Comparative Analysis of Nutrient Composition in the Muscle of Penaeus monodon in Different Culture Models
-
摘要: 探究金刚虾(Penaeus monodon)不同养殖模式下肌肉营养成分的组成,旨在为后续产业精加工提供理论依据,并根据需要选择合适模式的金刚虾。以低盐土池养殖(盐度:8.3‰,简称低盐土池组)、低盐高位池养殖(盐度:7.8‰,简称低盐高位池组)和高盐高位池(盐度:23.4‰,简称高盐组)养殖3种养殖模式下的金刚虾为试验对象,通过对肌肉营养成分的分析比较,研究金刚虾肌肉在不同养殖模式下的营养差异。结果表明,在常规营养成分方面,高盐组金刚虾肌肉水分含量显著低于低盐高位池组和低盐土池组(P<0.05),低盐高位池组粗蛋白含量显著低于高盐组和低盐土池组(P<0.05),高盐组粗脂肪、灰分含量最高,与其他两组差异显著(P<0.05)。在氨基酸组成方面,3种养殖模式饲养的金刚虾肌肉均含17种氨基酸,高盐组金刚虾肌肉必需氨基酸含量、鲜味+甜味氨基酸含量、氨基酸总量均最高。在必需氨基酸评价方面,高盐组金刚虾肌肉必需氨基酸总量(2336.27 mg/g N)和必需氨基酸指数(76.15)最高,低盐高位池组次之,低盐土池组最低。在脂肪酸组成方面,共检测出17种脂肪酸,3种养殖模式下金刚虾肌肉中均为C16:0(棕榈酸)含量最高,EPA+DHA的含量以高盐组最高。结果表明,高盐高位池养殖模式下的金刚虾肌肉营养成分齐全,具有较高的食用价值。Abstract: The purpose of this study was to explore the composition of muscle nutrients in different culture models of P. monodon, and to provide a theoretical basis for subsequent industrial finishing and select the appropriate model of P. monodon according to the needs. Farming in low-salt soil ponds (salinity: 8.3‰, referred to as low-salt soil pond group), low-salt intensive pond culture (salinity: 7.8‰, referred to as low-salt intensive pond group) and high-salt intensive pond (salinity: 23.4‰, referred to as high-salt group) ,the P. monodon under three culture modes were tested, and the nutritional differences of the muscles of P. monodon under different cultivation modes were analyzed and compared through the analysis and comparison of muscle nutrients. The results showed that in terms of conventional nutrients, the muscle water content of P. monodon in the high-salt group was significantly lower than that of the low-salt intensive pond group and the low-salt soil pond group (P<0.05), the crude protein content of the low-salt intensive pond group was significantly lower than that of the high-salt group and the low-salt soil pond group (P<0.05), the high-salt group had the highest crude fat, ash content, significantly different from the other two groups (P<0.05). In terms of amino acid composition, the muscles of P. monodon raised in the three breeding modes all contain 17 amino acids. The high-salt group of P. monodon muscle had the highest content of essential amino acids, delicious+sweet amino acid content, and total amino acids. In terms of the evaluation of essential amino acids, the total essential amino acids (2336.27 mg/g N) and essential amino acid index (76.15) of the muscle of P. monodon in the high-salt group were the highest, followed by the low-salt intensive pond group, and the low-salt soil pond group were the lowest. In terms of fatty acid composition, a total of 17 fatty acids were detected. Under the three culture modes, the content of C16:0 (palmitic acid) in the muscle of P. monodon was the highest, and the content of EPA+DHA was the highest in the high-salt group. The results showed that the muscle nutrients of P. monodon under the high-salt intensive pond culture model are complete, with high edible value.
-
Key words:
- Penaeus monodon /
- culture model /
- nutrient composition /
- amino acid /
- fatty acid
-
表 1 不同养殖模式信息
Table 1. Different culture modes information
养殖模式 盐度 水深
(m)面积
(亩)放养密度
(万尾/亩)样本
数体长
(mm)体质量
(g)低盐土池养殖 8.3‰ 1.5 3 1~2 30 166.74±9.13 30.99±5.35 低盐高位池养殖 7.8‰ 3 1 15~20 30 171.44±8.72 37.18±6.21 高盐高位池养殖 23.4‰ 3 1 20~25 30 169.44±7.41 34.16±3.62 表 2 不同养殖模式下金刚虾肌肉常规营养组成分析(湿质量%)
Table 2. Analysis of conventional nutritional composition of muscle of P. monodon in different culture modes (wet weight %)
项目 低盐土池组 低盐高位池组 高盐组 水分 76.35±0.36a 76.60±0.30a 75.62±0.14b 粗蛋白 21.38±0.12a 20.34±0.25b 21.51±0.35a 粗脂肪 0.30±0.04b 0.17±0.01c 0.36±0.01a 灰分 1.71±0.05b 1.64±0.02b 2.01±0.04a 注:同行不同字母代表差异显著(P<0.05),表3 同。 表 3 不同养殖模式下金刚虾肌肉氨基酸组成分析(g/100 g)
Table 3. Analysis of amino acid composition of muscle of P. monodon in different culture modes (g/100 g)
氨基酸种类 低盐土池组 低盐高位池组 高盐组 天门冬氨酸(Asp)§ 8.46±0.05a 8.36±0.07b 8.52±0.02a 苏氨酸(Thr)* 3.35±0.01a 3.29±0.02b 3.33±0.02a 丝氨酸(Ser) 3.36±0.02a 3.25±0.03b 3.25±0.02b 谷氨酸(Glu)§ 14.89±0.08a 14.24±0.10b 14.26±0.04b 甘氨酸(Gly)# 6.80±0.02b 6.38±0.03c 9.84±0.16a 丙氨酸(Ala)# 5.28±0.03b 5.58±0.05a 4.86±0.02c 胱氨酸(Cys) 0.78±0.06a 0.82±0.02a 0.77±0.06a 缬氨酸(Val)* 3.66±0.02a 3.61±0.03b 3.59±0.01b 蛋氨酸(Met)* 1.97±0.00c 2.05±0.02b 2.16±0.03a 异亮氨酸(Ile)* 3.35±0.04b 3.36±0.03ab 3.41±0.01a 亮氨酸(Leu)* 6.29±0.05a 6.20±0.05b 6.34±0.01a 酪氨酸(Tyr) 2.91±0.02b 2.88±0.02b 2.98±0.02a 苯丙氨酸(Phe)* 3.33±0.04b 3.29±0.02b 3.42±0.01a 赖氨酸(Lys)* 6.89±0.07ab 6.81±0.06b 6.98±0.01a 组氨酸(His) 1.61±0.01a 1.59±0.01a 1.55±0.01b 精氨酸(Arg) 8.06±0.02b 7.54±0.07c 8.89±0.05a 脯氨酸(Pro) 5.08±0.08b 5.35±0.03a 4.83±0.06c 必需氨基酸总量∑EAA 28.85±0.22a 28.59±0.22b 29.17±0.05a 氨基酸总量∑TAA 86.08±0.43b 84.59±0.64c 88.91±0.33a 鲜味+甜味氨基酸总量∑DAA 35.43±0.16b 34.56±0.24c 37.48±0.22a 注:*表示人体必需氨基酸;§表示鲜味氨基酸;#表示甜味氨基酸;∑EAA为必需氨基酸总量;∑DAA为鲜味+甜味氨基酸总量;∑TAA为氨基酸总量。 表 4 不同养殖模式下金刚虾肌肉必需氨基酸含量的比较(mg/g N)
Table 4. Comparison of essential amino acid in muscle of P. monodon in different culture modes (mg/g N)
必需氨基酸 低盐土
池组低盐高
位池组高盐组 FAO/WHO
模式全鸡蛋蛋
白模式苏氨酸 231.61 236.56 235.89 250 292 缬草氨酸 253.04 259.57 254.31 310 411 异亮氨酸 231.61 241.59 241.56 250 331 亮氨酸 434.86 445.80 449.12 440 534 赖氨酸 476.35 489.66 494.46 340 441 蛋氨酸+胱氨酸 190.12 206.36 207.56 220 386 苯丙氨酸+酪氨酸 431.41 443.64 453.37 380 565 总量 2248.99 2323.17 2336.27 2190 2960 表 5 不同养殖模式下金刚虾肌肉必需氨基酸评分(AAS)、必需化学评分(CS)的比较
Table 5. Comparison of essential amino acid scores (AAS) and essential chemical scores (CS) for the muscles of P. monodon in different culture modes
必需氨基酸 低盐土池组 低盐高位池组 高盐组 氨基酸
评分化学
评分氨基酸
评分化学
评分氨基酸
评分化学
评分苏氨酸 0.93 0.79 0.95 0.81 0.94 0.81 缬氨酸 0.82* 0.62** 0.84* 0.63** 0.82* 0.62** 异亮氨酸 0.93 0.70 0.97 0.73 0.97 0.73 亮氨酸 0.99 0.81 1.01 0.83 1.02 0.84 赖氨酸 1.40 1.08 1.44 1.11 1.45 1.12 蛋氨酸+胱氨酸 0.86** 0.49* 0.94** 0.53* 0.94** 0.54* 苯丙氨酸+酪氨酸 1.14 0.76 1.17 0.79 1.19 0.80 必需氨基酸指数 73.24 75.92 76.15 注:*表示第一限制性氨基酸;**表示第二限制性氨基酸。 表 6 不同养殖模式下金刚虾肌肉脂肪酸组成分析(%)
Table 6. Analysis of fatty acid composition in muscle of P. monodon in different culture modes (%)
脂肪酸种类 低盐土池组 低盐高位池组 高盐组 C14:0 0.30±0.01a 0.24±0.01b 0.35±0.00a C15:0 0.35±0.01a 0.32±0.01a 0.22±0.00b C16:0 20.87±0.03b 21.30±0.16a 19.64±0.04c C16:1n7c 1.01±0.04a 0.59±0.06b 0.97±0.00a C17:0 1.25±0.02a 1.26±0.01a 0.80±0.00b C18:0 11.14±0.01a 11.21±0.16a 10.53±0.00b C18:1n9c 14.50±0.01a 13.42±0.04b 12.37±0.01c C18:2n6c 19.57±0.01b 20.42±0.02a 18.03±0.04c C18:3n3c 0.85±0.02a 0.89±0.01a 0.66±0.01b C20:0 0.20±0.00a 0.19±0.00a 0.20±0.00a C20:1n9c 0.44±0.00c 0.48±0.01b 0.59±0.02a C20:2n6c 0.97±0.01b 1.12±0.02a 1.10±0.00a C20:4n6c 3.98±0.04a 3.76±0.05b 3.57±0.00c C22:0 0.33±0.02a 0.20±0.02b 0.24±0.00b C20:5n3c 9.02±0.01c 9.85±0.08b 13.41±0.01a C24:1n9c 0.24±0.00a 0.12±0.00b 0.24±0.00a C22:6n3c 12.45±0.00c 12.59±0.01b 13.76±0.03a 其他 2.51±0.08b 2.05±0.06c 3.32±0.03a 总饱和脂肪酸∑SFA 34.45±0.06b 34.72±0.01a 31.98±0.04c 总单不饱和脂肪酸∑MUFA 16.19±0.05a 14.60±0.09b 14.17±0.02c 总多不饱和脂肪酸∑PUFA 46.85±0.01c 48.63±0.04b 50.53±0.03a EPA+DHA 21.48±0.01c 22.44±0.07b 27.16±0.04a 注:∑SFA(总饱和脂肪酸)包含C14:0、C15:0、C16:0、C17:0、C18:0、C20:0、C22:0;∑MUFA(总单不饱和脂肪酸)包含C16:1n7c、C18:1n9c、C20:1n9c、C24:1n9c;∑PUFA(总多不饱和脂肪酸)包含C18:2n6c、C18:3n3c、C20:2n6c、C20:4n6c、C20:5n3c、C22:6n3c。 -
[1] 黄继廷, 郑德州. 金刚虾高密度养殖[J]. 当代水产,2020,45(8):75−76. [HUANG J T, ZHENG D Z. High density culture of Penaeus monodon[J]. Current Fisheries,2020,45(8):75−76. doi: 10.3969/j.issn.1674-9049.2020.08.027 [2] 黄建华, 周发林, 蔡云川, 等. 斑节对虾“南海1号”三种高效养殖模式技术要点[J]. 海洋与渔业,2017(2):69−72. [HUANG J H, ZHOU F L, CAI Y C, et al. Technical points of three high-efficiency breeding modes of Penaeus monodon "Nanhai No. 1"[J]. Ocean and Fishery,2017(2):69−72. doi: 10.3969/j.issn.1672-4046.2017.02.029 [3] 黄永春, 游宇, 崔茜, 等. 福建省“金刚虾”养殖现状与发展方向探析[J]. 中国水产,2021(4):44−46. [HUANG Y C, YOU Y, CUI X, et al. Analysis on the current situation and development direction of "Penaeus monodon" aquaculture in Fujian Province[J]. China Fisheries,2021(4):44−46. [4] 周伟, 王洋, 孙学亮, 等. 养殖盐度对斑节对虾肌肉品质的影响[J]. 食品研究与开发,2018,39(22):7−14. [ZHOU W, WANG Y, SUN X L, et al. Effects of culture salinity on muscle quality of Penaeus monodon[J]. Food Research and Development,2018,39(22):7−14. doi: 10.3969/j.issn.1005-6521.2018.22.002 [5] 周伟, 王洋, 孙学亮, 等. 养殖密度对斑节对虾肌肉品质的影响[J]. 食品工业科技,2018,39(23):69−75. [ZHOU W, WANG Y, SUN X L, et al. Effects of breeding density on muscle quality of Penaeus monodon[J]. Science and Technology of Food Industry,2018,39(23):69−75. doi: 10.13386/j.issn1002-0306.2018.23.012 [6] 陈书畅, 徐晔, 吴龙华, 等. 南非斑节对虾和中国明对虾肌肉营养成分分析比较[J]. 水产科技情报,2019,46(5):283−286. [CHEN S C, XU Y, WU L H, et al. Comparative analysis of nutrients in muscles of Penaeus monodon and Fenneropenaeus chinensis[J]. Fisheries Science & Technology Information,2019,46(5):283−286. doi: 10.16446/j.cnki.1001-1994.2019.05.009 [7] 刘敏, 张海涛, 孙广文, 等. 斑节对虾营养需求与功能性饲料添加剂研究进展[J]. 当代水产,2021,46(6):74−79, 81. [LIU M, ZHANG H T, SUN G W, et al. Research progress on nutritional requirements and functional feed additives of Penaeus monodon[J]. Current Fisheries,2021,46(6):74−79, 81. doi: 10.3969/j.issn.1674-9049.2021.06.027 [8] GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.3-2016 National Food Safety Standard-Determination of moisture in foods[S]. Beijing: Standards Press of China, 2016. [9] GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.4-2016 National Food Safety Standard-Determination of ash in foods[S]. Beijing: Standards Press of China, 2016. [10] GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.5-2016 National Food Safety Standard-Determination of protein in food[S]. Beijing: Standards Press of China, 2016. [11] GB 5009.6-2016, 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.6-2016 National Food Safety Standard-Determination of fats in foods[S]. Beijing: Standards Press of China, 2016. [12] GB 5009.124-2016, 食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.124-2016 National Food Safety Standard-Determination of amino acids in foods[S]. Beijing: Standards Press of China, 2016. [13] GB 5009.168-2016, 食品安全国家标准 食品中脂肪酸的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.168-2016 National Food Safety Standard-Determination of fatty acids in foods[S]. Beijing: Standards Press of China, 2016. [14] MONIRUZZAMAN M, SKU S, CHOWDHURY P, et al. Nutritional evaluation of some economically important marine and freshwater mollusc species of Bangladesh[J]. Heliyon,2021,7(5):e07088. doi: 10.1016/j.heliyon.2021.e07088 [15] THABET R, AYADI H, KOKEN M, et al. Homeostatic responses of crustaceans to salinity changes[J]. Hydrobiologia,2017,799(1):1−20. doi: 10.1007/s10750-017-3232-1 [16] ZHOU J M, LI N, WANG H, et al. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering[J]. Aquaculture Research,2020,51(5):1834−1843. doi: 10.1111/are.14532 [17] JIANG J F, WU H M, CUO H Y, et al. Effects of salinities on the growth and nutrient composition in the muscle of Exopalaemon carinicaudar[J]. Marine Science Bulletin,2016,18(1):81−92. [18] 李晓, 王晓璐, 王颖, 等. 盐度对养殖凡纳滨对虾肌肉营养成分的影响[J]. 中国农业科技导报,2020,22(1):130−137. [LI X, WANG X L, WANG Y, et al. Effects of different salinities on nutritional composition in muscle of Litopenaeus vannamei[J]. Journal of Agricultural Science and Technology,2020,22(1):130−137. doi: 10.13304/j.nykjdb.2019.0004 [19] XU J H, YAN B L, TENG Y J, et al. Analysis of nutrient composition and fatty acid profiles of Japanese sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater[J]. Journal of Food Composition and Analysis,2010,23:401−405. doi: 10.1016/j.jfca.2010.01.010 [20] 汤奎, 刘小林, 张帅, 等. 3种不同体色刺参体壁营养成分的比较研究[J]. 渔业科学进展,2021,42(3):155−162. [TANG K, LIU X L, ZHANG S, et al. Comparative study on the nutrient composition in body walls of three body color variants of the sea cucumbers, Apostichopus japonicus (Selenka)[J]. Progress in Fishery Sciences,2021,42(3):155−162. doi: 10.19663/j.issn2095-9869.20201210003 [21] ZHANG Z M, XU W T, TANG R, et al. Thermally processed diet greatly affects profiles of amino acids rather than fatty acids in the muscle of carnivorous Silurus meridionalis[J]. Food Chemistry,2018:244−251. [22] 张丹, 王芳, 董双林. 周期性盐度波动对凡纳滨对虾游离氨基酸含量及渗透调节相关基因表达的影响[J]. 中国水产科学,2016,23(5):1130−1136. [ZHANG D, WANG F, DONG S L, et al. Effects of periodic salinity fluctuations on free amino acids content and expression of osmotic regulation-related genes in Litopenaeus vannamei[J]. Journal of Fishery Sciences of China,2016,23(5):1130−1136. [23] LUO J, MONROIG O, ZHOU Q, et al. Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain[J]. Food Chemistry,2021,361:130160. doi: 10.1016/j.foodchem.2021.130160 [24] SHI L F, HAO G X, CHEN J, et al. Nutritional evaluation of Japanese abalone (Haliotis discus hannai Ino) muscle: Mineral content, amino acid profile and protein digestibility[J]. Food Research International, 2020, 129(C). [25] 程小飞, 宋锐, 向劲, 等. 不同养殖模式和野生克氏原螯虾肌肉营养成分分析与评价[J]. 现代食品科技,2021,37(4):87−95. [CHENG X F, SONG R, XIANG J, et al. Analysis and evaluation of different farming modes and nutrient composition of wild crawfish (Procambarus clarkia) muscle[J]. Modern Food Science and Technology,2021,37(4):87−95. doi: 10.13982/j.mfst.1673-9078.2021.4.0823 [26] 王娟. 中国对虾、南美白对虾和斑节对虾肌肉营养成分的比较[J]. 食品科技,2013,38(6):146−150. [WANG J. Comparision of nutritional compositions in muscles of Penaeus chinensis, Penaeus vannamei Boone and Penaeus japonicuss Bate[J]. Food Science and Technology,2013,38(6):146−150. doi: 10.13684/j.cnki.spkj.2013.06.009 [27] 吴丹, 江敏, 吴昊, 等. 大棚养殖和露天养殖模式下不同生长阶段凡纳滨对虾肌肉营养成分比较[J]. 上海海洋大学学报,2019,28(4):491−500. [WU D, JIANG M, WU H, et al. Comparison of nutritional component of greenhouse cultured and outdoor cultured Litopenaeus vannamei in different growth stages[J]. Journal of Shanghai Ocean University,2019,28(4):491−500. [28] ISRA L, SURAIYA S, SALMA U, et al. Nutritional evaluation and shelf-life study of mackerel tuna (Euthynnus affinis) fish pickle[J]. Agricultural Research,2022,11(2):249−257. doi: 10.1007/s40003-021-00559-7 [29] 范泽, 王连生. 鱼类赖氨酸营养研究进展[J]. 中国饲料,2021(13):66−72. [FAN Z, WANG L S. Research progress of fish lysine nutrition[J]. China Feed,2021(13):66−72. doi: 10.15906/j.cnki.cn11-2975/s.20211314 [30] 王广军, 孙悦, 郁二蒙, 等. 澳洲淡水龙虾与克氏原螯虾肌肉营养成分分析与品质评价[J]. 动物营养学报,2019,31(9):4339−4348. [WANG G J, SUN Y, YU E M, et al. Analysis and quality evaluation of nutrient components in muscle of Cherax quadricarinatus and Procambarus clarkii[J]. Chinese Journal of Animal Nutrition,2019,31(9):4339−4348. [31] 郭忠宝, 肖蕊, 黄卉, 等. 3种养殖模式罗非鱼品质比较分析与评价[J]. 南方农业学报,2021,52(1):206−212. [GUO Z B, XIAO R, HUANG H, et al. Comparative analysis and evaluation of nutritional quality of tilapia in three aquaculture modes[J]. Journal of Southern Agriculture,2021,52(1):206−212. doi: 10.3969/j.issn.2095-1191.2021.01.025 [32] 原居林, 刘梅, 倪蒙, 等. 不同养殖模式对大口黑鲈生长性能、形体指标和肌肉营养成分影响研究[J]. 江西农业大学学报,2018,40(6):1276−1285. [YUAN J L, LIU M, NI M, et al. Effects of different culture models on growth performances, morphological traits and nutritional quality in muscles of Micropterus salmoides[J]. Acta Agriculturae Universitatis Jiangxiensis,2018,40(6):1276−1285. doi: 10.13836/j.jjau.2018161 [33] 罗钦, 李冬梅, 钟茂生, 等. 澳洲龙纹斑雌、雄亲鱼营养组成比较分析[J]. 福建农业学报,2020,35(1):51−58. [LUO Q, LI D M, ZHONG M S, et al. Nutritional compositions of female and male Murray Cod Filets[J]. Fujian Journal of Agricultural Sciences,2020,35(1):51−58. doi: 10.19303/j.issn.1008-0384.2020.01.008 [34] WU H Z, XU L, BALLANTYNE C M. Dietary and pharmacological fatty acids and cardiovascular health[J]. The Journal of Clinical Endocrinology and Metabolism,2020,105(4):1030−1045. doi: 10.1210/clinem/dgz174 [35] ARAUJO P, TRUZZI C, BELGHIT I, et al. The impact of seawater warming on fatty acid composition and nutritional quality indices of Trematomus bernacchii from the Antarctic region[J]. Food Chemistry,2021,365:130500. doi: 10.1016/j.foodchem.2021.130500 [36] CHEN J P, LIU H B. Nutritional indices for assessing fatty acids: A mini-review[J]. International Journal of Molecular Sciences,2020,21(16):E5695. doi: 10.3390/ijms21165695 [37] 邴旭文, 王进波. 池养南美蓝对虾与南美白对虾肌肉营养品质的比较[J]. 水生生物学报,2006(4):453−458. [BING X W, WANG J B. A comparative study of nutritional quality in the muscle of Penaeus stylirostris and Penaeus vannamei in the cultured-pond[J]. Acta Hydrobiologica Sinica,2006(4):453−458. doi: 10.3321/j.issn:1000-3207.2006.04.014 [38] 刘永涛, 董靖, 夏京津, 等. 不同饲料对稻田养殖克氏原螯虾肌肉质构特性和营养品质的影响[J]. 浙江农业学报,2019,31(12):1996−2004. [LIU Y T, DONG J, XIA J J, et al. Effect and evaluation of different feed on the texture properties and nutritional quality of Procambarus clarkia cultured in rice field[J]. Acta Agriculturae Zhejiangensis,2019,31(12):1996−2004. doi: 10.3969/j.issn.1004-1524.2019.12.07 [39] WANG F, CHEN Z, CHENG Y S, et al. Nutritional Evaluation of two strains of Chinese soft-shelled turtle, Pelodiscus sinensis[J]. Journal of Food Composition and Analysis,2021:103971. -