• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

新甲基橙皮苷二氢查耳酮及合成前体药理作用研究进展

魏静 宋若兰 陈翔 王振东 董英 钟祥健 吕芳 折改梅

魏静,宋若兰,陈翔,等. 新甲基橙皮苷二氢查耳酮及合成前体药理作用研究进展[J]. 食品工业科技,2022,43(23):436−449. doi:  10.13386/j.issn1002-0306.2022010176
引用本文: 魏静,宋若兰,陈翔,等. 新甲基橙皮苷二氢查耳酮及合成前体药理作用研究进展[J]. 食品工业科技,2022,43(23):436−449. doi:  10.13386/j.issn1002-0306.2022010176
WEI Jing, SONG Ruolan, CHEN Xiang, et al. Research Progress on Pharmacological Activities of Neohesperidin Dihydrochalcone and Its Synthetic Precursors[J]. Science and Technology of Food Industry, 2022, 43(23): 436−449. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010176
Citation: WEI Jing, SONG Ruolan, CHEN Xiang, et al. Research Progress on Pharmacological Activities of Neohesperidin Dihydrochalcone and Its Synthetic Precursors[J]. Science and Technology of Food Industry, 2022, 43(23): 436−449. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010176

新甲基橙皮苷二氢查耳酮及合成前体药理作用研究进展

doi: 10.13386/j.issn1002-0306.2022010176
详细信息
    作者简介:

    魏静(1996−),女,硕士研究生,研究方向:中(民族)药药效成分和新药创制研究,E-mail:Radiant_JJ@163.com

    通讯作者:

    折改梅(1976−),女,博士,研究员,研究方向:中(民族)药药效成分和新药创制研究,E-mail:shegaimei@126.com

  • 中图分类号: R961

Research Progress on Pharmacological Activities of Neohesperidin Dihydrochalcone and Its Synthetic Precursors

  • 摘要: 新甲基橙皮苷二氢查耳酮(Neohesperidin dihydrochalcone,NHDC)是一种无毒、高甜度、低热量的甜味剂,具有增甜、增香、掩盖苦味、修饰风味的功能与抗氧化、抗炎、降血脂等药理活性,在食品及医药领域具有一定的开发潜力。当前NHDC的合成前体主要包括橙皮苷(Hesperidin,HSD)、新橙皮苷(Neohesperidin,NHP)和柚皮苷(Naringin,NRG),具有抗氧化、保护肝肾、抑菌和改善胃肠道等多种生物学活性。NHDC的药理研究相对具有发展进程缓慢、研究系统欠缺、机制深度缺乏等特点。本文以NHDC及其合成前体为关键词在SciFinder、Web of Science、CNKI等科学数据库中进行检索,综述了NHDC的药理作用和机制,并对其合成前体的药理研究进展进行总结,以期为NHDC的进一步综合利用和开发高附加值产品提供参考。
  • 图  1  新甲基橙皮苷二氢查耳酮及其合成前体结构[1, 34-36]

    Figure  1.  Chemical structures of neohesperidin dihydrochalcone and its synthetic precursors[1, 34-36]

    图  2  NHDC及其合成前体抗氧化通路作用机制[5-7, 15-17]

    Figure  2.  Action mechanism of NHDC and its synthetic precursors in the antioxidant pathway[5-7, 15-17]

    图  3  NHDC及其合成前体保护肝肾作用机制[4, 8, 26-27]

    Figure  3.  Action mechanism of hepatorenal protective effect of NHDC and its synthetic precursors[4, 8, 26-27]

    图  4  NHDC及其合成前体药理作用对应疾病[4-8, 15, 21-27, 46-49, 54-66, 73-96]

    Figure  4.  Pharmacological effects of NHDC and its synthetic precursors correspond to diseases[4-8, 15, 21-27, 46-49, 54-66, 73-96]

    表  1  NHDC及其合成前体药理作用及机制

    Table  1.   Pharmacological effect and mechanism of NHDC and its synthetic precursors

    药物药理作用作用机制及途径参考文献
    NHDC抗氧化通过增强SOD、GSH-Px活性,降低CAT等抑制氧化应激
    抑制ABTS+·、·O2-、·OH、H2O2、HOCl等自由基
    [5]
    [6-7]
    抗炎抑制pq诱导的NF-κB表达和线粒体驱动的凋亡信号[4]
    保护肝脏抑制LPS与TLR4结合,激活Nrf2、抑制TLR4信号通路
    逆转Bax上调与Bcl-2下调,抑制氧化应激
    间接清除Nrf2/ARE信号通路激活
    [8]
    [4]
    [59]
    降血脂抑制HMG-CO还原酶和ACAT的活性,抑制脂肪肝形成[9,65]
    HSD抗氧化降低ROS、MDA、PCO、AOPP与caspase-3表达水平,抑制氧化应激[15,42-51]
    抗炎降低COX-2的过表达和炎症细胞的浸润
    降低IL-6、IL-8、SIRT1、PGC-1α和p-p65等表达水平
    [18]
    [54]
    保护肝脏上调Nrf2/HO-1/Bcl2信号通路和下调NF-κB信号通路
    降低ALT、ALP、GGT等水平,增强白蛋白与白蛋白/球蛋白比值
    [26]
    [60]
    保护肾脏提高一氧化氮的表达量,降低尿素氮和血清肌酐的表达量[61-62]
    降血脂提高瘦素、IL-6和TNF-α水平,改善血脂水平异常[20]
    降血糖影响PPAR信号通路,恢复胰岛素信号通路IRS/Akt/GLUT4蛋白表达[66,68]
    改善肠道增加5-HTR4和细胞内游离钙离子,增强cAMP/PKA途径和p-CREB途径相关蛋白表达,改善洛哌胺诱导的便秘大鼠结肠运动[75]
    保护心血管系统抑制TGF-β1和MMPs蛋白表达
    下调LC3II和Beclin1表达,上调p-mTOR、P-Akt和PI3K表达
    [82]
    [83]
    神经保护通过降低氧化应激、改善线粒体功能障碍和细胞凋亡减轻神经元损伤[89-91]
    保护生殖系统降低miR-181a和miR126-3p表达水平,上调SIRT1和SOD2 mRNA蛋白表达水平,提高Nrf2、HO-1蛋白表达水平[96]
    抗癌增强miR-132的表达,降低ZEB2的表达,促进NScLc细胞的凋亡
    抑制NF-κB和Akt通路,降低PD-L1表达水平,抑制乳腺癌生长
    [12]
    [100]
    NHP抗氧化对DPPH自由基和ABTS+·自由基有清除能力[16,44]
    促炎症与吲哚美辛联用,诱导大鼠胃细胞DNA断裂,增加了COX-2的表达[56]
    保护肝脏上调PParα、Acaa2、Cpt-1、Pdk4、Acox1等脂肪酸氧化基因表达
    下调Srebf1、Fasn、Scd1、Acc1等脂肪生成基因表达
    [63]
    降血糖
    降血脂
    抑制SCD-1FAS的基因表达,显著上调ACOX、AMPK的表达,促进PGC-1α,增强线粒生物发生等[21,63,69]
    神经保护抑制神经元凋亡、抑制氧化应激、调控凋亡通路和Akt/Nrf2/HO-1通路
    抑制Aβ25-35诱导的内质网功能紊乱和促凋亡反应
    [92]
    [93]
    抗癌激活P53/Bcl-2/Bax信号通路,诱导MDA-MB-231细胞凋亡[13]
    NRG抗氧化抑制超氧化物自由基、黄嘌呤氧化酶、ROS和脂质过氧化等作用
    抑制caspase-8,caspase-3信号凋亡与Nrf2信号通路,下调相关凋亡基因
    [17]
    [45]
    抗炎抑制TNF-α和IL-1β产生,上调TGF-β1表达
    通过AMPK、p38和Nrf-2信号通路诱导巨噬细胞HO-1表达
    [57]
    [58]
    保护肝肾调节氧化应激、炎症、凋亡、自噬和DNA损伤
    增强FXR和KIM-1的mRNA表达,对抗细胞损伤
    [27]
    [64]
    降血糖
    降血脂
    抑制PI3K-Akt-mTOR通路介导的自噬,改善应激导致内皮功能障碍
    抑制HG诱导的ERK1/2和JNK MAPK信号通路,改善肾纤维化
    抑制LOX-1表达,下调NADPH表达,改善内皮功能障碍
    [22]
    [70]
    [25]
    保护肠道抑制TNF-α刺激下RIMVECs细胞的迁移,保护屏障完整性[81]
    保护心肌细胞抑制ROS激活的MAPK通路,保护H9c2细胞免受HG诱导的损伤
    调节ERK和IRE1α通路,减少ER应激介导的细胞凋亡
    [86-87]
    神经保护作用于PI-3K/Akt依赖的Nrf2信号通路
    淀粉样β代谢、Tau蛋白超磷酸化、氧化应激和细胞凋亡等
    [94]
    [95]
    抗癌调节miR-126/VCAM-1抑制SCLC生长,诱导细胞凋亡
    减少NF-κB/COX-2-caspase-1通路的激活,诱导凋亡
    [14]
    [101]
    下载: 导出CSV
  • [1] 雷琳, 黄宝华, 卢宇靖, 等. 新橙皮苷二氢查耳酮的调味应用及其生理活性研究进展[J]. 中国调味品,2014,39(12):41−47. [LEI L, HUANG B H, LU Y J, et al. Research progress of flavor modifying and physiological activity of neohesperidin dihydrochalcone[J]. China Condiment,2014,39(12):41−47.
    [2] 隗继浩. 新橙皮苷二氢查耳酮对OVA诱导口服耐受的影响[D]. 长春: 吉林大学, 2020

    CHEN J H. Effect of neohesperidin dihydrochalcone on OVA-induced oral tolerance[D]. Changchun: Jilin University, 2020.
    [3] 梁健丹, 李海梅, 罗华健, 等. 新橙皮甙二氢查尔酮与HSA/BSA的相互作用机制研究[J]. 南宁师范大学学报(自然科学版),2020,37(2):29−36. [LIANG J D, LI H M, LUO H J, et al. Study on the interaction mechanism between neohesperidin dihydrochalcone and different organisms (HSA/BSA)[J]. Journal of Nanning Normal University(Natural Scinence Edition),2020,37(2):29−36.
    [4] SHI Q, SONG X, FU J, et al. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice[J]. Int Immunopharmacol,2015,29(2):722−729. doi:  10.1016/j.intimp.2015.09.003
    [5] HU L, LI L, XU D, et al. Protective effects of neohesperidin dihydrochalcone against carbon tetrachloride-induced oxidative damage in vivo and in vitro[J]. Chem Biol Interact,2014,213:51−59. doi:  10.1016/j.cbi.2014.02.003
    [6] CHOI J M, YOON B S, LEE S K, et al. Antioxidant properties of neohesperidin dihydrochalcone: Inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death[J]. Biol Pharm Bull,2007,30(2):324. doi:  10.1248/bpb.30.324
    [7] SUAREZ J, HERRERA MD, MARHUENDA E. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone[J]. Phytomedicine,1998,5(6):469−73. doi:  10.1016/S0944-7113(98)80044-5
    [8] XIA X M, FU J L, SONG X F, et al. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts[J]. Free Radic Biol Med,2015,89:522−532. doi:  10.1016/j.freeradbiomed.2015.08.023
    [9] BOK S H, JEONG T S, HWAN B K, et al. Use of neohesperidin dihydrochalcone for the manufacture of a medicament for preventing or treating elevated blood lipid levelrelated diseases: European, EP 1113726 Bl[P]. 2004-03-24.
    [10] 王振东, 陈良, 王洋. 关于新甲基橙皮苷二氢查耳酮食品级产品标准和检测方法的研究[J]. 中国调味品,2016,41(11):135−139. [WANG Z D, CHEN L, WANG Y. Research on food-grade product standards and testing methods of neohesperidin dihydrochalcone[J]. China Condiment,2016,41(11):135−139.
    [11] 李爱平. 新橙皮苷二氢查耳酮的制备及应用研究[D]. 广州: 华南理工大学, 2016

    LI A P. Preparation and application of neosperidin dihydrochalcone[D]. Guangzhou: South China University of Technology, 2016.
    [12] TAN S, DAI L L, TAN P C, et al. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR132/ZEB2 signalling pathway[J]. Int J Mol Med,2020,46(6):2069−2077. doi:  10.3892/ijmm.2020.4756
    [13] XU F, ZANG J, CHEN D Z, et al. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway[J]. Nat Prod Commun,2012,7(11):1475−1478.
    [14] CHEN M J, PENG W L, HU S F, et al. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer[J]. Oncol Lett,2018,16(4):4754−4760.
    [15] AKSU E H, KANDEMIR F M, KÜCÜKLER S. The effects of hesperidin on colistin-induced reproductive damage, autophagy, and apoptosis by reducing oxidative stress[J]. Andrologia,2021,53(2):e13900.
    [16] 徐坤勇, 郭建忠, 颜娟, 等. 响应曲面法优化枳壳中柚皮苷与新橙皮苷的提取工艺及抗氧化研究[J]. 现代中药研究与实践,2021,35(1):66−72. [XU K Y, GUO J Z, YAN J, et al. Optimization of extraction process of naringin and neohesperidin from Aurantii fructus by response surface methodology and anti-oxidant activity[J]. Research and Practice on Chinese Medicines,2021,35(1):66−72.
    [17] CHEN P, XIAO Z T, WU H, et al. The effects of naringin on cigarette smoke-induced dynamic changes in oxidation/antioxidant system in lung of mice[J]. Nat Prod Commun,2020,15(8):1−9.
    [18] LI Y S, ZHANG J, TIAN G H, et al. Kirenol, darutoside and hesperidin contribute to the anti-inflammatory and analgesic activities of siegesbeckia pubescens makino by inhibiting COX-2 expression and inflammatory cell infiltration[J]. J Ethnopharmacol,2021,268:113547. doi:  10.1016/j.jep.2020.113547
    [19] JAIN M, PARMAR H S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation[J]. Inflamm Res,2011,60(5):483−491. doi:  10.1007/s00011-010-0295-0
    [20] REHMAN K, MUARWAR S M, AKASH MSH, et al. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation[J]. PLoS One,2020,15(1):e0227637. doi:  10.1371/journal.pone.0227637
    [21] JIA S, HU Y, ZHANG W N, et al. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice[J]. Food Funct,2015,6(3):878−886. doi:  10.1039/C4FO00993B
    [22] WANG K, PENG S J, XIONG S F, et al. Naringin inhibits autophagy mediated by PI3K-Akt-mTOR pathway to ameliorate endothelial cell dysfunction induced by high glucose/high fat stress[J]. Eur J Pharmacol,2020,874:173003. doi:  10.1016/j.ejphar.2020.173003
    [23] AJA P M, EKPONO E U, AWOKE J N, et al. Hesperidin ameliorates hepatic dysfunction and dyslipidemia in male wistar rats exposed to cadmium chloride[J]. Toxicol Rep,2020,7:1331−1338. doi:  10.1016/j.toxrep.2020.09.014
    [24] LU J F, ZHU M Q, ZHANG H, et al. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice[J]. FASEB J,2020,34(9):12053−12071. doi:  10.1096/fj.201903102RR
    [25] BI C, JIANG Y N, FU Y N, et al. Naringin inhibits lipopolysaccharide-induced damage in human umbilical vein endothelial cells via attenuation of inflammation, apoptosis and MAPK pathways[J]. Cytotechnology,2016,68(4):1473−1487. doi:  10.1007/s10616-015-9908-3
    [26] ABDELAZIZ R M, ABDELAZEM A Z, HASHEM K S, et al. Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats[J]. N-S Arch Pharmacol,2020,393(8):1405−1417. doi:  10.1007/s00210-020-01843-z
    [27] CAGLAYAN C, TEMEL Y, KANDEMIR F M, et al. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage[J]. Environ Sci Pollut Res Int,2018,25(21):20968−20984. doi:  10.1007/s11356-018-2242-5
    [28] HAN G E, KANG H T, CHUNG S, et al. Novel neohesperidin dihydrochalcone analogue inhibits adipogenic differentiation of human adipose-derived stem cells through the Nrf2 pathway[J]. Int J Mol Sci,2018,19(8):2215. doi:  10.3390/ijms19082215
    [29] IRANSHAHI M, REZAEE R, PARHIZ H, et al. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin[J]. Life Sci,2015,137:125−132. doi:  10.1016/j.lfs.2015.07.014
    [30] PARHIZ H, ROOHBAKHSH A, SOLTANI F, et al. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models[J]. Phytother Res,2015,29(3):323−331. doi:  10.1002/ptr.5256
    [31] DALY K, DARBY A C, HALL N, et al. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus[J]. Environ Microbiol,2016,18(7):2159−2171. doi:  10.1111/1462-2920.12942
    [32] SHE G M, WANG S, LIU B. Dihydrochalcone glycosides from oxytropis myriophylla[J]. Chem Cent J,2011,5:71. doi:  10.1186/1752-153X-5-71
    [33] 王刚, 蔡才, 王亚珍, 等. 新橙皮苷二氢查耳酮的合成工艺及应用进展[J]. 江汉大学学报(自然科学版),2020,48(1):37−44. [WANG G, CAI C, WANG Y Z, et al. Synthesis and application of neohesperidin dihydrochalcone[J]. Journal of Jianghan University Natural Science Edition,2020,48(1):37−44.
    [34] ROOHBAKHSH A, PARHIZ H, SOLTANI F, et al. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases[J]. Life Sci,2015,124:64−74. doi:  10.1016/j.lfs.2014.12.030
    [35] 陈春玉, 李毅, 黄超明, 等. 新橙皮苷的制备工艺及应用进展[J]. 天然气化工(C1化学与化工),2014,39(3):81−87. [CHEN C Y, LI Y, HUANG C M, et al. Advances in preparation and application of neohesperidin[J]. Natural Gas Chemical Industry,2014,39(3):81−87.
    [36] SHIRANI K, YOUSEFSANI B S, SHIRANI M, et al. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review[J]. Phytother Res,2020,34(8):1734−1744. doi:  10.1002/ptr.6641
    [37] 刘坚, 王振, 蒋书歌, 等. 根皮乙酰苯-4′-β-新橙皮糖苷合成新橙皮苷工艺研究[J]. 中国野生植物资源,2020,39(8):1−5. [LIU J, WANG Z, JIANG S G, et al. Study on the synthesis of neohesperidin from phloroacetophenone-4'-β-neohesperidoside[J]. Chinese Wild Plant Resources,2020,39(8):1−5.
    [38] NIJVELDT R J, VAN NOOD E, VAN HOORN D E, et al. Flavonoids: A review of probable mechanisms of action and potential applications[J]. Am J Clin Nutr,2001,74(4):418−425. doi:  10.1093/ajcn/74.4.418
    [39] COS P, YING L, CALOMME M, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers[J]. J Nat Prod,1998,61(1):71−76. doi:  10.1021/np970237h
    [40] VAN ACKER S A, TROMP M N, HAENEN G R, et al. Flavonoids as scavengers of nitric oxide radical[J]. Biochem Biophys Res Commun,1995,214(3):755−759. doi:  10.1006/bbrc.1995.2350
    [41] LOTITO S B, FREI B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon?[J]. Free Radic Biol Med,2006,41(12):1727−1746. doi:  10.1016/j.freeradbiomed.2006.04.033
    [42] KUMAR R, AKHTAR F, RIZZVI S I. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat[J]. Clin Exp Pharmacol Physiol,2020,47(4):571−582. doi:  10.1111/1440-1681.13221
    [43] ESTRUEL-AMADES S, MASSOT-CLADERA M, GARCIA-CERDÀ P, et al. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats[J]. Nutrients,2019,11(4):783. doi:  10.3390/nu11040783
    [44] ELHELALY A E, ALBASHER G, ALFARRAJ S, et al. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats[J]. Environ Sci Pollut Res Int,2019,26(34):35151−35162. doi:  10.1007/s11356-019-06660-3
    [45] 贾富霞, 王秀娟, 罗容. 酸橙枳实黄酮类抗氧化活性的药效组分研究[J]. 世界中医药,2017,16(15):46−55. [JIA F X, WANG X J, LUO R. Study on antioxidative active components alignment of flavonoids from Aurantii fructus immaturus[J]. World Chinese Medicine,2017,16(15):46−55.
    [46] 龙江宜, 陈健民, 廖苑君, 等. 柚皮苷改善CCl2所致大鼠学习记忆障碍及其机制[J]. 中国药理学通报,2020,36(3):372−379. [LONG J Y, CHEN J M, LIAO Y J, et al. Naringin improves learning and memory impairment induced by CCl2 in rats and its mechanism[J]. Chinese Pharmacological Bulletin,2020,36(3):372−379.
    [47] 张启焕, 严新, 许伟, 等. 超声波辅助醇溶剂法提取橙皮苷及体外抑菌活性分析[J]. 安徽农业科学,2015,43(31):33−34, 52. [ZHANG Q H, YAN X, XU W, et al. Study on extraction of hesperidin from ponkan peel and analysis of its bacteriostatic activity[J]. Journal of Anhui Agricultural Sciences,2015,43(31):33−34, 52.
    [48] JIN Y B, LIU P, LIU X G, et al. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri Reticulatae of a new Citrus cultivar and its main flavonoids[J]. LWT-Food Sci Technol,2008,41(4):597−603. doi:  10.1016/j.lwt.2007.04.008
    [49] DU L H, JIANG Z P, XU L L, et al. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research[J]. Carbohydr Res,2018,455:32−38. doi:  10.1016/j.carres.2017.11.008
    [50] 左龙亚, 滕左, 王孝仕, 等. 不同溶剂柠檬果皮提取物抗氧化、抑菌活性比较及其与多酚组成的关系[J]. 园艺学报,2017,44(4):743−754. [ZUO L Y, TENG Z, WANG X S, et al. Comparsion of antioxidant and antifungal activities of various solvent extracts of lemon peel and analysis the relationship with polyphenol composition[J]. Acta Horticulturae Sinica,2017,44(4):743−754.
    [51] ZHAO Y, LIU S. Bioactivity of naringin and related mechanisms[J]. Pharmazie,2021,76(8):359−363.
    [52] FERRERO-MILIANI L, NIELSEN O H, ANDERSEN P S, et al. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation[J]. Clin Exp Immunol,2010,147:227−235.
    [53] BENAVENTE-GARCÍA O, CASTILLO J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity[J]. J Agric Food Chem,2008,56(15):6185−6205. doi:  10.1021/jf8006568
    [54] WANG S Y, HE N, XING H Y, et al. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis[J]. J Recept Signal Transduct Res,2020,40(4):388−394. doi:  10.1080/10799893.2020.1738483
    [55] 冯宝民, 蒋革, 贾景明, 等. 柚皮苷和新橙皮苷抗过敏作用的研究[J]. 大连大学学报,2005(4):63−64. [FENG B M, JIANG G, JIA J M, et al. Study on the anti-allergic activities of narigin and neohesperidin[J]. Journal of Dalian University,2005(4):63−64.
    [56] HAMDAN D I, MAHMOUD M F, WINK M, et al. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats[J]. Environ Toxicol Pharmacol,2014,37(3):907−915. doi:  10.1016/j.etap.2014.03.006
    [57] AHMAD S F, ATTIA S M, BAKHEET S A, et al. Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κB, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines[J]. Inflammation,2015,38(2):846−857. doi:  10.1007/s10753-014-9994-y
    [58] GIL M, KIM Y K, HONG S B, et al. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice[J]. PLoS One,2016,11(10):e0164186. doi:  10.1371/journal.pone.0164186
    [59] SU C Y, XIA X M, SHI Q, et al. Neohesperidin dihydrochalcone versus CCl4-induced hepatic injury through different mechanisms: The implication of free radical scavenging and Nrf2 activation[J]. J Agric Food Chem,2015,63(22):5468−5475. doi:  10.1021/acs.jafc.5b01750
    [60] ABD-ELHAKIM Y M, GHONEIM M H, KHAIRY M H, et al. Single or combined protective and therapeutic impact of taurine and hesperidin on carbon tetrachloride-induced acute hepatic injury in rat[J]. Environ Sci Pollut Res Int,2020,27(12):13180−13193. doi:  10.1007/s11356-020-07895-1
    [61] 隗世波, 刘青云, 石雅娴. 橙皮苷对脓毒症所致急性肾损伤大鼠的作用及其机制[J]. 中国新药与临床杂志,2020,39(8):494−498. [CHEN S B, LIU Q Y, SHI Y X. Effects and mechanism of hesperidin on sepsis-induced acute kidney injury in rats[J]. Chinese Journal of New Drugs and Clinical Remedies,2020,39(8):494−498.
    [62] PARK W S, PARK M S, KANG S W, et al. Hesperidin shows protective effects on renal function in ischemia-induced acute kidney injury (Sprague-Dawley Rats)[J]. Transplant Proc,2019,51(8):2838−2841. doi:  10.1016/j.transproceed.2019.02.055
    [63] WANG S W, SHENG H, BAI Y F, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J]. Nutr Diabetes,2020,10(1):27. doi:  10.1038/s41387-020-00130-3
    [64] ADIL M, KANDHARE A D, GHOSH P, et al. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: Role of FXR and KIM-1[J]. Ren Fail,2016,38(6):1007−1020. doi:  10.3109/0886022X.2016.1163998
    [65] BOK S H, JEONG T S, CHOI M S, et al. Bioflavonoids as plasma high density lipoprotein level increasing agent: Canadian, CA 2346325 Al[P]. 2001-04-07.
    [66] XIONG H J, WANG J, RAN Q, et al. Hesperidin: A therapeutic agent for obesity[J]. Drug Des Devel Ther,2019,13:3855−3866. doi:  10.2147/DDDT.S227499
    [67] SUNDARAM R, NANDHAKUMAR E, HASEENA B H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats[J]. Toxicol Mech Methods,2019,29(9):644−653. doi:  10.1080/15376516.2019.1646370
    [68] PRASATTHONG P, MEEPHAT S, RATTANAKANOKCHAI S, et al. Hesperidin ameliorates signs of the metabolic syndrome and cardiac dysfunction via IRS/Akt/GLUT4 signaling pathway in a rat model of diet-induced metabolic syndrome[J]. Eur J Nutr,2021,60(2):833−848. doi:  10.1007/s00394-020-02291-4
    [69] ZHANG J K, SUN C D, YAN Y Y, et al. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells[J]. Food Chem,2012,135(3):1471−1478. doi:  10.1016/j.foodchem.2012.06.004
    [70] YANG Y, GONG W Y, JIN C X, et al. Naringin ameliorates experimental diabetic renal fibrosis by inhibiting the ERK1/2 and JNK MAPK signaling pathways[J]. J Funct Foods,2018,50:53−62. doi:  10.1016/j.jff.2018.09.020
    [71] PENGNET S, PROMMAOUAN S, SUMARITHUM P, et al. Naringin reverses high-cholesterol diet-induced vascular dysfunction and oxidative stress in rats via regulating LOX-1 and NADPH oxidase subunit expression[J]. Biomed Res Int,2019:3708497.
    [72] ZOPUN M, LIEDER B, HOLIK A K, et al. Noncaloric sweeteners induce peripheral serotonin secretion via the T1R3-dependent pathway in human gastric parietal tumor cells (HGT-1)[J]. J Agric Food Chem,2018,66(27):7044−7053. doi:  10.1021/acs.jafc.8b02071
    [73] DALY K, DARBY A C, HALL N, et al. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance[J]. Br J Nutr,2014,111(Suppl 1):S30−S35.
    [74] SHI Z, LEI H, CHEN G, et al. Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice[J]. mSystems,2021,6(1):20.
    [75] WU M N, LI Y R, GU Y F. Hesperidin improves colonic motility in loeramide-induced constipation rat model via 5-hydroxytryptamine 4R/cAMP signaling pathway[J]. Digestion,2020,101:692−705. doi:  10.1159/000501959
    [76] ESTRUEL-AMADES S, MASSOT-CLADERA M, PÉREZ-CANO F J, et al. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats[J]. Nutrients,2019,11(2):324. doi:  10.3390/nu11020324
    [77] GUO K, REN J, GU G, et al. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating treg cells[J]. Mol Nutr Food Res,2020,64(10):e1970058. doi:  10.1002/mnfr.201970058
    [78] GONG Y, DONG R, GAO X, et al. Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota[J]. Pharmacol Res,2019,148:104460. doi:  10.1016/j.phrs.2019.104460
    [79] 袁菱, 陈彦, 辛然, 等. 柚皮苷、橙皮苷、新橙皮苷与芍药苷配伍的肠吸收研究[J]. 中国医院药学杂志,2013,33(15):1256−1260. [YUAN L, CHEN Y, XIN R, et al. Study on intestinal absorption of main components after naringin, hesperidin, neohesperidin co-administration with paeoniflorin, respectively[J]. Chinese Journal of Hospital Pharmacy,2013,33(15):1256−1260. doi:  10.13286/j.cnki.chinhosppharmacyj.2013.15.011
    [80] LEE J H, LEE S H, KIM Y S, et al. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease[J]. Phytother Res,2009,23(12):1748−1753. doi:  10.1002/ptr.2840
    [81] LIU P, BIAN Y, FAN Y, et al. Protective effect of naringin on in vitro gut-vascular barrier disruption of intestinal microvascular endothelial cells induced by TNF-α[J]. J Agric Food Chem,2020,68(1):168−175. doi:  10.1021/acs.jafc.9b06347
    [82] MANEESAI P, BUNBUPHA S, POTUE P, et al. Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-β1 and MMPs protein expression[J]. Nutrients,2018,10(10):1549. doi:  10.3390/nu10101549
    [83] LI X F, HU X R, WANG J C, et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury[J]. Int J Mol Med,2018,42(4):1917−1924.
    [84] KUZU M, KANDEMIR F M, YILDIRIM S, et al. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin[J]. Environ Sci Pollut Res Int,2021,28(9):10818−10831. doi:  10.1007/s11356-020-11327-5
    [85] ZHANG J S, FU X D, YANG L, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro[J]. Biomed Pharmacother,2020,129:110364. doi:  10.1016/j.biopha.2020.110364
    [86] CHEN J, GUO R, YAN H, et al. Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells[J]. Basic Clin Pharmacol Toxicol,2014,114(4):293−304. doi:  10.1111/bcpt.12153
    [87] 刘丹, 熊书, 马羚, 等. 柚皮苷对缺氧/复氧损伤心肌细胞Caspase-3活性及IRE1α表达的影响[J]. 中国生物制品学杂志,2020,33(8):904−907. [LIU D, XIONG S, MA L, et al. Effect of naringin on Caspase-3 activity and IRE1α expression in myocardial cells injured by hypoxia/reoxygenation[J]. Chinese Journal of Biologicals,2020,33(8):904−907.
    [88] HAJIALYANI M, HOSEIN F M, ECHEVERRÍA J, et al. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence[J]. Molecules,2019,24(3):648. doi:  10.3390/molecules24030648
    [89] TAMILSELVAM K, BRAIDY N, MANIVASAGAM T, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson's disease[J]. Oxid Med Cell Longev,2013:102741.
    [90] ANTUNES M S, LADD F V L, LADD A A B L, et al. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: The role of mitochondrial dysfunction and apoptosis[J]. Metab Brain Dis,2021,36(1):153−167. doi:  10.1007/s11011-020-00618-y
    [91] WELBAT J U, NAEWLA S, PANNANGRONG W, et al. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat[J]. Biochem Pharmacol,2020,178:114083. doi:  10.1016/j.bcp.2020.114083
    [92] WANG J J, CUI P. Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway[J]. J Asian Nat Prod Res,2013,15(9):1023−1037. doi:  10.1080/10286020.2013.827176
    [93] WANG J, YUAN Y, ZHANG P, et al. Neohesperidin prevents Aβ25-35-induced apoptosis in primary cultured hippocampal neurons by blocking the s-nitrosylation of protein-disulphide isomerase[J]. Neurochem Res,2018,43(9):1736−1744. doi:  10.1007/s11064-018-2589-5
    [94] KULASEKARAN G, GANAPASAM S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells[J]. Mol Cell Biochem,2015,409(1-2):199−211. doi:  10.1007/s11010-015-2525-9
    [95] MENG X D, FU M M, WANG S F, et al. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer's disease by regulating multiple metabolic pathways[J]. Mol Med Rep,2021,23(5):332. doi:  10.3892/mmr.2021.11971
    [96] HELMY H S, SENOUSY M A, EL-SAHAR A E, et al. Aberrations of miR-126-3p, miR-181a and sirtuin1 network mediate Di-(2-ethylhexyl) phthalate-induced testicular damage in rats: The protective role of hesperidin[J]. Toxicology,2020,433-434:152406. doi:  10.1016/j.tox.2020.152406
    [97] OLAYINKA E T, ADEWOLE K E. In vivo andin silico evaluation of the ameliorative effect of hesperidin on finasteride-induced testicular oxidative stress in wistar rats[J]. Toxicol Mech Methods,2021,31(2):81−89. doi:  10.1080/15376516.2020.1831123
    [98] ABD-ELHAKIM Y M, GHONEIM M H, EBRAHEIM L L M, et al. Taurine and hesperidin rescues carbon tetrachloride-triggered testicular and kidney damage in rats via modulating oxidative stress and inflammation[J]. Life Sci,2020,254:117782. doi:  10.1016/j.lfs.2020.117782
    [99] STANISIC D, COSTA A F, CRUZ G, et al. Applications of flavonoids, with an emphasis on hesperidin, as anticancer prodrugs: Phytotherapy as an alternative to chemotherapy[J]. Studies in Natural Products Chemistry,2018,58:161−212.
    [100] KONGTAWELERT P, WUDTIWAI B, SHWE T H, et al. Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer[J]. Molecules,2020,25(2):252. doi:  10.3390/molecules25020252
    [101] ZENG L, ZHEN Y, CHEN Y, et al. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells[J]. Int J Oncol,2014,45(5):1929−1936. doi:  10.3892/ijo.2014.2617
    [102] KASHANI-AMIN E, EBRAHIM-HABIBI A, LARIJANI B, et al. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: A comparative study on bacterial, fungal, and mammalian enzymes[J]. J Mol Recognit,2015,28(10):605−613. doi:  10.1002/jmr.2473
    [103] LEE H J, IM A R, KIM S M, et al. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways[J]. BMC Complement Altern Med,2018,18(1):39. doi:  10.1186/s12906-017-2058-8
    [104] VENTURA-MARTINEZ R, MARES-SÁNchez J J, AVILÉS-HERRERA J, et al. Antinociceptive synergy between metamizole and hesperidin in a model of visceral pain in mice[J]. Arch Med Res,2021,52(4):389−396. doi:  10.1016/j.arcmed.2020.12.011
    [105] GUO J, FANG Y, JIANG F, et al. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice[J]. Eur J Pharmacol,2019,864:172712. doi:  10.1016/j.ejphar.2019.172712
    [106] TAN Z, CHENG J, LIU Q, et al. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice[J]. Mol Cell Endocrinol,2017,439:369−378. doi:  10.1016/j.mce.2016.09.026
    [107] GUO C, ZHANG H, GUAN X, et al. The anti-aging potential of neohesperidin and its synergistic effects with other citrus flavonoids in extending chronological lifespan of saccharomyces cerevisiae BY4742[J]. Molecules,2019,24(22):4093. doi:  10.3390/molecules24224093
    [108] LI F B, SUN X L, MA J X, et al. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway[J]. Biochem Biophys Res Commun,2014,452(3):629−635. doi:  10.1016/j.bbrc.2014.08.117
    [109] LI N, JIANG Y, WOOLEY P H, et al. Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis[J]. J Orthop Sci,2013,18(3):478−485. doi:  10.1007/s00776-013-0362-9
    [110] YUE W, YUN L, LUO M, et al. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice[J]. Biomedical Reports,2016,5(6):715. doi:  10.3892/br.2016.797
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名