15] REYNIERS S, OOMS N, GOMAND S V, et al. What makes starch from potato (Solanum tuberosum L.) tubers unique: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(5):2588−2612. doi:  10.1111/1541-4337.12596
    [16] DESAM G P, LI J, CHEN G, et al. Swelling kinetics of rice and potato starch suspensions[J]. Journal of Food Process Engineering,2020,43(4):e13353.
    [17] TORRES M D, CHENLO F, MOREIRA R. Rheological effect of gelatinization using different temperature-time conditions on potato starch dispersions: Mechanical characterization of the obtained gels[J]. Food and Bioprocess Technology,2018,11(1):132−140. doi:  10.1007/s11947-017-2000-6
    [18] HAN H, HOU J, YANG N, et al. Insight on the changes of cassava and potato starch granules during gelatinization[J]. International Journal of Biological Macromolecules,2019,126:37−43. doi:  10.1016/j.ijbiomac.2018.12.201
    [19] MALUMBA P, DORAN L, DANTHINE S, et al. The effect of heating rates on functional properties of wheat and potato starch-water systems[J]. LWT,2018,88:196−202. doi:  10.1016/j.lwt.2017.10.017
    [20] JIANG J, GAO H, ZENG J, et al. Determination of subfreezing temperature and gel retrogradation characteristics of potato starch gel[J]. LWT-Food Science and Technology,2021,149:112037. doi:  10.1016/j.lwt.2021.112037
    [21] JIANG J, ZENG J, GAO H, et al. Effect of low temperature on the aging characteristics of a potato starch gel[J]. International Journal of Biological Macromolecules,2020,150:519−527. doi:  10.1016/j.ijbiomac.2020.02.077
    [22] FANG F, LUO X, FEI X, et al. Stored gelatinized waxy potato starch forms a strong retrograded gel at low pH with the formation of intermolecular double helices[J]. Journal of Agricultural and Food Chemistry,2020,68(13):4036−4041. doi:  10.1021/acs.jafc.9b08268
    [23] FANG F, LUO X, BEMILLER J N, et al. Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch[J]. Food Hydrocolloids,2020,107:105923. doi:  10.1016/j.foodhyd.2020.105923
    [24] 马冰洁, 唐洪波, 马玲. 马铃薯淀粉糊的黏度性质[J]. 东北林业大学学报,2006(4):73−75. [MA B J, TANG H B, MA L. Viscosity property of potato starch paste[J]. Journal of Northeast Forestry University,2006(4):73−75.
    [25] 吕振磊, 李国强, 陈海华. 马铃薯淀粉糊化及凝胶特性研究[J]. 食品与机械,2010,26(3):22−27. [LÜ Z L, LI G Q, CHEN H H. Gelationization and gel properties of potato starch[J]. Food & Machinery,2010,26(3):22−27.
    [26] ZHANG X, GUO D, XUE J, et al. The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch[J]. Food & Function, Cambridge: Royal Soc Chemistry,2017,8(10):3792−3802.
    [27] CHUANG L, PANYOYAI N, KATOPO L, et al. Calcium chloride effects on the glass transition of condensed systems of potato starch[J]. Food Chemistry, Oxford: Elsevier Sci Ltd.,2016,199:791−798.
    [28] CHEN Y, WANG C, CHANG T, et al. Effect of salts on textural, color, and rheological properties of potato starch gels[J]. Starch-Starke, Weinheim: Wiley-V C H Verlag Gmbh, 2014, 66(1–2): 149–156.
    [29] LI Q, ZHANG L, YE Y, et al. Effect of salts on the gelatinization process of Chinese yam (Dioscorea opposita) starch with digital image analysis method[J]. Food Hydrocolloids,2015,51:468−475. doi:  10.1016/j.foodhyd.2015.05.045
    [30] 李晓佩, 黄昆, 林洁媛, 等. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展,2014,26(8):1285−1291. [LI X P, HUANG K, LIN J Y, et al. Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution[J]. Progress in Chemistry,2014,26(8):1285−1291.
    [31] WANG W, ZHOU H, YANG H, et al. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch[J]. Food Chemistry,2017,214:319−327. doi:  10.1016/j.foodchem.2016.07.040
    [32] ZHOU H, WANG C, SHI L, et al. Effects of salts on physicochemical, microstructural and thermal properties of potato starch[J]. Food Chemistry,2014,156:137−143. doi:  10.1016/j.foodchem.2014.02.015
    [33] WANG W, ZHOU H, YANG H, et al. Effects of salts on the freeze-thaw stability, gel strength and rheological properties of potato starch[J]. Journal of Food Science and Technology-Mysore,2016,53(9):3624−3631. doi:  10.1007/s13197-016-2350-5
    [34] CHEN X, LUO J, LIANG Z, et al. Structural and physicochemical/digestion characteristics of potato starch-amino acid complexes prepared under hydrothermal conditions[J]. International Journal of Biological Macromolecules,2020,145:1091−1098. doi:  10.1016/j.ijbiomac.2019.09.202
    [35] LIANG Z, CHEN X, LUO J, et al. Addition of amino acids to modulate structural, physicochemical, and digestive properties of corn starch-amino acid complexes under hydrothermal treatment[J]. International Journal of Biological Macromolecules,2020,160:741−749. doi:  10.1016/j.ijbiomac.2020.05.238
    [36] CHEN W, ZHOU H, YANG H, et al. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch[J]. Food Chemistry,2015,167:180−184. doi:  10.1016/j.foodchem.2014.06.089
    [37] WANG W, CHEN W, YANG H, et al. Textural and rheological properties of potato starch as affected by amino acids[J]. International Journal of Food Properties,2018,20:S3123−S3134.
    [38] CUI M, FANG L, ZHOU H, et al. Effects of amino acids on the physiochemical properties of potato starch[J]. Food Chemistry,2014,151:162−167. doi:  10.1016/j.foodchem.2013.11.033
    [39] CHEN X, LUO J, FU L, et al. Structural, physicochemical, and digestibility properties of starch-soybean peptide complex subjected to heat moisture treatment[J]. Food Chemistry,2019,297:124957. doi:  10.1016/j.foodchem.2019.124957
    [40] FONSECA L M, HALAL S L M E, DIAS A R G, et al. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review[J]. Carbohydrate Polymers,2021,274:118665. doi:  10.1016/j.carbpol.2021.118665
    [41] SARABHAI S, PRABHASANKAR P. Influence of whey protein concentrate and potato starch on rheological properties and baking performance of Indian water chestnut flour based gluten free cookie dough[J]. LWT-Food Science and Technology,2015,63(2):1301−1308. doi:  10.1016/j.lwt.2015.03.111
    [42] SOPADE P A, HARDIN M, FITZPATRICK P, et al. Macromolecular interactions during gelatinisation and retrogradation in starch-whey systems as studied by rapid visco-analyser[J]. International Journal of Food Engineering,2006,2(4):7.
    [43] LU Z H, DONNER E, YADA R Y, et al. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends[J]. Carbohydrate Polymers,2016,154:214−222. doi:  10.1016/j.carbpol.2016.08.055
    [44] VILLANUEVA M, DE LAMO B, HARASYM J, et al. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches[J]. Carbohydrate Polymers,2018,201:374−381. doi:  10.1016/j.carbpol.2018.08.052
    [45] KUMAR L, BRENNAN M A, MASON S L, et al. Rheological, pasting and microstructural studies of dairy protein-starch interactions and their application in extrusion-based products: A review[J]. Starch-Stärke,2017,69(1–2):1600273.
    [46] BERTOLINI A C, CREAMER L K, EPPINK M, et al. Some rheological properties of sodium caseinate-starch gels[J]. Journal of Agricultural and Food Chemistry, American Chemical Society,2005,53(6):2248−2254.
    [47] ZALESKA H, RING S, TOMASIK P. Electrosynthesis of potato starch-casein complexes[J]. International Journal of Food Science & Technology,2001,36(5):509−515.
    [48] LAVOISIER A, AGUILERA J M. Starch gelatinization inside a whey protein gel formed by cold gelation[J]. Journal of Food Engineering,2019,256:18−27. doi:  10.1016/j.jfoodeng.2019.03.013
    [49] VILLANUEVA M, RONDA F, MOSCHAKIS T, et al. Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels[J]. Food Hydrocolloids,2018,79:20−29. doi:  10.1016/j.foodhyd.2017.12.022
    [50] RIBOTTA P D, ROSELL C M. Effects of enzymatic modification of soybean protein on the pasting and rheological profile of starch-protein systems[J]. Starch-Starke, Weinheim:Wiley-V C H Verlag Gmbh,2010,62(7):373−383.
    [51] MAHMOOD K, KAMILAH H, SHANG P L, et al. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications[J]. Food Bioscience,2017,19:110−120. doi:  10.1016/j.fbio.2017.05.006
    [52] VARELA M S, NAVARRO A S, YAMUL D K. Effect of hydrocolloids on the properties of wheat/potato starch mixtures[J]. Starch-Stärke, 2016, 68(7–8): 753–761.
    [53] DOBOSZ A, SIKORA M, KRYSTYJAN M, et al. Influence of xanthan gum on the short- and long-term retrogradation of potato starches of various amylose content[J]. Food Hydrocolloids,2020,102:105618. doi:  10.1016/j.foodhyd.2019.105618
    [54] ZHAO Y, CHEN H, WANG Y, et al. Effect of sodium alginate and its guluronic acid/mannuronic acid ratio on the physicochemical properties of high-amylose cornstarch[J]. Starch-Starke, Weinheim: Wiley-V C H Verlag Gmbh, 2016, 68(11–12): 1215–1223.
    [55] YU Z, WANG Y S, CHEN H H, et al. Effect of sodium alginate on the gelatinization and retrogradation properties of two tuber starches[J]. Cereal Chemistry,2018,95(3):445−455. doi:  10.1002/cche.10046
    [56] XU Z, ZHONG F, LI Y, et al. Effect of polysaccharides on the gelatinization properties of cornstarch dispersions[J]. Journal of Agricultural and Food Chemistry,2012,60(2):658−664. doi:  10.1021/jf204042m
    [57] 陈金玉, 张坤生, 王轻, 等. 马铃薯淀粉与食用胶共混体系流变特性与冻融稳定性研究[J]. 食品研究与开发,2020,41(11):17−22. [CHEN J Y, ZHANG K S, WANG Q, et al. Rheological properties and freeze-thaw stability of potato starch and edible gum mixed system[J]. Food Research and Development,2020,41(11):17−22.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  21
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名